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Abstract. The transport of solutes in river networks is con-
trolled by the interplay of processes such as in-stream so-
lute transport and the exchange of water between the stream
channel and dead zones, in-stream sediments, and adjacent
groundwater bodies. Transient storage models (TSMs) are a
powerful tool for testing hypotheses related to solute trans-
port in streams. However, model parameters often do not
show a univocal increase in model performances in a cer-
tain parameter range (i.e. they are non-identifiable), leading
to an unclear understanding of the processes controlling so-
lute transport in streams. In this study, we increased parame-
ter identifiability in a set of tracer breakthrough experiments
by combining global identifiability analysis and dynamic
identifiability analysis in an iterative approach. We com-
pared our results to inverse modelling approaches (OTIS-
P) and the commonly used random sampling approach for
TSMs (OTIS-MCAT). Compared to OTIS-P, our results in-
formed about the identifiability of model parameters in the
entire feasible parameter range. Our approach clearly im-
proved parameter identifiability compared to the standard
OTIS-MCAT application, due to the progressive reduction of
the investigated parameter range with model iteration. Non-
identifiable results led to solute retention times in the stor-
age zone and the exchange flow with the storage zone with
differences of up to 4 and 2 orders of magnitude compared
to results with identifiable model parameters respectively.
The clear differences in the transport metrics between re-
sults obtained from our proposed approach and results from
the classic random sampling approach also resulted in con-

trasting interpretations of the hydrologic processes control-
ling solute transport in a headwater stream in western Lux-
embourg. Thus, our outcomes point to the risks of interpret-
ing TSM results when even one of the model parameters
is non-identifiable. Our results showed that coupling global
identifiability analysis with dynamic identifiability analysis
in an iterative approach clearly increased parameter identifi-
ability in random sampling approaches for TSMs. Compared
to the commonly used random sampling approach and in-
verse modelling results, our analysis was effective at obtain-
ing higher accuracy of the evaluated solute transport metrics,
which is advancing our understanding of hydrological pro-
cesses that control in-stream solute transport.

1 Introduction

It is of crucial importance to understand how nutrients, so-
lutes, and pollutants are transported in streams, since this
process can drastically affect stream water quality along
river networks (Smith, 2005; Krause et al., 2011; Rathfelder,
2016). A widely used technique to capture and study the
processes controlling water transport downstream is via in-
stream tracer injections. The measurement of the concentra-
tion over time of a tracer released in an upstream section
(i.e. the breakthrough curve, BTC) reflects stream discharge
(Beven et al., 1979; Butterworth et al., 2000) and longitu-
dinal tracer advection and dispersion (Gooseff et al., 2008).
A milestone in the study of solute transport was that in-
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stream solutes and water are exchanged with slowly mov-
ing channel waters, the dead zones (Hays, 1966), and with
the saturated area that is physically influenced by water and
solute exchange between the stream channel and the adja-
cent groundwater (i.e. the hyporheic zone, Triska et al., 1989;
White, 1993; Cardenas and Wilson, 2007). This hydrologic
exchange results in a skewed non-Fickian BTC with a pro-
nounced tail, which makes the advection–dispersion equa-
tion (ADE) unable to correctly describe the observed tracer
transport in stream channels (Bencala and Walters, 1983;
Castro and Hornberger, 1991). Despite the large number
of studies, the results of transient storage models (TSMs)
offer numerous contradictory model interpretations (Ward
and Packman, 2019), and model parameters are often non-
identifiable, meaning that several parameter combinations re-
turn the same model performances (Ward et al., 2017). These
outcomes raise the question of how informative such mod-
elling results are (Knapp and Kelleher, 2020).

Considerable potential in reducing the uncertainty of the
processes controlling solute transport in streams lies in mod-
elling the tail of the BTC, since it contains information on
the transient storage of the stream channels (Bencala et al.,
2011). To simulate the retentive effect of dead zones on so-
lute transport, Hays (1966) modelled the tail of the BTC
by introducing a second differential equation in addition to
the ADE. Following a similar approach, Bencala and Wal-
ters (1983) described the solute transport in streams as a
pure advection–dispersion transport coupled with a hydro-
logic exchange term between the stream channel and a single,
homogeneously mixed volume that delays the solute move-
ment downstream (TSM). The estimation of model parame-
ters often relies on the use of inverse modelling approaches
via non-linear regression algorithms that return an estimation
of model parameters with a narrow 95 % confidence inter-
val (OTIS-P; Runkel, 1998). While this approach was widely
applied in past decades, it does not allow a comprehensive
assessment of parameter identifiability (Ward et al., 2017;
Knapp and Kelleher, 2020). The term “identifiability” de-
scribes whenever good model performances are constrained
in a relatively narrow parameter range (identifiable param-
eter) or spread (non-identifiable parameter) across the en-
tire distribution of the possible parameter values (Ward et
al., 2017), yet a good fit to observed data through inverse
modelling does not provide information on performances and
parameter identifiability over the entire feasible parameter
range (Ward et al., 2017). Also, calibrated parameters ob-
tained via inverse modelling approaches are not necessar-
ily meaningful, as non-identifiable parameters can provide
a good inverse model fit (Kelleher et al., 2019). These mod-
elling uncertainties have led to a progressive abandonment of
the search for a single best set of parameters and advocated
the identification of “behavioural” parameter populations
(i.e. parameter sets satisfying certain performance thresh-
olds) via random sampling approaches in transient storage

modelling (Wlostowski et al., 2013; Ward et al., 2017, 2018;
Kelleher et al., 2019; Rathore et al., 2021).

Random sampling approaches provide information on pa-
rameter identifiability in the feasible parameter range; how-
ever, they rarely show identifiability for all the model pa-
rameters (Knapp and Kelleher, 2020). Kelleher et al. (2013)
found that the parameters associated with the transient stor-
age process are not identifiable for a large variety of stream
reaches and experiments that they investigated. Other studies
have shown that model parameters are often poorly identifi-
able (Camacho and González, 2008; Wlostowski et al., 2013;
Ward et al., 2017; Kelleher et al., 2019; Knapp and Kelleher,
2020) and highly interactive, meaning that different param-
eters can produce similar modelled BTCs (Kelleher et al.,
2013). This, in turn, hampers the ability to distinguish the
role of a specific parameter in the shape of the simulated BTC
(Wagener et al., 2002b; Ward et al., 2017).

The observed strong non-identifiability of model parame-
ters in random sampling studies may have three causes. First,
the parameters describing the advection–dispersion process
(streamflow velocity, cross-sectional area of the stream chan-
nel, and longitudinal dispersion) are known to be the best
ones identifiable in the TSM (Ward et al., 2017). However,
due to the known high interactivity among model parame-
ters, it is generally not recommended to use a fixed value
for a rather identifiable parameter, since this strategy may re-
sult in a misestimation of the other model parameters (Knapp
and Kelleher, 2020). Constraining the values of the stream
area and longitudinal dispersion proved to have a role in
the identifiability of transient storage parameters (Lees et
al., 2000; Kelleher et al., 2013; Ward et al., 2017). How-
ever, no study so far has evaluated the role of flow velocity
in the identifiability of model parameters despite the veloc-
ity parameter often being considered known and thus fixed
to equal the velocity of the arrival time of the BTC peak
(i.e. vpeak, Ward et al., 2013, 2017, 2018; Kelleher et al.,
2013; Wlostowski et al., 2017). This leads to the question
of how meaningful and identifiable the transient storage pa-
rameters are when streamflow velocity is considered as a cal-
ibration parameter or is kept fixed in identifiability analysis.
A second cause of non-identifiable model parameters relates
to the selected approach for addressing parameter identifi-
ability. The identifiability analysis used in most studies is
based on the generalized likelihood uncertainty estimation
that assesses parameter certainty by evaluating model perfor-
mance on the entire BTC (GLUE, Beven and Binley, 1992;
Camacho and González, 2008; Kelleher et al., 2013; Ward
et al., 2017; Kelleher et al., 2019). However, such global
identifiability analysis is unable to assess whether a certain
parameter is more or less identifiable in certain sections of
the BTC (Wagener et al., 2002a, 2003; Wagener and Kol-
lat, 2007). This information is particularly important for BTC
modelling, since advection–dispersion parameters are physi-
cally responsible for the bulk solute transport in the stream,
and they are therefore expected to act on the rising limb and
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peak of the BTC (Gooseff et al., 2008). In contrast, the pa-
rameters describing the exchange between the stream chan-
nel and the transient storage zone are responsible for de-
laying solute transport compared to the advective–dispersive
transport, most likely acting on the falling limb and tail of
the BTC (Runkel, 2002). By investigating parameter identi-
fiability across the entire BTC, global identifiability analysis
is unable to capture an increase in parameter identifiability
towards the tail of the BTC. However, studies addressing the
identifiability of model parameters in different sections of the
BTC reported increased identifiability for transient storage
parameters on the tail of the BTC (Wagener et al., 2002b;
Scott et al., 2003; Wlostowski et al., 2013; Kelleher et al.,
2013). Third, there is no common strategy for selecting pa-
rameter ranges and the number of parameter sets in TSM
simulations. To obtain reliable results, Ward et al. (2017)
suggested that modelling studies need to apply TSMs to a
large number of parameter sets (between 10 000 and 100 000)
over a parameter range spanning at least 2 orders of magni-
tude. While for some studies the non-identifiability of param-
eters might be explained by the low number of parameter sets
(less than 10 000) and the relatively narrow selected param-
eter range (Wagener et al., 2002b; Camacho and González,
2008; Wlostowski et al., 2013), non-identifiability was also
found when a rather large number of parameter sets and a
wide parameter range were used (Kelleher et al., 2013, 2019;
Ward et al., 2017). This brings up the question of whether
and when model parameters are actually meaningful (Knapp
and Kelleher, 2020).

