Articles | Volume 26, issue 23
https://doi.org/10.5194/hess-26-6003-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-6003-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exploring tracer information in a small stream to improve parameter identifiability and enhance the process interpretation in transient storage models
Enrico Bonanno
CORRESPONDING AUTHOR
Catchment and Eco-Hydrology Group, Luxembourg Institute of Science
and Technology, Belvaux, Luxembourg
Institute of Hydraulic and Water Resources Engineering, Vienna
University of Technology, Vienna, Austria
Günter Blöschl
Institute of Hydraulic and Water Resources Engineering, Vienna
University of Technology, Vienna, Austria
Julian Klaus
Institute of Geography, University of Bonn, Bonn, Germany
Related authors
No articles found.
Adrian Flores Orozco, Jakob Gallistl, Benjamin Gilfedder, Timea Katona, Sven Frei, Peter Strauss, and Gunter Blöschl
EGUsphere, https://doi.org/10.5194/egusphere-2025-4015, https://doi.org/10.5194/egusphere-2025-4015, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Understanding the role of soil in the storage of organic carbon is critical for a large number of environmental processes. Current practices rely on the drilling and analysis of samples, which is expensive, time consuming and destructive. Here we present a technique able to map soil organic carbon measuring the electrical properties of the subsurface without the necessity of drilling. Our results could permit to advance soil management strategies to enhance carbon sequestration and storage.
Hatice Türk, Christine Stumpp, Markus Hrachowitz, Karsten Schulz, Peter Strauss, Günter Blöschl, and Michael Stockinger
Hydrol. Earth Syst. Sci., 29, 3935–3956, https://doi.org/10.5194/hess-29-3935-2025, https://doi.org/10.5194/hess-29-3935-2025, 2025
Short summary
Short summary
Using advances in transit time estimation and tracer data, we tested if fast-flow transit times are controlled solely by soil moisture or if they are also controlled by precipitation intensity. We used soil-moisture-dependent and precipitation-intensity-conditional transfer functions. We showed that a significant portion of event water bypasses the soil matrix through fast flow paths (overland flow, tile drains, preferential-flow paths) in dry soil conditions for both low- and high-intensity precipitation.
Hatice Türk, Christine Stumpp, Markus Hrachowitz, Peter Strauss, Günter Blöschl, and Michael Stockinger
EGUsphere, https://doi.org/10.5194/egusphere-2025-2597, https://doi.org/10.5194/egusphere-2025-2597, 2025
Short summary
Short summary
This study shows that stream flow isotope data (δ2H) were inadequate for distinguishing preferential groundwater flow. Large passive groundwater storage dampened δ2H variations, obscuring signals of fast groundwater flow and complicating the estimation of older water fractions in the streams. Further, weekly-resolution δ2H sampling yielded deceptively high model performance, highlighting the need for complementary and groundwater-level data to improve catchment-scale transit-time estimates.
Christopher Thoma, Borbala Szeles, Miriam Bertola, Elmar Schmaltz, Carmen Krammer, Peter Strauss, and Günter Blöschl
EGUsphere, https://doi.org/10.5194/egusphere-2025-2541, https://doi.org/10.5194/egusphere-2025-2541, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We studied how farming practices affect soil and sediment movement in a small Austrian catchment. By monitoring water and sediment during 55 rain events, we found that erosion control worked well in flat fields near the stream, but not in steep or distant fields. Our results show that reducing soil loss requires strategies that consider slope, distance to streams, and how water flows through the landscape.
Mortimer L. Bacher, Julian Klaus, Adam S. Ward, Jasmine Krause, Catalina Segura, and Clarissa Glaser
EGUsphere, https://doi.org/10.5194/egusphere-2025-1625, https://doi.org/10.5194/egusphere-2025-1625, 2025
Short summary
Short summary
Slug tracer experiments are biased toward faster flow paths, underscoring the need for tracers that reveal temporally longer timescales. We explore integrating solute tracers with naturally occurring radon to quantify flow paths of different timescales at the reach scale. Joint calibration of a transient storage model with both tracers better constrains model parameters, highlighting that this approach is critical for improving solute transport estimates in future studies.
