Aggett, G. R. and Wilson, J. P.: Creating and coupling a high-resolution DTM
with a 1-D hydraulic model in a GIS for scenario-based assessment of
avulsion hazard in a gravel-bed river, Geomorphology, 113, 21–34,
https://doi.org/10.1016/j.geomorph.2009.06.034, 2009. a

Brunner, G. W.: HEC-RAS, River Analysis System Reference
Manual, U.S. Army Corps of Engineers, Hydrologic Engineering Center, Technical Report CPD-69, Davis,
California, USA, available at: [13:43] Viola Zierenberg
https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS 5.0 Reference Manual.pdf
(last access: 10 August 2020),
2016a. a, b, c

Brunner, G. W.: HEC-RAS, River Analysis System User's
Manual, Version 5.0, U.S. Army Corps of Engineers, Hydrologic Engineering
Center, Technical Report CPD-68, Davis, California, USA, available at: https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS 5.0 Users Manual.pdf
(last access: 10 August 2020), 2016b. a, b

Burguete, J., Garcia-Navarro, P., Murillo, J., and Garcia-Palacin, I.: Analysis
of the Friction Term in the One-Dimensional Shallow-Water Model, Journal of
Hydraul. Eng.-ASCE, 133, 1048–1063,
https://doi.org/10.1061/(ASCE)0733-9429(2007)133:9(1048), 2007. a

Chen, Y. H.: Mathematical Modeling of Water and Sediment Routing in
Natural Channels, PhD thesis, Colorado State University, Ft. Collins,
CO, 1973. a

Cunge, J. A., Holly, F. M., and Verwey, A.: Practical Aspects of
Computational River Hydraulics, Pitman Publishing Ltd, Boston, MA, USA,
1980. a

de Boor, C.: A Practical Guide to Splines, Springer-Verlag, New York
Berlin Heidelberg, 2001. a

Decoene, A., Bonaventura, L., Miglio, E., and Saleri, F.: Asymptotic derivation
of the section-averaged shallow water equations for natural river hydraulics,
Math. Mod. Meth. Appl. S., 19, 387–417,
https://doi.org/10.1142/S0218202509003474, 2009. a

Di Baldassarre, G.: Floods in a Changing Climate: Inundation Modelling,
International Hydrology Series, Cambridge University Press, Cambridge, UK,
https://doi.org/10.1017/CBO9781139088411, 2012. a

Fread, D. L., Jin, M., and Lewis, J. M.: An LPI numerical implicit solution
for unsteady mixed-flow simulation, in: North American Water and
Environment Congress, vol. 96, pp. 49–72, 1996. a, b

Gichamo, T. Z., Popescu, I., Jonoski, A., and Solomatine, D.: River
cross-section extraction from the ASTER global DEM for flood modeling,
Environ. Modell. Softw., 31, 37–46,
https://doi.org/10.1016/j.envsoft.2011.12.003, 2012. a

Giustarini, L., Matgen, P., Hostache, R., Montanari, M., Plaza, D., Pauwels, V. R. N., De Lannoy, G. J. M., De Keyser, R., Pfister, L., Hoffmann, L., and Savenije, H. H. G.: Assimilating SAR-derived water level data into a hydraulic model: a case study, Hydrol. Earth Syst. Sci., 15, 2349–2365, https://doi.org/10.5194/hess-15-2349-2011, 2011. a

Greenberg, J. M. and LeRoux, A.-Y.: A well-balanced scheme for the numerical
processing of source terms in hyperbolic equations, SIAM Journal on Numerical
Analysis, 33, 1–16, https://doi.org/10.1137/0733001, 1996. a

Hicks, F. E. and Peacock, T.: Suitability of HEC-RAS for flood forecasting,
Can. Water Resour. J., 30, 159–174, https://doi.org/10.4296/cwrj3002159,
2005. a

Hodges, B. R.: Challenges in Continental River Dynamics, Environ.
Modell. Softw., 50, 16–20, https://doi.org/10.1016/j.envsoft.2013.08.010, 2013. a, b, c