A robust assessment of transient storage parameters would
not only improve the model fit of tracer transport and in-
crease parameter identifiability, but it might also lead to a
more robust interpretation of the physical processes con-
trolling solute transport in streams. Model parameters are
often used to calculate metrics on the solute exchange be-
tween the stream channel and the transient storage zone and
the residence time of solutes in the coupled system (Thack-
ston and Schnelle, 1970; Morrice et al., 1997; Hart et al.,
1999; Runkel, 2002). These metrics are pivotal for address-
ing the potential for nutrient cycling, microbial activity, and
the development of hotspots in river ecosystems (Triska et
al., 1989; Mulholland et al., 1997; Smith, 2005; Krause et al.,
2017). However, no study so far has indicated and evaluated
whether and how much the interpretation of hydrologic pro-
cesses changes when model parameters are identifiable and
when they are not, due to the enunciated challenges in TSMs.

Despite the increasing need for achieving parameter iden-
tifiability in TSMs, only a few studies have explored the
reliability of results obtained from inverse modelling, and
model interpretation is often based on a single set of param-
eters without testing their robustness (Knapp and Kelleher,
2020). We hypothesize that addressing the identifiability of
model parameters in different sections of the BTC is key
to increasing the identifiability of the parameters describing
solute retention in streams. To address the enunciated TSM

challenges, we have organized this contribution around three
questions related to the key challenges of parameter identifi-
ability in transient storage modelling.

1. How does the identifiability of model parameters
change in the random sampling of TSMs when veloc-
ity is considered as a calibration parameter and when it
is assumed fixed and equal to vpeak?

2. Does the identifiability analysis of specific sections of
the BTC reduce the parameter non-identifiability in ran-
dom sampling approaches of TSMs?

3. How much does the identifiability of model parameters
in random sampling approaches depend on the used pa-
rameter range and the number of parameter sets?

With the outcomes of these questions, we will address the
following question.

4. How does the hydrologic interpretation of TSM results
vary when model parameters are identifiable and when
they are not?

2 Study site and methods

2.1 Study site and tracer data

The studied stream reach (49◦49′38′′ N, 5◦47′44′′ E) is lo-
cated in western Luxembourg, downstream of the Weier-
bach experimental catchment (Hissler et al., 2021; Fabi-
ani et al., 2022). The stream channel is unvegetated with a
slope of ' 6 % and consists of deposited colluvium mate-
rial and fragmented schists (up to 50 cm depth) with local
outcrops of fractured slate bedrock in the streambed. The
flow regime is governed by the interplay of seasonality be-
tween precipitation and evapotranspiration (Rodriguez and
Klaus, 2019; Rodriguez et al., 2021) with a persistent dis-
charge between autumn and spring and little to no discharge
during summer months (discharge arithmetic mean equal to
6.5 L s−1, median of 1.7 L s−1, SD of 11.52 L s−1 between
August 2018 and February 2020; Bonanno et al., 2021). To
answer our research questions, we utilize three tracer experi-
ments with an instantaneous tracer injection at three different
flow (Q) conditions: 6 December 2018,Q= 2.52 L s−1 (E1);
23 January 2019, Q= 9.05 L s−1 (E2); 28 January 2019,
Q= 22.79 L s−1 (E3). For each experiment, we prepared a
NaCl solution using 2 L of stream water and 100 g of reagent-
grade NaCl. We injected the solution into a turbulent pool at
the beginning of the stream reach to ensure complete mixing
in the stream water. Electric conductivity (EC) was measured
via a portable conductivity meter (WTW) 55 m downstream
of the injection point. Automatic compensation of stream
temperature occurred (nLF, according to EN 27 888). EC-
Cl− conversion was obtained using a known volume sam-
ple of stream water taken before tracer injection at the mea-
surement location and adding known quantities of a solution
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with a known concentration of NaCl. Conversion into Cl−

concentration was obtained via an EC-Cl− regression line
(R2
= 0.9999). Discharge was calculated for every slug in-

jection via the dilution gauging method using the Cl− con-
centration obtained for each BTC (Beven et al., 1979; But-
terworth et al., 2000).

2.2 Advection–dispersion equation and transient
storage model formulation

The one-dimensional Fickian-type advection–dispersion
equation describes the combined effect of flow velocity and
turbulent diffusion on solute transport (Beltaos and Day,
1978; Taylor, 1921, 1954). The differential form of the ADE
reads as
∂C

∂t
=−v

∂C

∂x
+

1
A

∂

∂x

(
AD

∂C

∂x

)
, (1)

where t is time (T), x is the distance from the injection point
along the stream reach (L), A (L2) is the cross-sectional area
of flow, v (L T−1) is the average flow velocity, D (L2 T−1)
is the longitudinal dispersion coefficient, and C is the con-
centration of the observed tracer above background lev-
els (M L−3). The solution of the differential form of the ADE
for an instantaneous solute injection at x = 0 (L) reads as

C(t)=
M

A(4πDt)1/2
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[
−
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4Dt

]
, (2)

where M is the injected solute mass (M), t is time (T), and
L is the length of the investigated reach (L).

The TSM describes the solute transport in streams by com-
bining the advection–dispersion process in the stream chan-
nel through a hydrologic exchange with an external storage
zone. The model equations read as (Bencala and Walters,
1983){

∂C
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∂
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)
+α (CTS−C),

∂CTS
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(3)

where the hydrologic exchange with the transient storage
zone is driven by the exchange coefficient α (T−1) and the
area of the transient storage zone, ATS (L2). Here, we will
refer to A, v, and D as “advection–dispersion parameters”
and to ATS and α as “transient storage parameters”. The
solute concentrations in the main channel and the transient
storage zone are C and CS (M L−3) respectively. The perfor-
mances of both ADE and TSM results are evaluated using the
root mean squared error objective function (RMSE). RMSE
is an equivalent form of the residual sum of squares (RSS)
and mean absolute error (MAE) objective functions that are
used in OTIS-P (the most frequently adopted inverse mod-
elling approach for TSMs, Runkel, 1998) and by the dynamic
identifiability analysis (Wagener et al., 2002a, b). RMSE al-
lowed us a comparison of our TSM results with OTIS-P and
with dynamic identifiability analysis consistent with previous
studies (Wlostowski et al., 2013; Ward et al., 2017).

2.3 Random sampling and global identifiability
analysis

Several sampling approaches were previously used to esti-
mate parameter identifiability in TSMs, such as Monte Carlo
sampling (Wagner and Harvey, 1997; Wagener et al., 2002b;
Ward et al., 2013), Latin hypercube sampling (LHS, Ward
et al., 2018; Kelleher et al., 2019), and a Monte Carlo ap-
proach coupled with a behavioural threshold (Kelleher et al.,
2013; Ward et al., 2017). Here, we use LHS to sample from
the selected parameter range due to LHS’s higher efficiency
compared to the classic Monte Carlo approach (Yin et al.,
2011). A single combination of model parameters (A, v, and
D for ADE and A, v, D, ATS, and α for TSMs) obtained
from the random sampling approach is herein referred to as
a “parameter set”.

To obtain reliable TSM results, Ward et al. (2017) sug-
gested a minimum number of parameter sets between 10 000
and 100 000. Thus, in each TSM iteration, we simulated
115 000 parameter sets. Results of each TSM iteration in-
clude RMSE values for the 115 000 parameter sets and re-
sults of identifiability analysis of the model parameters. The
identifiability analysis includes parameter vs. RMSE plots
(Wagener et al., 2003), parameter distribution plots (Ward
et al., 2017), regional sensitivity analysis (Wagener and Kol-
lat, 2007; Kelleher et al., 2019), and parameter distribution
plots (Wagener et al., 2002a; Ward et al., 2017). Since the
above-mentioned identifiability analysis refers to model per-
formance (RMSE) evaluated on the entire BTC, we refer to
it as a “global identifiability analysis”. Globally identifiable
parameters satisfy the following criteria: a univocal peak of
performance in parameter vs. RMSE plots and parameter
distribution plots (Ward et al., 2017) and cumulative distri-
bution functions (CDFs) corresponding to the best 0.1 % of
the results deviating from the 1 : 1 line and from parameter
CDFs corresponding to the best 10 % of the results (Kelle-
her et al., 2019). We selected these behavioural thresholds
(top 0.1 % and top 10 %) to ensure consistency with previ-
ous work (Wagener et al., 2002b; Wlostowski et al., 2013;
Ward et al., 2013, 2017; Kelleher et al., 2019. Parameter
identifiability is usually evaluated via visual inspection of
the plots from the global identifiability analysis (Wagener
et al., 2002a; Wlostowski et al., 2013; Ward et al., 2017,
2018; Kelleher et al., 2019). To couple visual inspection with
a numerical measure able to express the degree of identifi-
ability of a certain parameter, we evaluated the two-sample
Kolmogorov–Smirnov (K–S) test that calculates the maxi-
mum distanceK and the corresponding p value between two
cumulative distribution functions, F(P0.1) and F(P10), by

[K,p] =max |F (P0.1)−F (P10)| , (4)

where F(P0.1) and F(P10) are the cumulative distribution
functions of a parameter P respectively for the best 0.1 % and
best 10 % of the results. Following the approach of Ouyang
et al. (2014), we grouped parameter identifiability into four

Hydrol. Earth Syst. Sci., 26, 6003–6028, 2022 https://doi.org/10.5194/hess-26-6003-2022



E. Bonanno et al.: Exploring tracer information in a small stream to improve parameter identifiability 6007

categories: highly identifiable (K > 0.25, p ≤ 0.05), moder-
ately identifiable (0.1≤K ≤ 0.25, p ≤ 0.05), poorly identi-
fiable (K < 0.1, p ≤ 0.05), and non-identifiable (p > 0.05).