Samuele Ceolin, Stanislaus J. Schymanski, Dagmar van Dusschoten, Robert Koller, and Julian Klaus
Biogeosciences, 22, 691–703, https://doi.org/10.5194/bg-22-691-2025, https://doi.org/10.5194/bg-22-691-2025, 2025
Short summary
Short summary
We investigated if and how roots of maize plants respond to multiple abrupt changes in soil moisture. We measured root lengths using a magnetic resonance imaging technique and calculated changes in growth rates after applying water pulses. The root growth rates increased in wetted soil layers within 48 hours and decreased in non-wetted layers, indicating fast adaptation of the root systems to moisture changes. Our findings could improve irrigation management and vegetation models.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
Bruno Merz, Günter Blöschl, Robert Jüpner, Heidi Kreibich, Kai Schröter, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 24, 4015–4030, https://doi.org/10.5194/nhess-24-4015-2024, https://doi.org/10.5194/nhess-24-4015-2024, 2024
Short summary
Short summary
Flood risk assessments help us decide how to reduce the risk of flooding. Since these assessments are based on probabilities, it is hard to check their accuracy by comparing them to past data. We suggest a new way to validate these assessments, making sure they are practical for real-life decisions. This approach looks at both the technical details and the real-world situations where decisions are made. We demonstrate its practicality by applying it to flood emergency planning.
Ginevra Fabiani, Julian Klaus, and Daniele Penna
Hydrol. Earth Syst. Sci., 28, 2683–2703, https://doi.org/10.5194/hess-28-2683-2024, https://doi.org/10.5194/hess-28-2683-2024, 2024
Short summary
Short summary
There is a limited understanding of the role that topography and climate play in tree water use. Through a cross-site comparison in Luxembourg and Italy, we investigated beech water use along slopes in different climates. Our findings indicate that in landscapes characterized by stronger hydraulic and climatic gradients there is greater spatial variation in tree physiological responses. This highlights how differing growing conditions across landscapes can lead to contrasting tree performances.
Günter Blöschl, Andreas Buttinger-Kreuzhuber, Daniel Cornel, Julia Eisl, Michael Hofer, Markus Hollaus, Zsolt Horváth, Jürgen Komma, Artem Konev, Juraj Parajka, Norbert Pfeifer, Andreas Reithofer, José Salinas, Peter Valent, Roman Výleta, Jürgen Waser, Michael H. Wimmer, and Heinz Stiefelmeyer
Nat. Hazards Earth Syst. Sci., 24, 2071–2091, https://doi.org/10.5194/nhess-24-2071-2024, https://doi.org/10.5194/nhess-24-2071-2024, 2024
Short summary
Short summary
A methodology of regional flood hazard mapping is proposed, based on data in Austria, which combines automatic methods with manual interventions to maximise efficiency and to obtain estimation accuracy similar to that of local studies. Flood discharge records from 781 stations are used to estimate flood hazard patterns of a given return period at a resolution of 2 m over a total stream length of 38 000 km. The hazard maps are used for civil protection, risk awareness and insurance purposes.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023, https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary
Short summary
The study proposes a quantitative model of the willingness to cooperate in the Eastern Nile River basin. Our results suggest that the 2008 food crisis may account for Sudan recovering its willingness to cooperate with Ethiopia. Long-term lack of trust among the riparian countries may have reduced basin-wide cooperation. The model can be used to explore the effects of changes in future dam operations and other management decisions on the emergence of basin cooperation.
Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 5015–5033, https://doi.org/10.5194/hess-26-5015-2022, https://doi.org/10.5194/hess-26-5015-2022, 2022
Short summary
Short summary
There is serious concern that river floods are increasing. Starting from explanations discussed in public, the article addresses three hypotheses: land-use change, hydraulic structures, and climate change increase floods. This review finds that all three changes have the potential to not only increase floods, but also to reduce them. It is crucial to consider all three factors of change in flood risk management and communicate them to the general public in a nuanced way.
Shengping Wang, Borbala Szeles, Carmen Krammer, Elmar Schmaltz, Kepeng Song, Yifan Li, Zhiqiang Zhang, Günter Blöschl, and Peter Strauss
Hydrol. Earth Syst. Sci., 26, 3021–3036, https://doi.org/10.5194/hess-26-3021-2022, https://doi.org/10.5194/hess-26-3021-2022, 2022
Short summary
Short summary
This study explored the quantitative contribution of agricultural intensification and climate change to the sediment load of a small agricultural watershed. Rather than a change in climatic conditions, changes in the land structure notably altered sediment concentrations under high-flow conditions, thereby contributing most to the increase in annual sediment loads. More consideration of land structure improvement is required when combating the transfer of soil from land to water.
Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 2469–2480, https://doi.org/10.5194/hess-26-2469-2022, https://doi.org/10.5194/hess-26-2469-2022, 2022
Short summary
Short summary
Sound understanding of how floods come about allows for the development of more reliable flood management tools that assist in mitigating their negative impacts. This article reviews river flood generation processes and flow paths across space scales, starting from water movement in the soil pores and moving up to hillslopes, catchments, regions and entire continents. To assist model development, there is a need to learn from observed patterns of flood generation processes at all spatial scales.
Rui Tong, Juraj Parajka, Borbála Széles, Isabella Greimeister-Pfeil, Mariette Vreugdenhil, Jürgen Komma, Peter Valent, and Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 1779–1799, https://doi.org/10.5194/hess-26-1779-2022, https://doi.org/10.5194/hess-26-1779-2022, 2022
Short summary
Short summary
The role and impact of using additional data (other than runoff) for the prediction of daily hydrographs in ungauged basins are not well understood. In this study, we assessed the model performance in terms of runoff, soil moisture, and snow cover predictions with the existing regionalization approaches. Results show that the best transfer methods are the similarity and the kriging approaches. The performance of the transfer methods differs between lowland and alpine catchments.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
David Lun, Alberto Viglione, Miriam Bertola, Jürgen Komma, Juraj Parajka, Peter Valent, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 5535–5560, https://doi.org/10.5194/hess-25-5535-2021, https://doi.org/10.5194/hess-25-5535-2021, 2021
Short summary
Short summary
We investigate statistical properties of observed flood series on a European scale. There are pronounced regional patterns, for instance: regions with strong Atlantic influence show less year-to-year variability in the magnitude of observed floods when compared with more arid regions of Europe. The hydrological controls on the patterns are quantified and discussed. On the European scale, climate seems to be the dominant driver for the observed patterns.
Concetta Di Mauro, Renaud Hostache, Patrick Matgen, Ramona Pelich, Marco Chini, Peter Jan van Leeuwen, Nancy K. Nichols, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 4081–4097, https://doi.org/10.5194/hess-25-4081-2021, https://doi.org/10.5194/hess-25-4081-2021, 2021
Short summary
Short summary
This study evaluates how the sequential assimilation of flood extent derived from synthetic aperture radar data can help improve flood forecasting. In particular, we carried out twin experiments based on a synthetically generated dataset with controlled uncertainty. Our empirical results demonstrate the efficiency of the proposed data assimilation framework, as forecasting errors are substantially reduced as a result of the assimilation.
Lovrenc Pavlin, Borbála Széles, Peter Strauss, Alfred Paul Blaschke, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 2327–2352, https://doi.org/10.5194/hess-25-2327-2021, https://doi.org/10.5194/hess-25-2327-2021, 2021
Short summary
Short summary
We compared the dynamics of streamflow, groundwater and soil moisture to investigate how different parts of an agricultural catchment in Lower Austria are connected. Groundwater is best connected around the stream and worse uphill, where groundwater is deeper. Soil moisture connectivity increases with increasing catchment wetness but is not influenced by spatial position in the catchment. Groundwater is more connected to the stream on the seasonal scale compared to the event scale.
Alexander Sternagel, Ralf Loritz, Julian Klaus, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 1483–1508, https://doi.org/10.5194/hess-25-1483-2021, https://doi.org/10.5194/hess-25-1483-2021, 2021
Short summary
Short summary
The key innovation of the study is a method to simulate reactive solute transport in the vadose zone within a Lagrangian framework. We extend the LAST-Model with a method to account for non-linear sorption and first-order degradation processes during unsaturated transport of reactive substances in the matrix and macropores. Model evaluations using bromide and pesticide data from irrigation experiments under different flow conditions on various timescales show the feasibility of the method.
