Articles | Volume 27, issue 6
https://doi.org/10.5194/hess-27-1343-2023
https://doi.org/10.5194/hess-27-1343-2023
Research article
 | 
28 Mar 2023
Research article |  | 28 Mar 2023

Estimation of hydraulic conductivity functions in karst regions by particle swarm optimization with application to Lake Vrana, Croatia

Vanja Travaš, Luka Zaharija, Davor Stipanić, and Siniša Družeta

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
The origin of hydrological responses following earthquakes in a confined aquifer: insight from water level, flow rate, and temperature observations
Shouchuan Zhang, Zheming Shi, Guangcai Wang, Zuochen Zhang, and Huaming Guo
Hydrol. Earth Syst. Sci., 27, 401–415, https://doi.org/10.5194/hess-27-401-2023,https://doi.org/10.5194/hess-27-401-2023, 2023
Short summary
Advance prediction of coastal groundwater levels with temporal convolutional and long short-term memory networks
Xiaoying Zhang, Fan Dong, Guangquan Chen, and Zhenxue Dai
Hydrol. Earth Syst. Sci., 27, 83–96, https://doi.org/10.5194/hess-27-83-2023,https://doi.org/10.5194/hess-27-83-2023, 2023
Short summary
Three-dimensional hydrogeological parametrization using sparse piezometric data
Dimitri Rambourg, Raphaël Di Chiara, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 26, 6147–6162, https://doi.org/10.5194/hess-26-6147-2022,https://doi.org/10.5194/hess-26-6147-2022, 2022
Short summary
Machine-learning-based downscaling of modelled climate change impacts on groundwater table depth
Raphael Schneider, Julian Koch, Lars Troldborg, Hans Jørgen Henriksen, and Simon Stisen
Hydrol. Earth Syst. Sci., 26, 5859–5877, https://doi.org/10.5194/hess-26-5859-2022,https://doi.org/10.5194/hess-26-5859-2022, 2022
Short summary
Frequency domain water table fluctuations reveal impacts of intense rainfall and vadose zone thickness on groundwater recharge
Luca Guillaumot, Laurent Longuevergne, Jean Marçais, Nicolas Lavenant, and Olivier Bour
Hydrol. Earth Syst. Sci., 26, 5697–5720, https://doi.org/10.5194/hess-26-5697-2022,https://doi.org/10.5194/hess-26-5697-2022, 2022
Short summary

Cited articles

Bailly-Comte, V., Borrell-Estupina, V., Jourde, H., and Pistre, S.: A conceptual semidistributed model of the Coulazou River as a tool for assessing surface water–karst groundwater interactions during flood in Mediterranean ephemeral rivers, Water Resour. Res., 48, W09534, https://doi.org/10.1029/2010WR010072, 2012. a
Bakalowicz, M.: Karst groundwater: a challenge for new resources, Hydrogeol. J., 13, 148–160, https://doi.org/10.1007/s10040-004-0402-9, 2005. a
Beasley, D., Bull, D. R., and Martin, R. R.: A Sequential Niche technique for multimodal function optimization, Evol. Comput., 1, 101–125, https://doi.org/10.1162/evco.1993.1.2.101, 1993. a
Bergström, S. and Forsman, A.: Development of a conceptual deterministic rainfall-runoff model, Hydrol. Res., 4, 147–170, https://doi.org/10.2166/nh.1973.0012, 1973.  a
Beven, K. J.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36, 2006. a
Download
Short summary
In order to model groundwater flow in karst aquifers, it is necessary to approximate the influence of the unknown and irregular structure of the karst conduits. For this purpose, a procedure based on inverse modeling is adopted. Moreover, in order to reconstruct the functional dependencies related to groundwater flow, the particle swarm method was used, through which the optimal solution of unknown functions is found by imitating the movement of ants in search of food.