2.4 Identifiability analysis of specific sections of
the BTC

The 100 best-performing parameter sets for each iteration
were analysed with the DYNamic Identifiability Analy-
sis (DYNIA, Wagener et al., 2002a) to address the role of
model parameters in different sections of the BTC. Com-
pared to the global identifiability analysis, the dynamic iden-
tifiability analysis evaluates the identifiability of a parameter
on a moving window along the BTC. Following the approach
of Wagener et al. (2002b), we used a window size of three
time steps (∼ 1 min for E1 and E2 and ∼ 15 s for E3). The
dynamic identifiability analysis identifies regions of the ob-
served data that are identifiable (or not) to the investigated
model parameter, and it can be used to test model structure,
design specific experiments, and relate the model parame-
ters to a specific simulated model response (Wagener et al.,
2002a). The dynamic identifiability analysis yields the distri-
bution of the likelihood as a function of the parameter val-
ues and the information content of the parameters over time.
The information content is expressed as 1 minus the width
of the 90 % confidence interval over the entire parameter
range (Wagener et al., 2002a). A wide 90 % confidence in-
terval indicates that various parameter values are associated
with equally good performances resulting in low informa-
tion content. Conversely, narrow 90 % confidence intervals
and corresponding high information content values suggest
that the best-performing parameters are contained in a rela-
tively narrow range compared to the feasible range. To eval-
uate the degree of identifiability of a certain parameter in
specific sections of the BTC, we grouped parameter identi-
fiability in three categories: highly identifiable (information
content≥ 0.66), moderately identifiable (0.33≤ information
content< 0.66), and poorly identifiable (information con-
tent< 0.33). We also specified sections of the BTC as fol-
lows: the “peak” of the BTC is the section of the BTC cor-
responding to a neighbourhood interval of three time steps
(±∼ 1 min for E1 and E2 and ±∼ 15 s for E3) around
the maximum observed concentration; “rising limb” and the
“tail” are respectively the BTC sections before and after the
peak. A detailed description of how to read the plots used to
address the global identifiability analysis and a description
of the dynamic identifiability analysis algorithm are given in
Appendix A.

2.5 Iterative approach to achieve model identifiability

We simulated our tracer experiments with the ADE to avoid
initial assumptions about advection–dispersion parameters
that could affect the identifiability of transient storage param-
eters (Fig. 1). The RMSE value of the best-performing ADE

parameter set is referred to as RMSEADE. After obtaining
identifiable advection–dispersion parameters, we simulated
the observed BTC with the TSM by sampling advection–
dispersion parameters from a parameter range defined based
on the ADE results, while the transient storage parameters
were based on literature values (Table 1). This first TSM sim-
ulation over 115 000 parameter sets is referred to as the first
TSM iteration.

Similar to the Monte Carlo approach coupled with be-
havioural thresholds (Kelleher et al., 2013; Ward et al., 2017)
starting from the result of the first TSM iteration, we sim-
ulated the three tracer experiments through a stepwise ap-
proach with n TSM iterations (n is the number of iterations,
Fig. 1). The n TSM iterations sampled 115 000 parameter
sets via LHS over parameter ranges defined by the results
of the previous TSM iteration. That is, if the global identifia-
bility analysis from the previous TSM iteration indicated that
the investigated parameter is identifiable, the best 10 % of the
results was used to define its parameter range in the succes-
sive TSM iteration (Fig. 1). When the identifiability criteria
were not met, the parameter range investigated in the suc-
cessive TSM iteration was increased, or, for the case of ATS
and α, it was reduced based on the dynamic identifiability
analysis result (information content above 0.66 on the BTC
tail). This condition was chosen by the evidence that transient
storage parameters ATS and α are often non-identifiable via
global identifiability analysis (Camacho and González, 2008;
Ward et al., 2013, 2017; Kelleher et al., 2019) but are identi-
fiable on the tail of the BTC (Wagener et al., 2002b; Kelleher
et al., 2013; Wlostowski et al., 2013).

While the first TSM iteration was conducted to investigate
the identifiability of all the possible combinations in the fea-
sible parameter range reported in the literature and from the
results of the ADE (Table 1), the successive iterations ex-
cluded pairs of v and A whose product was outside the value
of the discharge evaluated via dilution gauging ±10 %. This
condition was chosen to respect results from Schmadel et
al. (2010), who reported that the discharge error from the di-
lution gauging method is ' 8 %. The same approach (Fig. 1)
was used also in the case where v was assumed fixed and
equal to vpeak = L/tpeak, where tpeak is the arrival time of
the concentration peak. This choice was motivated by the
fact that vpeak is commonly adopted as a value for velocity
in many transient storage studies (Ward et al., 2013, 2017,
2018; Kelleher et al., 2013; Wlostowski et al., 2017). The
modelling was finalized once every model parameter indi-
cated that global identifiability via the enunciated criteria
and the Kolmogorov–Smirnov test resulted in K > 0.1 and
p ≤ 0.05 for each model parameter.

2.6 Number of parameter sets, parameter range, and
identifiability of model parameters

For each TSM iteration, we randomly extracted N parame-
ter sets and their corresponding results. We then computed
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Figure 1. Conceptual modelling workflow. The parameters have the following unit of measurement: velocity v (m s−1), cross-sectional
area A (m2), longitudinal dispersion coefficientD (m2 s−1), exchange coefficient α (L s−1), and area of the transient storage zone ATS (m2).
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Table 1. Parameter names, abbreviations, and units together with a summary of publications that address the identifiability of model param-
eters with random sampling approaches. We reported the used number of parameter sets and the parameter ranges, while in parentheses we
reported the method used for the parameter sampling. “Double step” indicates that the sampling procedure was divided into two steps. In the
first step, A varied across a broad range, and in the second step, it varied across a narrower range to cover the most sensitive range of the
parameter domain. Each of the two steps investigated a number of parameter sets equal to half of the total number indicated in the table.

Parameters Units Symbol

Streamflow velocity (m s−1) v

Stream channel area (m2) A

Longitudinal dispersion coefficient (m2 s−1) D

Stream–storage zone exchange rate (L s−1) α

Transient storage area (m2) ATS

Authors Number of parameter sets Range of TSM parameters

Wagner and Harvey (1997) 800 (Monte Carlo) A 0.02–0.6
D 0.025–0.8
ATS 0.01–2
α 0.000005–0.001

Wagener et al. (2002b) 1000 (Monte Carlo) A 0.3–1.05
D 0.1–0.225
ATS 0.1–0.5
α 0.00035–0.0025

Wlostowski et al. (2013) 2000 (Monte Carlo) A 0.5–1.0
D 0.5–1.5
ATS 0.05–0.5
α 10−4–10−3

Kelleher et al. (2013) 42 000 (double-step Monte Carlo) A 0.001–1.0 (in the
second step, limits
chosen via the top
1000 results of the first
step)

D 0.001–1.0
ATS 0.001–0.01
α 10−5–10−3

Ward et al. (2013) 100 000 (Monte Carlo) A ±50 % Apeak
D 0.0001–5
ATS 0.01–10
α 10−8–10−1

Ward et al. (2017) 100 000 (double-step Monte Carlo) A 0.1–1 (0.3–0.5 in the
second step)

D 0.01–10
ATS 0.01–1
α 10−5–10−1

Kelleher et al. (2019) 27 000 (LHS) A 1.0–3.0
D 0.001–10
ATS 0.01–1
α 10−6–10−2

This paper Second-step ADE – 35 000 (LHS) v vpeak× 0.8 – velocity of
the first increase in
concentration

A ±20 % Apeak
D 0.0001−Dbest× 1.2

This paper First TSM iteration – 115 000 (LHS) v ±50 % vADE
A ±50 % AADE
D 0.0001−DADE× 2
ATS 0.00001–20
α 0.00001–0.1
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the mean and standard deviation of the top 10 % of model re-
sults considering only the extracted subset of parameters N
instead of the total of 115 000. N increased from 1000
to 115 000 with intervals of 1000 parameter sets. We then
evaluated the change in model performance with the chang-
ing number of sampled parameter sets for the different TSM
iterations for the three experiments. A continuous decrease
in the mean and the standard deviation of the top 10 % re-
sults with increasing N shows that the number of chosen pa-
rameter sets clearly affects the performances of the random
sampling approach for the investigated parameter range. In
contrast, a constant mean and standard deviation of the top
10 % results over increasing N points to the inability of the
model and modelling procedure to increase the performances
with an increasing number of parameter sets for that investi-
gated parameter range (Pianosi et al., 2015).