Rui Tong, Juraj Parajka, Andreas Salentinig, Isabella Pfeil, Jürgen Komma, Borbála Széles, Martin Kubáň, Peter Valent, Mariette Vreugdenhil, Wolfgang Wagner, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 1389–1410, https://doi.org/10.5194/hess-25-1389-2021, https://doi.org/10.5194/hess-25-1389-2021, 2021
Short summary
Short summary
We used a new and experimental version of the Advanced Scatterometer (ASCAT) soil water index data set and Moderate Resolution Imaging Spectroradiometer (MODIS) C6 snow cover products for multiple objective calibrations of the TUWmodel in 213 catchments of Austria. Combined calibration to runoff, satellite soil moisture, and snow cover improves runoff (40 % catchments), soil moisture (80 % catchments), and snow (~ 100 % catchments) simulation compared to traditional calibration to runoff only.
Miriam Bertola, Alberto Viglione, Sergiy Vorogushyn, David Lun, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 1347–1364, https://doi.org/10.5194/hess-25-1347-2021, https://doi.org/10.5194/hess-25-1347-2021, 2021
Short summary
Short summary
We estimate the contribution of extreme precipitation, antecedent soil moisture and snowmelt to changes in small and large floods across Europe.
In northwestern and eastern Europe, changes in small and large floods are driven mainly by one single driver (i.e. extreme precipitation and snowmelt, respectively). In southern Europe both antecedent soil moisture and extreme precipitation significantly contribute to flood changes, and their relative importance depends on flood magnitude.
Nicolas Björn Rodriguez, Laurent Pfister, Erwin Zehe, and Julian Klaus
Hydrol. Earth Syst. Sci., 25, 401–428, https://doi.org/10.5194/hess-25-401-2021, https://doi.org/10.5194/hess-25-401-2021, 2021
Short summary
Short summary
Different parts of water have often been used as tracers to determine the age of water in streams. The stable tracers, such as deuterium, are thought to be unable to reveal old water compared to the radioactive tracer called tritium. We used both tracers, measured in precipitation and in a stream in Luxembourg, to show that this is not necessarily true. It is, in fact, advantageous to use the two tracers together, and we recommend systematically using tritium in future studies.
Cited articles
Antonelli, M., Glaser, B., Teuling, A. J., Klaus, J., and Pfister, L.:
Saturated areas through the lens: 1. Spatio-temporal variability of surface
saturation documented through thermal infrared imagery, Hydrol. Process., 34, 1310–1332, https://doi.org/10.1002/hyp.13698, 2020.
Beltaos, S. and Day, T. J.: Field Study of Longitudinal Dispersion, Can. J. Civ. Eng., 5, 572–585, https://doi.org/10.1139/l78-062, 1978.
Bencala, K. E.: Simulation of solute transport in a mountain pool-and-riffle
stream with a kinetic mass transfer model for sorption, Water Resour. Res., 19, 732–738, 1983.
Bencala, K. E. and Walters, R. A.: Simulation of solute transport in a
mountain pool-and-riffle stream: A transient storage model, Water Resour. Res., 19, 718–724, https://doi.org/10.1029/WR019i003p00718, 1983.
Bencala, K. E., Gooseff, M. N., and Kimball, B. A.: Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections, Water Resour. Res., 47, 1–9, https://doi.org/10.1029/2010WR010066, 2011.
Beven, K.: How far can we go in distributed hydrological modelling?, Hydrol. Earth Syst. Sci., 5, 1–12, https://doi.org/10.5194/hess-5-1-2001, 2001.
Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, https://doi.org/10.1002/hyp.3360060305, 1992.
Beven, K., Gilman, K., and Newson, M.: Flow and flow routing in upland channel networks, Hydrolog. Sci. Bull., 24, 303–325, https://doi.org/10.1080/02626667909491869, 1979.
Bonanno, E.: BTC_analysis: GLaDY – GLobal and DYnamic identifiability analysis – BTC application (SoluteTransport), Zenodo [code], https://doi.org/10.5281/zenodo.7381262, 2022.
Bonanno, E., Blöschl, G., and Klaus, J.: Flow directions of stream-groundwater exchange in a headwater catchment during the hydrologic
year, Hydrol. Process., 35, 1–18, https://doi.org/10.1002/hyp.14310, 2021.
Bonanno, E., Barnich, F., Gourdol, L., Iffly, J. F., Juilleret, J., Pfister, L., and Julian, K.: HYDRO-CSI, Project 1.2: In-stream hydrology. Part 2: instantaneous injections (Version 1.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.6457709, 2022.
Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi, L., and Wörman, A.: Hyporheic flow and transport processes, Rev. Geophys., 52, 603–679, 2014.