Hodges, B. R.: Conservative finite-volume forms of the Saint-Venant equations for hydrology and urban drainage, Hydrol. Earth Syst. Sci., 23, 1281–1304, https://doi.org/10.5194/hess-23-1281-2019, 2019. a, b, c

Horritt, M. S. and Bates, P. D.: Evaluation of 1D and 2D numerical models
for predicting river flood inundation, J. Hydrol., 268, 87–99,
https://doi.org/10.1016/S0022-1694(02)00121-X, 2002. a

Iserles, A.: A First Course in the Numerical Analysis of Differential
Equations, Cambridge University Press, Cambridge, UK, 1996. a

Kesserwani, G.: Topography discretization techniques for Godunov-type shallow
water numerical models: a comparative study, J. Hydraul. Res.,
51, 351–367, https://doi.org/10.1080/00221686.2013.796574, 2013. a, b, c, d

Kuiry, S. N., Sen, D., and Bates, P. D.: Coupled 1D-Quasi-2D Flood
Inundation Model with Unstructured Grids, J. Hydraul.
Eng.-ASCE, 136, 493–506, 2010. a

Liang, Q. and Marche, F.: Numerical resolution of well-balanced shallow water
equations with complex source terms, Adv. Water Resour., 32,
873–884, https://doi.org/10.1016/j.advwatres.2009.02.010, 2009. a, b

Liggett, J. A.: Numerical method of solution of the unsteady flow equations,
Unsteady Flow in Open Channels, 1, 89–182, 1975. a

Liu, F.: SPRNT: A River Dynamics Simulator, available at:
https://github.com/frank-y-liu/SPRNT, last access; 4 September, 2018,
2014. a, b, c

Liu, F. and Hodges, B. R.: Applying microprocessor analysis methods to river
network modeling, Environ. Modell. Softw., 52, 234–252,
https://doi.org/10.1016/j.envsoft.2013.09.013, 2014. a, b, c

Liu, F. and Yu, C.-W.: frank-y-liu/SPRNT: minor bug fixes (Version v1.3.8), Zenodo, https://doi.org/10.5281/zenodo.3978737, 2020. a

MacDonald, I., Baines, M., Nichols, N., and Samuels, P.: Comparison of some
steady state Saint-Venant solvers for some test problems with analytic
solutions, Numerical Analysis Report 2/95, Department of Mathematics, University of Reading, available at: http://www.reading.ac.uk/web/files/maths/02-95.pdf
(last access: 10 August 2020), 1995. a, b, c, d, e, f, g, h, i, j, k, l

Martinez-Aranda, S., Murrillo, J., and Garcia-Navarro, P.: A 1D numerical
model for the simulation of unsteady and highly erosive flows in rivers,
Comput. Fluids, 181, 8–34, https://doi.org/10.1016/j.compfluid.2019.01.011,
2019. a

Mejia, A. I. and Reed, S. M.: Evaluating the effects of parameterized cross
section shapes and simplified routing with a coupled distributed hydrologic
and hydraulic model, J. Hydrol., 409, 512–524,
https://doi.org/10.1016/j.jhydrol.2011.08.050, 2011. a

Meselhe, E. and Holly Jr., F.: Invalidity of Preissmann scheme for
transcritical flow, J. Hydraul. Eng., 123, 652–655,
https://doi.org/10.1061/(ASCE)0733-9429(1997)123:7(652), 1997. a

Morales-Hernández, M., Sharif, M. B., Gangrade, S., Dullo, T. T. , Kao, S.-C., Kalyanapu, A., Ghafoor, S. K., Evans, K. J., Madadi-Kandjani, E., and Hodges, B. R.:
High-performance computing in water resources hydrodynamics.
Journal of Hydroinformatics,
jh2020163,
https://doi.org/10.2166/hydro.2020.163, 2020. a

Nujic, M.: Efficient implementation of nonoscillatory schemes for the
computation of free-surface flows, J. Hydraul. Res., 33,
101–111, https://doi.org/10.1080/00221689509498687, 1995. a

Preissmann, A.: Progagation des intumescences dans les canaux et rivières,
in: Proceedings of First Congress of French Association for
Computation, Grenoble, France, 433–442, 1961. a