2.7 Comparison with an inverse modelling scheme and
a Monte Carlo random sampling approach

We compared our results with both inverse modelling re-
sults (OTIS-P) and the most common random sampling ap-
proach for TSMs (OTIS-MCAT). OTIS-P is an inverse mod-
elling scheme that minimizes the residual sum of squares be-
tween the modelled and observed BTC. The OTIS-P model
estimates the best-fitting model parameter values and their
identifiability via the 95 % confidence interval. We carried
out multiple OTIS-P iterations starting from different ini-
tial parameter values to avoid a local minimum and inter-
rupted the iterations when parameter values calibrated via
OTIS-P changed by less than 0.1 % between subsequent runs
(Runkel, 1998). OTIS-MCAT solves the TSM for the se-
lected number of parameter sets and addresses their iden-
tifiability with a global identifiability analysis (Ward et al.,
2017). Compared to our approach, OTIS-MCAT considers
Monte Carlo parameter sampling instead of LHS and veloc-
ity equal to vpeak, and it does not foresee iterative parameter
sampling from the results of dynamic identifiability analy-
sis. Thus, here we indicate as “OTIS-MCAT results” the re-
sults we obtained after the first TSM iteration when v was
assumed fixed and equal to vpeak.

2.8 Metrics and hydrologic interpretation of TSM
results

The model parameter sets obtained from OTIS-P, OTIS-
MCAT, and the proposed iterative TSM approach were used
to compute some hydrologic metrics related to solute trans-
port in streams. Here we computed the average distance a
molecule travels in the stream channel before entering the
transient storage zone (Ls, L; Mulholland et al., 1997):

Ls =
v

α
. (5)

The average time spent by a molecule in the transient storage
zone (Tsto, T) is evaluated as (Thackston and Schnelle, 1970)

Tsto =
ATS

αA
. (6)

We computed the average water flux through the storage zone
per unit length of the stream channel to interpret the mag-
nitude of flux between the stream channel and the transient
storage zone. Then we multiplied the obtained value by the
reach length L to obtain the total water flux through the stor-
age zone for the entire stream reach (qs, L3 T−1), modified
from Harvey et al. (1996):

qs = αAL. (7)

However, the metrics Ls, Tsto, and qs do not encompass the
role of both advective transport and transient storage. Thus,
we also calculated FMED (–) that accounts for the median
travel time due to advection–dispersion and transient storage
and for the travel time only due to advection and dispersion
(Runkel, 2002):

FMED ∼=

(
1− e(−L

α
v )
) ATS

ATS+A
. (8)

Increasing values of FMED have to be interpreted as increas-
ing the relative importance of the storage zone in the solute
transport downstream (Runkel, 2002; Gooseff et al., 2013).

3 Results

3.1 ADE parameters

The global identifiability analysis showed a clear peak of
performance toward univocal values for v, A, and D for
all three tracer experiments (E1, E2, E3; cf. Sect. 2.1,
plots not shown). The model performances varied be-
tween RMSEADE equal to 0.9894 mg L−1 (E3, Q=

22.79 L s−1) and RMSEADE equal to 1.9423 mg L−1 (E1,
Q= 2.52 L s−1).

3.2 TSM parameters

3.2.1 Identifiability of model parameters when velocity
is considered as a calibration parameter

After the first TSM iteration, the global identifiability anal-
ysis indicated that v, D, and α parameters are identifiable
with a unique performance peak (K of the K–S test is al-
ways> 0.22 and p < 0.05 for each tracer experiment). How-
ever, A and ATS appeared non-identifiable or poorly identi-
fiable for the three investigated BTCs (Fig. 2, green dots, p
value of the K–S test for ATS > 0.05 for each tracer experi-
ment).

The global identifiability of model parameters increased
with increasing iterations. In the TSM iterations where
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Figure 2. Parameter values plotted against the corresponding RMSE values for the TSM results conducted for the tracer injections (a–e) E1,
(f–j) E2, and (k–o) E3. (a–j) Green, yellow, blue, and orange dots indicate results respectively for the first, second, third, and fourth TSM
iterations. (k–o) Green dots indicate results for the first and second TSM iterations, while yellow, blue, and orange dots indicate results
respectively for the third, fourth, and fifth TSM iterations. Each TSM iteration was conducted via 115 000 parameter sets. The red dots
indicate OTIS-MCAT results (the best parameter set after the first TSM iteration for v equals vpeak), while the black dots indicate the best-
performing parameter value after the used iterative TSM approach. The horizontal black line indicates the RMSEADE (Table 2). The vertical
dashed red line indicates OTIS-P results, while the 95 % confidence range for OTIS-P results is indicated via vertical grey areas.

ATS or α were poorly identifiable or non-identifiable (p value
of the K–S test for ATS > 0.05), TSM performances ap-
proached at best RMSEADE (Fig. 2, green, yellow and blue
dots). After four (for E1 and E2) or five (for E3) TSM itera-
tions, the parameter values plotted against the corresponding
RMSE values showed a univocal increase in performance to-
ward unique values for v, A, D, α, and ATS (Fig. 2, orange
dots), and the RMSE of the best-performing parameter sets
decreased below RMSEADE (Fig. 2, black horizontal line).
Also, the CDF corresponding to the best 0.1 % of the re-
sults deviated from both the 1 : 1 line and from the parameter
CDF corresponding to the best 10 % of the results (results not
shown). These conditions, coupled with theK of the K–S test
always being larger than 0.1 (averageK for all the model pa-
rameters equal to 0.36 and p value< 0.05), indicated param-
eter identifiability and the finalization of the iterative TSM
approach.

3.2.2 Identifiability of model parameters when velocity
is set equal to vpeak

The global identifiability of model parameters increased con-
siderably through the iterative model approach, also when
velocity was not considered a calibration parameter. After
the third TSM iteration, the best-performing parameter sets
approached unique parameter values (Fig. 3, blue dots), and

the CDF corresponding to the best 0.1 % of the results devi-
ated from the 1 : 1 line and from the CDF of the best 10 %
of the results (results not shown). These conditions, together
with K of the K–S test always > 0.25 and p value< 0.05
for each model parameter and tracer experiment, showed a
clear increase in identifiability compared to the results af-
ter the first iteration (Fig. 3, green dots). The increase in pa-
rameter identifiability was followed by a sharp increase in
model performance, with the best-performing parameter sets
at the end of the iterative approach having RMSE values be-
low RMSEADE for all the investigated BTCs (Fig. 3, blue
dots and black line).

3.3 Dynamic identifiability analysis

3.3.1 Dynamic identifiability analysis when velocity is
considered as a calibration parameter

The dynamic identifiability analysis provided clearer insights
into the identifiability of the model parameters for different
sections of the BTC compared to the global identifiability
analysis (plots shown only for E1). After the first TSM itera-
tion, v and α proved to be the most identifiable and informa-
tive parameters on the rising limb, the peak, and the tail of
the BTC (information content> 0.66; Fig. 4a, b, g and h).
A and D were mostly identifiable and informative during
the rising limb and the tail of the BTC (Fig. 4c–f). ATS was

https://doi.org/10.5194/hess-26-6003-2022 Hydrol. Earth Syst. Sci., 26, 6003–6028, 2022



6012 E. Bonanno et al.: Exploring tracer information in a small stream to improve parameter identifiability

Figure 3. Same as Fig. 2 but reporting TSM results when velocity was considered equal to vpeak.

non-identifiable and poorly informative in most sections of
the BTC (information content< 0.33; Fig. 4i and j). How-
ever, the identifiability of ATS increased on the tail of the
BTC, where the information content was above 0.66 for ATS
between 0.77 and 5.35 m2 (Fig. 4i and j). Results from E2
and E3 showed that α and ATS were highly identifiable (in-
formation content> 0.66) for smaller sections of the tail of
the BTC when the experiments were conducted at higher dis-
charge stages (information content ofATS > 0.66 for 51 % of
the tail of the BTC for E1, for 23 % for E2, and 19 % for E3,
results not shown).

The dynamic identifiability analysis for the last TSM iter-
ation showed that the advection–dispersion parameters were
important in controlling the rising limb and the tail of the
BTC (Fig. 3k–p), while α was particularly important for con-
trolling the tail (Fig. 3q and r) and ATS for controlling the
rising limb and the tail of the BTC (Fig. 3s and t). Dynamic
identifiability analysis after the last TSM iteration for E2
and E3 showed comparable results (not shown).

3.3.2 Dynamic identifiability analysis when velocity is
set equal to vpeak

After the first TSM iteration, the dynamic identifiability anal-
ysis indicated that A was poorly identifiable on the en-
tire BTC (results reported only for E1, Fig. 5a and b),
while D was moderately identifiable (information content
between 0.66 and 0.33) on the rising limb and the tail of the
BTC (Fig. 5c and d). ATS displayed high information con-

tent on the entire BTC (Fig. 5g and h), with a narrow con-
fidence interval on the tail of the BTC for values between
0.0014 and 0.43 m2. α was non-identifiable on the majority
of the BTC (Fig. 5e); however, it showed high information
content for values between 7.06−5 and 0.0074 L s−1 at the
tail of the BTC (Fig. 5f). The dynamic identifiability anal-
ysis for the BTC of E2 and E3 yielded similar results, with
narrow confidence intervals for both ATS and α on the tail of
the BTC and no clear trend between information content and
discharge (results not shown).