Bottacin-Busolin, A., Marion, A., Musner, T., Tregnaghi, M., and Zaramella,
M.: Evidence of distinct contaminant transport patterns in rivers using
tracer tests and a multiple domain retention model, Adv. Water Resour., 34, 737–746, https://doi.org/10.1016/j.advwatres.2011.03.005, 2011.
Butterworth, J. A., Hewitt, E. J., and McCartney, M. P.: Discharge Measurement Using Portable Dilution Gauging Flowmeters, Water Environ. J., 14, 436–441, https://doi.org/10.1111/j.1747-6593.2000.tb00291.x, 2000.
Camacho, L. A. and González, R. A.: Calibration and predictive ability
analysis of longitudinal solute transport models in mountain streams, Environ. Fluid Mech., 8, 597–604, https://doi.org/10.1007/s10652-008-9109-0, 2008.
Cardenas, M. B. and Wilson, J. L.: Exchange across a sediment-water interface with ambient groundwater discharge, J. Hydrol., 346, 69–80, https://doi.org/10.1016/j.jhydrol.2007.08.019, 2007.
Castro, N. M. and Hornberger, G. M.: Surface-subsurface water interactions
in an alluviated mountain stream channel, Water Resour. Res., 27, 1613–1621, https://doi.org/10.1029/91WR00764, 1991.
Choi, J., Harvey, J. W., and Conklin, M. H.: Characterizing multiple timescales and storage zone interaction that affect solute fate and transport in stream, Water Resour. Res., 36, 1511–1518, 2000.
Fabian, M. W., Endreny, T. A., Bottacin-Busolin, A., and Lautz, L. K.:
Seasonal variation in cascade-driven hyporheic exchange, northern Honduras,
Hydrol. Process., 25, 1630–1646, https://doi.org/10.1002/hyp.7924, 2011.
Fabiani, G., Schoppach, R., Penna, D., and Klaus, J.: Transpiration patterns and water use strategies of beech and oak trees along a hillslope, Ecohydrology, 15, 1–18, https://doi.org/10.1002/eco.2382, 2022.
Glaser, B., Klaus, J., Frei, S., Frentress, J., Pfister, L., and Hopp, L.:
On the value of surface saturated area dynamics mapped with thermal infrared
imagery for modeling the hillslope-riparian-stream continuum, Water Resour. Res., 52, 8317–8342, https://doi.org/10.1002/2015WR018414, 2016.
Glaser, B., Antonelli, M., Hopp, L., and Klaus, J.: Intra-catchment
variability of surface saturation – insights from physically based simulations in comparison with biweekly thermal infrared image observations,
Hydrol. Earth Syst. Sci., 24, 1393–1413., https://doi.org/10.5194/hess-24-1393-2020, 2020.
Gooseff, M. N., LaNier, J., Haggerty, R., and Kokkeler, K.: Determining
in-channel (dead zone) transient storage by comparing solute transport in a
bedrock channel-alluvial channel sequence, Oregon, Water Resour. Res., 41, 1–7, https://doi.org/10.1029/2004WR003513, 2005.
Gooseff, M. N., Bencala, K. E., Wondzell, S. M., Service, U. F., Northwest,
P., and Sciences, O. F.: Solute transport along stream and River Networks, in: River Confluences, Tributaries and the Fluvial Network, edited by: Rice, S. P., Roy, A. G., and Rhoads, B. L., John Wiley and Sons,
https://doi.org/10.1002/9780470760383, 2008.
Gooseff, M. N., Briggs, M. A., Bencala, K. E., McGlynn, B. L., and Scott, D.
T.: Do transient storage parameters directly scale in longer, combined stream reaches? Reach length dependence of transient storage interpretations, J. Hydrol., 483, 16–25, https://doi.org/10.1016/j.jhydrol.2012.12.046, 2013.
Haggerty, R., Wondzell, S. M., and Johnson, M. A.: Power-law residence time
distribution in the hyporheic zone of a 2nd-order mountain stream, Geophys. Res. Lett., 29, 18-1–18-4, https://doi.org/10.1029/2002GL014743, 2002.
Hart, D. R., Mulholland, P. J., Marzolf, E. R., DeAngelis, D. L., and Hendricks, S. P.: Relationships between hydraulic parameters in a small stream under varying flow and seasonal conditions, Hydrol. Process., 13, 1497–1510, https://doi.org/10.1002/(SICI)1099-1085(199907)13:10<1497::AID-HYP825>3.0.CO;2-1, 1999.