Samuels, P. G. and Skeels, C. P.: Stability limits for Preissmann's scheme,
J. Hydraul. Eng., 116, 997–1012,
https://doi.org/10.1061/(ASCE)0733-9429(1990)116:8(997), 1990. a

Sanders, B. F.: High-resolution and non-oscillatory solution of the
St. Venant equations in non-rectangular and non-prismatic channels,
J. Hydraul. Res., 39, 321–330, https://doi.org/10.1080/00221680109499835,
2001. a, b

Sart, C., Baume, J.-P., Malaterre, P.-O., and Guinot, V.: Adaptation of
Preissmann's scheme for transcritical open channel flows, J.
Hydraul. Res., 48, 428–440, https://doi.org/10.1080/00221686.2010.491648, 2010. a

Schippa, L. and Pavan, S.: Analytical treatment of source terms for complex
channel geometry, J. Hydraul. Res., 46, 753–763, 2008. a

Sharkey, J. K.: Investigating Instabilities with HEC-RAS Unsteady
Flow Modeling for Regulated Rivers at Low Flow Stages, MS thesis, University of Tennessee, Knoxville, Tennessee, USA, available at: https://trace.tennessee.edu/utk_gradthes/3183
(last access: 10 August 2020), 2014. a

Singh, J., Altinakar, M. S., and Ding, Y.: Numerical modeling of
rainfall-generated overland flow using nonlinear shallow-water equations,
J. Hydrol. Eng., 20, 04014089, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001124, 2015. a

Song, L., Zhou, J., Li, Q., Yang, X., and Zhang, Y.: An unstructured finite
volume model for dam-break floods with wet/dry fronts over complex
topography, Int. J. Numer. Meth. Fl., 67,
960–980, 2011. a

Tayfur, G., Kavvas, M. L., Govindaraju, R. S., and Storm, D. E.: Applicability
of St. Venant equations for two-dimensional overland flows over rough
infiltrating surfaces, J. Hydraul. Eng., 119, 51–63,
https://doi.org/10.1061/(ASCE)0733-9429(1993)119:1(51), 1993. a

Tseng, M.-H.: Improved treatment of source terms in TVD scheme for shallow
water equations, Adv. Water Resour., 27, 617–629,
https://doi.org/10.1016/j.advwatres.2004.02.023, 2004. a

Wang, W., Yang, X., and Yao, T.: Evaluation of ASTER GDEM and SRTM and
their suitability in hydraulic modelling of a glacial lake outburst flood in
southeast Tibet, Hydrol. Process., 26, 213–225,
https://doi.org/10.1002/hyp.8127, 2012. a

Xia, X. and Liang, Q.: A new efficient implicit scheme for discretising the
stiff friction terms in the shallow water equations, Adv. Water
Resour., 117, 87–97, 2018. a, b

Yu, C.-W., Liu, F., and Hodges, B. R.: Consistent initial conditions for the Saint-Venant equations in river network modeling, Hydrol. Earth Syst. Sci., 21, 4959–4972, https://doi.org/10.5194/hess-21-4959-2017, 2017. a

Yu, C.-W., Hodges, B. R., and Liu, F.: Evaluation of the Performance of the
Reference Slope (RS) Method in Simulation Program for River
Network (SPRNT), Texas Data Repository Dataverse, https://doi.org/10.18738/T8/GRCB8B, 2019a. a, b

Yu, C.-W., Hodges, B. R., and Liu, F.: Evaluation of the Performance of the
Reference Slope (RS) Method in Simulation Program for River Network (SPRNT),
Tech. rep., University of Texas at Austin,
https://doi.org/10.18738/T8/WMQIPS, 2019b. a, b

Yu, C.-W., Hodges, B. R., and Liu, F.: Test case data for Reference Slope study with HEC-RAS and SPRNT-RS, Texas Data Repository Dataverse, V1,
https://doi.org/10.18738/T8/BXJBF5, 2019c.
a

Zhou, J. G., Causon, D. M., Mingham, C. G., and Ingram, D. M.: The surface
gradient method for the treatment of source terms in the shallow-water
equations, J. Comput. Phys., 168, 1–25,
https://doi.org/10.1006/jcph.2000.6670, 2001. a