The dynamic identifiability analysis for the last TSM iter-
ation of E1 indicated that A and D control the tail and the
rising limb of the BTC (Fig. 5i–l). α acted both the rising
limb and the tail of the BTC (Fig. 5m and n), and ATS con-
trolled mostly the tail of the BTC (Fig. 5o and p). For E2
and E3, results after the last TSM iteration showed lower in-
formation content of ATS on the tail of the BTC for increas-
ing discharge stages compared to E1, while the information
content of α was above 0.33 on the entire BTC (results not
shown).
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Figure 4. Dynamic identifiability analysis of model parameters for E1 when v was considered as a varying model parameter. Results report
for the (a–j) first TSM iteration and the (k–t) last TSM iteration. (a, c, e, g, i, k, m, o, q, s) Likelihood distribution as a function of
parameter values at each time step. Black lines indicate the observed BTC, and dashed black lines indicate the 90 % confidence limits. Panels
(b, d, f, h, j, l, n, p, r, t) indicate parameter information content (red bars) at each time step, while the black lines indicate the observed BTC.

3.4 Role of the used parameter range and the number
of parameter sets in the identifiability of model
parameters

When a rather wide parameter range was used (first TSM
iteration, green dots, Fig. 2), the performance of the global
identifiability analysis was strongly dependent on the chosen
number of sampled parameter sets. This can be derived from
the strong decrease in the mean and the standard deviation of
the top model results with the number of sampled parameter
sets N (results reported only for E1, Fig. 6a). Also, for less
than 97 000 parameter sets, the error between model perfor-
mance using N parameter sets and using 115 000 parameter
sets was always above 5 % (vertical black lines, Fig. 6a).

Our results showed that TSM results were poorly depen-
dent on the sampled number of parameter sets when the
model performance was studied for a narrow parameter range
around the peak of the performance (last TSM iteration, or-
ange dots, Fig. 2). This was derived by the rather constant
mean and standard deviation of the top model results with
the number of subset N . Also, for a number of parameter
sets N above 11 000, the error between model performance
usingN parameter sets and using 115 000 parameter sets was
always below 2 % (vertical black line, Fig. 6b).

https://doi.org/10.5194/hess-26-6003-2022 Hydrol. Earth Syst. Sci., 26, 6003–6028, 2022



6014 E. Bonanno et al.: Exploring tracer information in a small stream to improve parameter identifiability

Figure 5. Same as Fig. 4 but reporting dynamic identifiability results for E1 when v was set equal to vpeak.

3.5 Comparison with the OTIS-P and OTIS-MCAT
results

Compared with results from our identifiability analysis, out-
comes of OTIS-P were consistent with the best parameter
sets obtained at the end of the iterative modelling approach
(Table 2). Results from OTIS-P showed parameter identi-
fiability with a narrow 95 % confidence range for the ATS
and A, while D and α parameters were estimated with lower
identifiability due to a larger 95 % confidence range (Figs. 2
and 3). The parameter sets obtained via OTIS-P (Figs. 2
and 3, red vertical dashed line) were approaching the best-
fitting results obtained at the end of the used iterative ap-
proach, regardless of whether flow velocity was considered
as a calibration parameter (Fig. 2) or was considered equal
to vpeak (Fig. 3, Table 2).

The results of OTIS-MCAT showed low p values for each
model parameter after the K–S test (p < 0.05, K > 0.12),
indicating parameter identifiability. However, compared to
our results at the end of the iterative modelling approach,
the global identifiability analysis of the OTIS-MCAT showed

that the distribution of model parameters did not converge
towards univocal and optimal parameter values, suggesting
that model parameters were rather non-identifiable, with the
TSM performing less than the ADE (Fig. 3, green dots).

3.6 Variation of transport metrics with increasing
identifiability of model parameters

The evaluated transport metrics showed high uncertainty as
long as the model parameters were poorly identifiable or
non-identifiable (Figs. 2 and 3, green and yellow dots). This
was particularly evident after the first and second TSM iter-
ations, when the 100 best-performing parameter sets showed
Tsto values spanning over 9 orders of magnitude (Fig. 7d–f),
while both Ls and qs spanned over 3 orders of magnitude
(Fig. 7a–c and g–i). When the model parameters were poorly
identifiable, the values of the transport metrics showed clear
differences between simulations that were obtained with
streamflow velocity as a calibration parameter (Fig. 7, blue
boxplots, first TSM iteration) and between simulations with
streamflow velocity set equal to vpeak (OTIS-MCAT, Fig. 7,
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Table 2. Summary of the TSM results. OTIS-MCAT results refer to the case v = vpeak without any successive modification of the parameter
via dynamic identifiability analysis results. “Iterative TSM” indicates the best parameter sets obtained after the iterative TSM approach
presented in Fig. 1 and applied for the cases v considered as a calibrated parameter (v= calib.) and when it was considered fixed and equal
to vpeak (v = vpeak). The best TSM results are indicated in bold font.

v (m s−1) A (m2) D (m2 s−1) α (L s−1) ATS (m2) RMSE
E

1

ADE 0.0681 0.0395 0.0965 – – 1.9423
OTIS-P 0.0739 0.0364 0.0637 0.0006 0.0074 0.6159
OTIS-MCAT 0.0739 0.0351 0.1339 0.0119 0.0051 2.7421
Iterative v= calib. 0.0728 0.0369 0.0522 0.0013 0.0073 0.7229
TSM v = vpeak 0.0739 0.0359 0.0534 0.0013 0.0077 0.7681

E
2

ADE 0.1746 0.054 0.1599 – – 0.9982
OTIS-P 0.1774 0.0509 0.1151 0.0016 0.0077 0.4152
OTIS-MCAT 0.1774 0.0604 0.1271 0.0137 0.0033 1.4429
Iterative v= calib. 0.1790 0.0523 0.1131 0.0018 0.0067 0.3377
TSM v = vpeak 0.1774 0.0528 0.1154 0.0015 0.0065 0.3696

E
3

ADE 0.262 0.0874 0.2525 – – 0.9894
OTIS-P 0.275 0.081 0.1404 0.005 0.0144 0.2544
OTIS-MCAT 0.275 0.0849 0.2441 0.0259 0.0073 1.2612
Iterative v= calib. 0.2861 0.0818 0.1286 0.0064 0.0145 0.2697
TSM v = vpeak 0.275 0.083 0.1603 0.0037 0.0123 0.3109

Figure 6. Mean (red lines, left axes) and standard deviation (blue
lines, right axes) for RMSE values relative to the top 10 % of the
modelling results as a function of the number of parameter sets used
in the TSM. The results are reported for the (a) first TSM iteration
and the (b) last TSM iteration (E1). Vertical black lines indicate the
number of parameter sets needed to have the shown percentage dif-
ference between the mean RMSE value calculated at the indicated
number of parameter sets and at 115 000 parameter sets. For exam-
ple, in plot (a) only using at least 50 000 parameter sets, there is less
than a 25 % difference in the top 10 % RMSE values compared to
results using 115 000 parameter sets.

orange boxplots, first TSM iteration). When v was consid-
ered as a calibration parameter, the best-performing parame-
ter sets after the first TSM iteration showed a non-negligible
role of transient storage in solute transport for the investi-
gated tracer experiments. This was indicated by the values
of Ls (from ∼ 2 km for E1 to ∼ 69 m for E3), by the simu-
lated exchange flux qs (from 0.06 L s−1 for E1 to 8.8 L s−1

for E3), and by the solute residence time in the storage
zone Tsto (ranging from ∼ 140 d for E1 to ∼ 15 h for E3).

Clearly different values for the transport metrics were ob-
tained when v was set equal to vpeak. In this case, the re-
sults after the first TSM iteration showed a non-negligible
exchange flux of the active stream with the transient stor-
age zone (qs ranged from ∼ 23 L s−1 for E1 to ∼ 121 L s−1

for E3), a rather similar Ls for the three tracer experiments
(∼ 10 m), and a Tsto decrease between the experiments with
increasing discharge (from ∼ 12 s for E1 to ∼ 3 s for E3).

However, when the model parameters were identifiable,
the transport metrics converged toward constrained values
and were consistent with OTIS-P results (Fig. 7). This was
achieved with a calibrated and fixed (as in the OTIS-MCAT
model) streamflow velocity. Results of the last TSM itera-
tion showed that the investigated transport metrics have low
dispersion around the median and that the median almost co-
incides with the result of the best-performing parameter set
(Fig. 7, red dots). When all model parameters were identifi-
able for each of the three tracer experiments, the transport
metrics showed increasing qs (from ∼ 2.7 L s−1 for E1 to
∼ 23 L s−1 for E3), increasing LS (from ∼ 50 m for E1 to
∼ 100 m for E3), and decreasing Tsto (from∼ 150 s for E1 to
∼ 33 s for E3) with increasing mean discharge of the experi-
ments (from E1 to E3). Fmed did not change widely between
the TSM iterations since the median of the best-performing
100 parameter sets always varied between 0.04 and 0.2
(Fig. 7j–l). However, together with qs, LS, and Tsto transport
metrics, the dispersion of Fmed values around the median de-
creased with increasing identifiability of model parameters.
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Figure 7. Boxplots of the investigated transport metrics for the 100 best parameter sets for the three simulated experiments. (a–c) Ls, (d–
f) Tsto, (g–i) qs, (j–l) Fmed. Results are reported for (a, d, g, j) E1, (b, e, h, k) E2, and (c, f, i, l) E3. On the x axis, we indicated the nth TSM
iteration. Blue and orange boxplots indicate results when velocity was a varying model parameter and when it was kept fixed and equal
to vpeak respectively. Red dots indicate the transport metric values obtained via the parameter sets with a lower RMSE. The red and black
horizontal dashed lines indicate respectively the transport metric obtained using the OTIS-P results and OTIS-MCAT results (the first TSM
simulation when velocity was kept fixed and equal to vpeak).