Harvey, J. W., Wagner, B. J., and Bencala, K. E.: Evaluating the reliability
of the stream tracer approach to characterize stream-subsurfacewater exchange, Water Resour. Res., 32, 2441–2451, https://doi.org/10.1029/96WR01268, 1996.
Hissler, C., Martínez-Carreras, N., Barnich, F., Gourdol, L., Iffly, J. F., Juilleret, J., Klaus, J., and Pfister, L.: The Weierbach experimental catchment in Luxembourg: A decade of critical zone monitoring in a temperate forest – from hydrological investigations to ecohydrological perspectives, Hydrol. Process., 35, 1–7, https://doi.org/10.1002/hyp.14140, 2021.
Kelleher, C., Wagener, T., McGlynn, B., Ward, A. S., Gooseff, M. N., and
Payn, R. A.: Identifiability of transient storage model parameters along a
mountain stream, Water Resour. Res., 49, 5290–5306, https://doi.org/10.1002/wrcr.20413, 2013.
Kelleher, C., Ward, A., Knapp, J. L. A., Blaen, P. J., Kurz, M. J., Drummond, J. D., Zarnetske, J. P., Hannah, D. K., Mendoza-Lera, C., Schmadel, N. M., Datry, T., Lewandowski, J., Milner, A. M., and Krause, S.: Exploring Tracer Information and Model Framework Trade-Offs to Improve Estimation of Stream Transient Storage Processes, Water Resour. Res., 55, 3481–3501, https://doi.org/10.1029/2018WR023585, 2019.
Knapp, J. L. A. and Kelleher, C.: A Perspective on the Future of Transient
Storage Modeling: Let's Stop Chasing Our Tails, Water Resour. Res., 56, 1–7, https://doi.org/10.1029/2019WR026257, 2020.
Krause, S., Hannah, D. M., Fleckenstein, J. H., Heppell, C. M., Kaeser, D., Pickup, R., Pinay, G., Robertson, A. L., and Wood, P. J.: Inter-disciplinary perspectives on processes in the hyporheic zone, Ecohydrology, 4, 481–499, https://doi.org/10.1002/eco.176, 2011.
Krause, S., Lewandowski, J., Grimm, N. B., Hannah, D. M., Pinay, G., McDonald, K., Martí, E., Argerich, A., Pfister, L., Klaus, J., Battin, T., Larned, S. T., Schelker, J., Fleckenstein, J., Schmidt, C., Rivett, M. O., Watts, G., Sabater, F., Sorolla, A., and Turk, V.: Ecohydrological interfaces as hot spots of ecosystem processes: Ecohydrological interfaces as hot spots, Water Resour. Res., 53, 6359–6376, https://doi.org/10.1002/2016WR019516, 2017.
Lees, M. J., Camacho, L. A., and Chapra, S.: On the relationship of transient storage and aggregated dead zone models of longitudinal solute transport in streams, Water Resour. Res., 36, 213–224, https://doi.org/10.1029/1999WR900265, 2000.
Morrice, J. A., Valett, H. M., Dahm, C. N., and Campana, M. E.: Alluvial
characteristics, groundwater–surface water exchange and hydrological
retention in headwater streams, Hydrol. Process., 11, 253–267, https://doi.org/10.1002/(SICI)1099-1085(19970315)11:3<253::AID-HYP439>3.0.CO;2-J, 1997.
Mulholland, P. J., Marzolf, E. R., Webster, J. R., Hart, D. R., and Hendricks, S. P.: Evidence that hyporheic zones increase heterotrophic
metabolism and phosphorus uptake in forest streams, Limnol. Oceanogr., 42, 443–451, https://doi.org/10.4319/lo.1997.42.3.0443, 1997.
Ouyang, S., Puhlmann, H., Wang, S., von Wilpert, K., and Sun, O. J.: Parameter uncertainty and identifiability of a conceptual semi-distributed model to simulate hydrological processes in a small headwater catchment in Northwest China, Ecol. Process., 3, 14, https://doi.org/10.1186/s13717-014-0014-9, 2014.
Pianosi, F., Sarrazin, F., and Wagener, T.: A Matlab toolbox for global
sensitivity analysis, Environ. Model. Softw., 70, 80–85,
https://doi.org/10.1016/j.envsoft.2015.04.009, 2015.