4 Discussion

4.1 The role of velocity in random sampling
approaches for TSMs

Our results showed that v interacts with α and ATS in tran-
sient storage models. This was particularly evident when
v was considered as a calibration parameter, and the non-
identifiability of ATS was coupled with identifiable v and α
(Fig. 2, green and yellow dots). In contrast,ATS was found to
be identifiable and α to be non-identifiable when v was fixed
equal to vpeak (Fig. 3, yellow dots). It is known that a separate
evaluation of the advection–dispersion parameters from the
transient storage parameters can result in a misestimation of
transient storage parameters due to the high parameter inter-
action (Knapp and Kelleher, 2020). Several studies addressed
the identifiability of model parameters, yet no study so far
has investigated the role of the flow velocity in the identifia-
bility of α or ATS, and studies rely on a flow velocity equal
to vpeak in random sampling approaches for TSMs (Ward et
al., 2013, 2017, 2018; Kelleher et al., 2013; Wlostowski et
al., 2017). The practice of setting v equal to vpeak in past
studies was justified by the notion that vpeak can be consid-
ered a reasonably good approximation for the advection pro-
cess in the stream channel (Ward et al., 2013; Wlostowski et
al., 2017) and by the modelling advantage that assuming v
equals vpeak would reduce model dimensionality (Knapp and
Kelleher, 2020). While reducing the number of model pa-

rameters is advantageous for reduced model dimensionality,
considering v as a calibration parameter is a needed testing
strategy in TSMs. This is because measurement uncertainty
is inevitable in determining discharge or flow velocity, and
thus we do not know how big the effect of measurement
uncertainty is on model performance, especially consider-
ing parameter interaction. Also, constraining the advection–
dispersion parameters A and D already proved to affect the
identifiability of the other model parameters (Lees et al.,
2000; Kelleher et al., 2013; Ward et al., 2017), but no study
assessed the role of velocity in parameter identifiability.

Our results provide valuable guidance for future studies
addressing parameter identifiability in TSMs. Specifically,
our results support the current practice of considering veloc-
ity fixed and equal to vpeak, especially when research aims
at evaluating the distribution of “behavioural” parameter sets
in TSMs (i.e. parameter sets satisfying certain performance
thresholds). This is due to the fact that using velocity as a
calibration parameter leads to the same parameter identifia-
bility compared to the case when velocity is considered fixed
(Figs. 2 and 3, Table 2). Yet setting velocity equal to vpeak re-
quires a considerably lower amount of computational power
due to the lower degrees of freedom of the TSM. However,
when research aims to evaluate the control of the model pa-
rameters on the shape of the BTC, our results suggest that
increasing the model complexity by considering velocity as
a varying model parameter can offer more detailed insights
into the role of advection–dispersion processes in the tail of
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the BTC and of the transient storage parameters in the ris-
ing limb and peak of the BTC (Figs. 4 and 5). Indeed, our
results highlighted how assuming that v equals vpeak led to
a stronger influence of α and a weaker influence of ATS on
the BTC compared to the case when v is considered as a cal-
ibration parameter. Also, our dynamic identifiability analysis
underestimated the role of A and ATS in the rising limb and
peak of the BTC and overestimated the role ofD and α in the
rising limb of the BTC for the case when v equals vpeak com-
pared to the case when v was a calibration parameter (Figs. 4
and 5).

The assumption used in previous work of streamflow ve-
locity equalling vpeak implies that vpeak should encompass
the effect of advection on the entire BTC or at least in the ris-
ing limb and peak of the BTC (Ward et al., 2013, 2018; Kelle-
her et al., 2013; Wlostowski et al., 2017). However, when
v was used as a calibration parameter, our results showed
that v is one of the least meaningful parameters for simu-
lating the peak of the BTC at low discharge (Fig. 4k and i),
while higher information content for v is obtained at higher
discharge rates for values larger than vpeak at the peak of the
BTC (dynamic identifiability plots not shown).

4.2 Control of model parameters on the rising limb, the
peak, and the tail of the BTC

The results of our dynamic identifiability analysis showed
that both the advection and dispersion and the transient stor-
age parameters control solute arrival time and solute reten-
tion in stream channels. This outcome is in contradiction with
the common interpretation of model parameters, where it
is assumed that the advection–dispersion parameters control
the solute arrival time, while transient storage parameters are
assumed to control the tail of the BTC (Bencala, 1983; Ben-
cala and Walters, 1983; Runkel, 2002; Smith, 2005; Bencala
et al., 2011). Following this common interpretation of the
role of model parameters in the BTC, some authors decom-
posed the BTC into an advective part and a transient storage
part (Wlostowski et al., 2017; Ward et al., 2019). This de-
composition allowed them to quantify the role of advection
and dispersion and transient storage embedded in the BTC.
However, this modelling strategy also implicitly assumes a
negligible role of advection–dispersion parameters in the tail
of the BTC and of transient storage parameters in the rising
limb and peak of the BTC, which is not consistent with our
findings (Figs. 4, 5 and 8).

Several studies addressed how different model parameters
affect the shape of the BTC and showed partly similar but
also contrasting outcomes to our findings (Fig. 8g–l, Wag-
ner and Harvey, 1997; Wagener et al., 2002b; Scott et al.,
2003; Wlostowski et al., 2013; Kelleher et al., 2013). Past
studies found that the rising limb of the BTC was controlled
by the stream channel area A alone (Wagener et al., 2002b),
by the combination of A and the longitudinal dispersion co-
efficient D (Wagner and Harvey, 1997; Wlostowski et al.,

2013; Kelleher et al., 2013), or by A, D, and ATS (Scott et
al., 2003). The peak of the BTC was found to be controlled
by advection–dispersion parameters in most past TSM ap-
plications (Wagener et al., 2002b; Wlostowski et al., 2013;
Scott et al., 2003; Kelleher et al., 2013). However, Wagner
and Harvey (1997) reported a non-negligible role of the tran-
sient storage parameters α and ATS in controlling the arrival
time of the peak concentration (Fig. 8g). Eventually, while
the majority of the studies found the transient storage param-
eters α and ATS to control the tail of the BTC (Wagner and
Harvey, 1997; Scott et al., 2003; Wlostowski et al., 2013),
results reported by Wagener et al. (2002b) and by Kelleher et
al. (2013) highlight the role of the stream channel area A in
controlling a large portion of the tail of the BTC.

The observed identifiability of model parameters in differ-
ent sections of the BTC in past work and the differences com-
pared to our findings (Fig. 8a, c and e) might be driven by dif-
ferent physical settings or discharge conditions of the study
sites, by the methods used to account for parameter identifi-
ability, by the parameter sampling procedure, or by the strat-
egy used to obtain the best-fitting parameter sets (Wagner and
Harvey; 1997; Scott et al., 2003; Kelleher et al., 2013). For
example, the identifiability of the TSM to α and ATS is ex-
pected to increase for dispersive streams and alluvial stream
channels compared to mountain reaches with low or null hy-
drologic exchange with the hyporheic zone (Kelleher et al.,
2013). However, our analysis also suggests that the differ-
ent results on the importance of model parameters for cer-
tain sections of the BTC (Fig. 8) could be driven by the se-
lected random sampling approach and the non-identifiability
of model parameters.

Plots of the parameter values against the corresponding
objective function in Wagener et al. (2002b) and the regional
sensitivity analysis in Wlostowski et al. (2013) do not indi-
cate parameter identifiability forATS,D and α. These results
together with our identifiability plots when model parame-
ters were poorly identifiable (Figs. 2 and 3, green and yellow
plots) suggest that the range and the number of the param-
eter sets chosen in different studies could have been insuf-
ficient to obtain global sensitivity and identifiability of D,
ATS, and α parameters. Similar to the results by Wagener et
al. (2002b) and Wlostowski et al. (2013), our dynamic identi-
fiability analysis showed no influence of ATS on the majority
of the BTCs when ATS was non-identifiable (Fig. 4i and j).

Compared to our results, the different roles of the model
parameters in controlling the shape of the BTC in previ-
ous studies (e.g. Kelleher et al., 2013) could be driven by
the different approaches used for evaluating the sensitivity
(i.e. Sobol’ sensitivity analysis). However, our results sug-
gest that the number of parameter sets (42 000) selected by
Kelleher et al. (2013) might not have been sufficient to obtain
identifiability of the model parameters with the rather wide
parameter range chosen for their Monte Carlo sampling (Ta-
ble 1). Results by Kelleher et al. (2013) are very similar to
our TSM iterations for cases where α was non-identifiable
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Figure 8. Qualitative plots of the TSM parameter influence different sections of the BTC. (a, b) Qualitative parameter information content
on the BTC for E1, (c, d) E2, and (e, f) E3. In plots (a–f) solid lines indicate an information content above 0.66, while dashed lines indicate
an information content between 0.33 and 0.66. (g) Wagner and Harvey (1997): parameter influence described via sensitivity evaluation
(cf. p. 1733, Wagner and Harvey, 1997), and therefore the parameter influence is described using only solid lines. (h) Wagener et al. (2002b):
plot (h) has been modified from Fig. 7 in Wagener et al. (2002b) in order to fit our 0.66 and 0.33 threshold classification in terms of
information content. (i) Scott et al. (2003): parameter influence described via dimensionless sensitivity (cf. Table 1 in Scott et al., 2003), and
therefore the parameter influence is described using only solid lines. (j) Wlostowski et al. (2013): plot (j) describes the parameter influence
after the dynamic identifiability analysis; however, information content plots were not reported by the authors, and therefore the solid lines
indicate the areas for the best-performing parameters as indicated in Fig. 2 of Wlostowski et al. (2013). (k) Kelleher et al. (2013) for the
case of a dispersive mountain stream (Case 1) and (l) Kelleher et al. (2013) for the case of a small low-flow mountain stream (Case 2). Plots
(k) and (l) indicate by solid and dashed lines whether the parameters influence the model output by itself or through interactions (cf. Sect. 6.1,
Kelleher et al., 2013).

(v equals vpeak, Fig. 3 yellow dots, dynamic identifiability
plots not shown). We also demonstrated that our results af-
ter the first and second TSM iterations are not sufficient for
interpreting the transient storage process because of the non-
identifiability of the model parameters and the low model
performances (RMSE≥RMSEADE (Fig. 3a–l, green and yel-
low dots).

This study offers significant insights into understanding
which model parameters influence the shape of the BTC, sug-
gesting that only behavioural parameter sets should be con-
sidered in models aiming to understand the control of model
parameters on the rising limb, peak, and tail of the BTC. Fu-
ture work should address the interaction of model parameters
on controlling different sections of the BTC for more com-

plex model formulations (e.g. TSM with two or several tran-
sient storage zones, Choi et al., 2000; Bottacin-Busolin et al.,
2011).

4.3 On the importance of parameter range, parameter
sets, and challenges associated with parameter
identifiability in TSMs

The applied iterative approach was effective in drastically
improving parameter identifiability with the increase in TSM
iterations. The identifiability of parameters in TSMs is com-
monly studied via random sampling approaches using be-
tween 800 and 100 000 parameter sets sampled from a pa-
rameter range spanning several orders of magnitude (Ta-
ble 1). Despite a large number of parameter sets used in
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previous studies, model parameters were found to be iden-
tifiable only in a few studies (Ward et al., 2017, 2018),
while at least one model parameter was found to be non-
identifiable in the majority of current TSM studies. Many au-
thors found identifiable ATS coupled with non-identifiable α
(Camacho and González, 2008; Kelleher et al., 2013; Wa-
gener et al., 2002b; Wlostowski et al., 2013), while other
TSM applications found α to be identifiable coupled with
non-identifiability for ATS (Kelleher et al., 2019) or α and
ATS to be both non-identifiable (Camacho and González,
2008; Ward et al., 2013, 2017). Our results offer a possible
explanation for the observed non-identifiability of model pa-
rameters in published work. Our study demonstrated that it
is unlikely to reach parameter identifiability via a random
sampling approach using less than 100 000 parameter sets
when a rather wide range of model parameters is used (Ta-
ble 1, Fig. 6a). While the range and the order of magnitude
of advection–dispersion parameters can be estimated by us-
ing the ADE, the ranges where α and ATS are identifiable are
not known a priori, and random sampling approaches need
to target a parameter range wide enough to capture the distri-
bution of transient storage parameters in their entire feasible
range (Ward et al., 2013, 2017; Kelleher et al., 2013). We
proved here that investigating the most identifiable parame-
ter range is more effective for achieving parameter identifi-
ability than just using a large number of parameter sets on
a wide parameter range (Fig. 6). The peak of performance
for the transient storage parameters can be so narrow that it
can be missed by the random sampling approach or by only a
low number of selections when the sampled parameter range
spans many orders of magnitude. Similar conclusions have
been obtained by Ward et al. (2017), who found by using
the OTIS-MCAT model via 100 000 parameter sets that the
model parameters were identifiable only for one of the three
investigated BTCs. Other studies coupled random sampling
approaches with behavioural thresholds to reduce parameter
non-identifiability, yet this was done to constrain only the
range of A (Kelleher et al., 2013; Ward et al., 2017). Here,
we demonstrated the importance of the parameter range over
the number of parameter sets in random sampling approaches
for TSMs (Fig. 6). The adopted identifiability analysis was
effective in finding behavioural parameter sets after a few
iterations regardless of the modelling approach used (OTIS-
MCAT as well as considering v as a calibration parameter).
Of particular interest is our finding that high information con-
tent (> 0.66, e.g. Figs. 4j and 5f) of α and ATS on the tail
of the BTC after the dynamic identifiability analysis can be
used to reduce the parameter range in successive TSM itera-
tions. This result is in agreement with the recent findings of
Rathore et al. (2021), who found the tail of the BTC to con-
tain fundamental information for transient storage processes
and the parameters describing it.

The adopted iterative approach allowed us to achieve pa-
rameter identifiability and obtain physically realistic trans-
port metrics. However, this approach is based on the specific

objective function used (RMSE) and on the subjective thresh-
olds to control the refinement of the parameter range for suc-
cessive iterations (top 10 % results for the global identifiabil-
ity analysis and information content> 0.66 for the dynamic
identifiability analysis). Future work should explore the im-
pact of the selection of the thresholds and different objective
functions on the physical realism of the modelling results and
the identifiability of the parameters.

The applied iterative approach is foremost a tool for
achieving parameter identifiability by investigating the entire
range of feasible parameter values via existing identifiabil-
ity tools (global identifiability analysis and dynamic identi-
fiability analysis). The larger amount of time and computa-
tional power required by the adopted identifiability analysis
compared to the rather straightforward application of OTIS-
P paid off in terms of completeness of results and granted
a more comprehensive view of the possible modelling out-
comes on the feasible parameter range. Also, compared to the
standard random sampling approach, the identifiability anal-
ysis used in the present work proved effective in iteratively
constraining the parameter range to reduce the dimensional-
ity of the model, eventually providing both identifiable model
parameters and optimal parameter sets with model perfor-
mances approaching (or even outperforming) calibrated re-
sults via inverse modelling (Table 2).

Our simulations with OTIS-P resulted in excellent model
performances for the investigated BTCs, with low RMSE
values and with calibrated model parameters comparable
to the behavioural parameter populations obtained via our
global identifiability analysis (Figs. 2 and 3). While the
obtained performances of the OTIS-P calibration are cer-
tainly specific to the investigated BTCs, the use of OTIS-P
alone would not have provided enough information to ad-
dress the reliability of the obtained model parameters. This,
in turn, would have raised concerns about the credibility of
the transport metrics obtained, eventually compromising the
robustness of the derived physical process involved at the
study site. Compared to random sampling approaches cou-
pled with global identifiability analysis, inverse modelling
approaches are often considered not meaningful for interpret-
ing modelling outcomes (Ward et al., 2013; Knapp and Kelle-
her, 2020). This is because parameters calibrated via inverse
modelling might be non-identifiable despite an overall good
model performance (Kelleher et al., 2019) and because iden-
tifiability analysis informs behavioural parameter sets, which
is a preferable and more informative outcome for hydrolog-
ical models than a single set of parameter values (Beven,
2001; Wagener et al., 2002a). Thus, our identifiability analy-
sis over different investigated parameter ranges can offer an
explanation about why in past studies identifiability analy-
sis over a probably too large parameter range indicated non-
identifiability and a lack of convergence with OTIS-P results
(Ward et al., 2017).

Eventually, even if random sampling approaches are gen-
erally considered more informative than the inverse mod-
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elling approach (Ward et al., 2013, 2017, 2018; Knapp and
Kelleher, 2020), our results indicate that random sampling
outcomes that show non-identifiability of transient storage
parameters should not be used for process interpretation in
TSMs. This was evident from TSM iterations showing non-
identifiability of α and ATS, with the best model perfor-
mances approaching the RMSEADE (Figs. 2 and 3, black
line), indicating an underestimation of the transient stor-
age process with the optimal modelled BTCs mimicking
the ADE.