Rathfelder, K. M.: Modelling tools for estimating effects of groundwater pumping on surface waters, Province of BC, Water Science Series WSS2016-09, Ministry of Environment, ISBN 978-0-7726-6897-4, 2016.
Rathore, S. S., Jan, A., Coon, E. T., and Painter, S. L.: On the reliability
of parameter inferences in a multiscale model for transport in stream corridors, Water Resour. Res., 57, e2020WR028908, https://doi.org/10.1029/2020WR028908, 2021.
Rodriguez, N. B., Pfister, L., Zehe, E., and Klaus, J.: A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions, Hydrol. Earth Syst. Sci., 25, 401–428, https://doi.org/10.5194/hess-25-401-2021, 2021.
Rodriguez, N. B. and Klaus, J.: Catchment Travel Times From Composite StorAge Selection Functions Representing the Superposition of Streamflow Generation Processes, Water Resour. Res., 55, 9292–9314, https://doi.org/10.1029/2019WR024973, 2019.
Runkel, R. L.: One-dimensional transport with inflow and storage (OTIS): a solute transport model for streams and rivers, US Geol. Surv. Water Resour. Invest. Rep. 98-4018, University of Michigan Library, Denver,
https://doi.org/10.1002/wrcr.20277#wrcr20277-bib-0038, 1998.
Runkel, R. L.: A new metric for determining the importance of transient
storage, J. N. Am. Benthol. Soc., 21, 529–543, https://doi.org/10.2307/1468428, 2002.
Schmadel, N. M., Neilson, B. T., and Stevens, D. K.: Approaches to estimate uncertainty in longitudinal channel water balances, J. Hydrol., 394, 357–369, https://doi.org/10.1016/j.jhydrol.2010.09.011, 2010.
Scott, D. T., Gooseff, M. N., Bencala, K. E., and Runkel, R. L.: Automated
calibration of a stream solute transport model: Implications for interpretation of biogeochemical parameters, J. N. Am. Benthol. Soc., 22, 492–510, https://doi.org/10.2307/1468348, 2003.
Smettem, K., Klaus, J., Harris, N., and Pfister, L.: New potentiometric
wireless chloride sensors provide high resolution information on chemical
transport processes in streams, Water, 9, 542, https://doi.org/10.3390/w9070542, 2017.
Smith, J. W. N.: Groundwater–Surface water interactions in the hyporheic zone, Science Report SC030155/SR1, Environment Agency, Bristol, UK,
ISBN 1844324257, 2005.
Taylor, G.: Diffusion by continuous movements, P. Lond. Math. Soc., 2, 196–212, 1921.
Taylor, G.: The dispersion of matter in turbulent flow through a pipe,
P. Roy. Soc. Lond. A, 223, 446–468, https://doi.org/10.1098/rspa.1954.0130, 1954.
Thackston, E. L. and Schnelle, K.: Predicting effects of dead zones on stream mixing, J. Sanit. Eng. Div. Am, Soc. Civ. Eng., 93, 319–331, 1970.
Triska, F. J., Kennedy, V. C., Avanzino, R. J., Zellweger, G. W., and Bencala, K. E., Retention and Transport of Nutrients in a Third-Order Stream: Hyporheic Processes, Ecol. Soc. Am., 70, 1893–1905, 1989.
Wagener, T., Lees, M. J., and Wheater, H. S.: A toolkit for the development and applications of parsimonious hydrological models, in: Mathematical Models of Large Watershed Hydrology, vol. 1, edited by: Singh, V. P. and Frevert, D., Water Resources Publishers, Highland Ranch, CO, 87–136, 2002a.
Wagener, T., Camacho, L. A., and Wheater, H. S.: Dynamic identifiability analysis of the transient storage model for solute transport in rivers, J. Hydroinform., 4, 199–211, 2002b.
Wagener, T., McIntyre, N., Lees, M. J., Wheater, H. S., and Gupta, H. V.:
Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic
identifiability analysis, Hydrol. Process., 17, 455–476, https://doi.org/10.1002/hyp.1135, 2003.
Wagner, B. J. and Harvey, J. W.: Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies,
Water Resour. Res., 33, 1731–1741, https://doi.org/10.1029/97WR01067, 1997.
Ward, A. S. and Packman, A. I.: Advancing our predictive understanding of
river corridor exchange, WIREs Water, 6, e1327, https://doi.org/10.1002/wat2.1327, 2019.
Ward, A. S., Payn, R. A., Gooseff, M. N., McGlynn, B. L., Bencala, K. E., Kelleher, C. A., Wondzell, S. M., and Wagener, T.: Variations in surface water-ground water interactions along a headwater mountain stream: Comparisons between transient storage and water balance analyses, Water Resour. Res., 49, 3359–3374, https://doi.org/10.1002/wrcr.20148, 2013.
Ward, A. S., Kelleher, C. A., Mason, S. J. K., Wagener, T., McIntyre, N., McGlynn, B., Runkel, R. L., and Payn, R. A.: A software tool to assess uncertainty in transient-storage model parameters using Monte Carlo simulations, Freshwater Sci., 36, 195–217, https://doi.org/10.1086/690444, 2017.
Ward, A. S., Morgan, J. A., White, J. R., and Royer, T. V.: Streambed restoration to remove fine sediment alters reach-scale transient storage in a low-gradient fifth- order river, Indiana, USA, Hydrol. Process., 32, 1786–1800, https://doi.org/10.1002/hyp.11518, 2018.
Ward, A. S., Wondzell, S. M., Schmadel, N. M., Herzog, S., Zarnetske, J. P., Baranov, V., Blaen, P. J., Brekenfeld, N., Chu, R., Derelle, R., Drummond, J., Fleckenstein, J. H., Garayburu-Caruso, V., Graham, E., Hannah, D., Harman, C. J., Hixson, J., Knapp, J. L. A., Krause, S., Kurz, M. J., Lewandowski, J., Li, A., Martí, E., Miller, M., Milner, A. M., Neil, K., Orsini, L., Packman, A. I., Plont, S., Renteria, L., Roche, K., Royer, T., Segura, C., Stegen, J., Toyoda, J., Wells, J., and Wisnoski, N. I.: Spatial and temporal variation in river corridor exchange across a 5th-order mountain stream network, Hydrol. Earth Syst. Sci., 23, 5199–5225, https://doi.org/10.5194/hess-23-5199-2019, 2019.
White, D. S.: Perspectives on Defining and Delineating Hyporheic Zones, J. N. Am. Benthol. Soc., 12, 61–69, https://doi.org/10.2307/1467686, 1993.
Wlostowski, A. N., Gooseff, M. N., and Wagener, T.: Influence of constant
rate versus slug injection experiment type on parameter identifiability in a
1-D transient storage model for stream solute transport, Water Resour. Res., 49, 1184–1188, https://doi.org/10.1002/wrcr.20103, 2013.
Wlostowski, A. N., Gooseff, M. N., Bowden, W. B., and Wollheim, W. M.: Stream tracer breakthrough curve decomposition into mass fractions: A simple framework to analyze and compare conservative solute transport processes,
Limnol. Oceanogr.: Meth., 15, 140–153, https://doi.org/10.1002/lom3.10148, 2017.
Wörman, A., Packman, A. I., Johansson, H., and Jonsson, K.: Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers, Water Resour. Res., 38, 2-1–2-15, 2002.
Yin, J., Lu, W., Xin, X., and Zhang, L.: Application of Monte Carlo sampling
and Latin Hypercube sampling methods in pumping schedule design during
establishing surrogate model, in: ISWREP 2011 – Proceedings of 2011 International Symposium on Water Resource and Environmental Protection, 20-22 May 2011, Xi'an, China, 212–215, https://doi.org/10.1109/ISWREP.2011.5892983, 2011.
Zarnetske, J. P., Gooseff, M. N., Brosten, T. R., Bradford, J. H., McNamara, J. P., and Bowden, W. B.: Transient storage as a function of geomorphology, discharge, and permafrost active layer conditions in Arctic tundra streams, Water Resour. Res., 43, W07410, https://doi.org/10.1029/2005WR004816, 2007.
Short summary
There is an unclear understanding of which processes regulate the transport of water, solutes, and pollutants in streams. This is crucial since these processes control water quality in river networks. Compared to other approaches, we obtained clearer insights into the processes controlling solute transport in the investigated reach. This work highlights the risks of using uncertain results for interpreting the processes controlling water movement in streams.
There is an unclear understanding of which processes regulate the transport of water, solutes,...