4.4 Implications of identifiable model parameters for
hydrologic interpretation of modelling results

Our results demonstrated that poor identifiability or non-
identifiability of model parameters can result in a wrong hy-
drological interpretation of the processes controlling solute
transport in streams. Additionally, our results showed that
with increasing discharge conditions Ls and qs increased,
Tsto decreased, and Fmed was rather stable for simulations
where the model parameters were identifiable (cf. Sect. 3.2).
The low uncertainty and the values of the investigated trans-
port metrics suggested that the transient storage at the ex-
perimental site was most probably controlled by in-stream
dead zones (Boano et al., 2014; Smettem et al., 2017). Our
modelling outcomes are also in line with the physical un-
derstanding of the studied stream reach. The study site is
equipped with a dense network of groundwater monitoring
wells that showed that the stream channel is almost entirely
in gaining conditions for the investigated tracer injections,
with the groundwater gradients pointing toward the stream
channel (Bonanno et al., 2021). This is in line with the ob-
tained TSM transport metrics that indicate a very limited or
even lack of hyporheic exchange. Other modelling and exper-
imental studies also outlined that the stream above the study
section is dominated by the inflow of groundwater or surface
water from wetlands (Antonelli et al., 2020; Glaser et al.,
2016, 2020). The observed link ofLs, qs, and Tsto values with
discharge (Fig. 7) also suggested that the transient storage at
our site became less important in controlling solute transport
with increasing discharge. The decrease in ATS and Tsto with
the increasing discharge has been argued to indicate an in-
crease in groundwater gradients toward the stream channel
with a consequent decrease in the hyporheic zone at differ-
ent study sites (Morrice et al., 1997; Fabian et al., 2011).
However, the observed groundwater gradients at the study
site exclude the presence of significant hyporheic exchange
during the three simulated tracer experiments. The observed
trend between modelling results with discharge might be in-
terpreted by the fact that, as the discharge increases, the wet-
ted profile at the study site incorporates into the advective
part of the channel the dead zones and the low-flow areas
that are responsible for in-stream transient storage at lower
flow rates (Zarnetske et al., 2007; Gooseff et al., 2008). This
would cause a progressive increase in piston-flow transport

and a reduced role of in-stream solute retention with increas-
ing flow and water level in the stream channel.

However, if we had based the process interpretation on
simulations before we reached the identifiability of model
parameters, the conclusions would have been different. The
values for the transport metrics obtained when v and the other
model parameters were considered as calibration parameters
together with published results on solute residence time in
the hyporheic zone and the stream channel (Gooseff et al.,
2005; Boano et al., 2014) could have been interpreted in a
way that the transient storage was controlled by in-stream
dead zones during high-discharge events and by a low-rate
hyporheic exchange under low-flow conditions (Fig. 7, blue
boxplots and first TSM iteration). Conversely, results from
the first TSM simulation when v was considered fixed and
equal to vpeak might have been interpreted in a way that tran-
sient storage of the studied stream channel was controlled by
dead zones under the lowest flow conditions and by in-stream
turbulences that caused solute retention in the transient stor-
age zone to last∼ 3 s during high-flow events (Fig. 7, orange
boxplots and first TSM iteration).

Our results also open developments for research seeking
to increase the physical realism of the TSM and its results.
Increased model complexity is associated with both a better
analytical fitting to the observed BTC and an increased de-
gree of freedom of the model with a consequent reduction
of parameter identifiability (Knapp and Kelleher, 2020). Our
approach offers a promising flexible tool to target parameter
identifiability and physical interpretation also in TSM for-
mulation with increasing complexity, such as multiple stor-
age zone models (Choi et al., 2000), or for TSMs consider-
ing sorption kinetics (Gooseff et al., 2005) or different resi-
dence time distribution laws such as log-normal distribution
(Wörman et al., 2002), exponential plus pumping distribution
(Bottacin-Busolin et al., 2011), and power law distribution
(Haggerty et al., 2002).

5 Conclusion

There is a clear need in stream hydrology to better identify
parameters for simulating solute transport in streams. Here
we addressed the challenge of parameter identifiability in
TSMs by combining global identifiability analysis with dy-
namic identifiability analysis in an iterative modelling ap-
proach. Our results showed that the value of stream veloc-
ity interacts with the transient storage parameters. That is,
when stream velocity was a randomly sampled calibration
parameter (within a physically reasonable range), we found
non-identifiable ATS and identifiable α. In contrast, when
stream velocity was assumed to be equal to vpeak, ATS was
found to be identifiable and α non-identifiable. We proved
that such a non-identifiability of transient storage parameters
can result in the modelled BTC approaching the ADE. Our
work demonstrates that both transient storage and advection–
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dispersion parameters control the shape of the BTC when
these model parameters are identifiable. This is in contrast to
previous studies that reported that advection–dispersion pa-
rameters control the rising limb and the peak of the BTC and
that the transient storage parameters control the tail of the
BTC. We also showed that non-identifiable model parame-
ters could severely misestimate the solute retention time in
the transient storage zone (Tsto) and the exchange flux be-
tween the stream channel with the transient storage zone (qs).
The differences in Tsto and qs between identifiable and non-
identifiable parameters were up to 4 and 2 orders of magni-
tude respectively.

The modelling approach in this study constrained the pa-
rameter range iteratively. This strategy successfully reduced
model dimensionality and allowed us to obtain identifiable
model parameters for the three tracer experiments. As a com-
plement to the existing body of literature, our work shows
that the non-identifiability of model parameters in past stud-
ies might be related to the rather small number of sampled
parameter sets compared to the investigated parameter range.
The low uncertainty of the model parameters and the de-
rived transport metrics were pivotal for obtaining a robust
assessment of the hydrological processes driving the solute
transport at the study site. In contrast, using non-identifiable
model parameters or relying on OTIS-P results alone would
have led to uncertain and rather different process interpreta-
tions at the study site.

Our study provides an enhanced understanding of the rel-
evance of identifiable parameters of TSM models. We also
provide insights into how parameter calibration without an
assessment of their identifiability likely results in an unreal-
istic conceptualization of processes and unrealistic values for
different solute transport metrics.

Appendix A: Parameter sensitivity and identifiability

The interpretation of the parameter range is based on the sen-
sitivity and identifiability of the ith parameter on the cho-
sen model (the TSM) via a selected objective function used
to compare model results with the observation (the BTC)
(Kelleher et al., 2019; Wagener et al., 2003; Wagener and
Kollat, 2007; Ward et al., 2017; Wlostowski et al., 2013).
A parameter is called sensitive whenever a variation in the
parameter value causes variations in the TSM performances
(Kelleher et al., 2019). A parameter is identifiable when-
ever the best-fit value of that parameter is constrained on a
relatively narrow range across the entire distribution of the
possible parameter values (Ward et al., 2017). To assess the
identifiability of the parameters of TSM, we used parameter
vs. likelihood plots, identifiability plots, regional sensitivity
analysis plots and parameter distribution plots.

Parameter vs. likelihood plots visualize the distribution of
the investigated values of a certain parameter plotted against
the corresponding values of the objective function (Wagener

et al., 2003; Wagener and Kollat, 2007). Identifiable parame-
ters are described in parameter vs. likelihood plots by a uni-
vocal increase in model performances approaching a certain
optimum value of the parameter (Fig. A1a). Non-identifiable
parameters are described in parameter vs. likelihood plots by
a non-univocal increase in performances of the model in a
certain parameter range (Fig. A1b). Parameter distribution
plots show the probability density function (PDF) divided by
behavioural sets (from the top 20 % to the top 0.1 % of the re-
sults for the selected objective function) (Ward et al., 2017).
Identifiable parameters are indicated by a narrow range of the
PDF relative to the smaller behavioural sets (top 0.1 %, 0.5 %
and 1 % of the results) compared to a wider range of the PDF
relative to the larger behavioural sets (top 5 %, 10 % and 20 %
of the results) (Fig. A1c). Non-identifiable parameters are de-
fined by equally wide PDFs for the different investigated be-
havioural sets (Fig. A1d). Regional sensitivity analysis plots
are obtained after dividing the population of the parameter by
behavioural sets (from the top 10 % of the results to the top
1 % of the results with a 1 % step for the selected objective
function: Ward et al., 2017; Kelleher et al., 2019). Each ob-
jective function population so obtained was transformed into
cumulative distribution functions (CDFs) for equal size bins
of the parameter range (Kelleher et al., 2019; Wagener and
Kollat, 2007). Sensitive parameters are identified by CDFs
for the top 1 % of the results deviating from the CDF for the
top 10 % of the results (Fig. A1e). If the CDFs lay on the
1 : 1 line, then the objective function is uniformly distributed
across the parameter range which indicates parameter insen-
sitivity (Fig. A1f). Identifiability plots display the CDF of the
objective function across the selected parameter range (Wa-
gener et al., 2002a; Ward et al., 2017). The slope of the CDF
will be higher in the parameter interval where the model is
more sensitive to that parameter. The measure of the local
gradient of the cumulative distribution will be represented
by the height of the bar plot in each equally sized bin across
the parameter range. Higher bars and steeper gradients of the
CDF line indicate greater model performances in that param-
eter range and, therefore, parameter sensitivity and identifia-
bility (Fig. A1g). In contrast, an equal eight of the bars and
similar gradients of the CDF line indicate that the parameter
is insensitive and non-identifiable (Fig. A1h).

The plots used to address the global sensitivity analysis
indicate parameter identifiability and sensitivity on the entire
observed BTC; however, they are unable to address whether
the ith parameter describes the process it is meant to repre-
sent or whether the role of the ith parameter in the model
is constant in time (Wagener and Kollat, 2007). To address
the identifiability and sensitivity of the ith parameter in the
different sections of the BTC, we applied a dynamic identifi-
ability analysis whose steps are reported in Fig. A2 (Wagener
et al., 2002a, b).
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Figure A1. Examples of the four types of visualizations intended for parameter identifiability and sensitivity, with the plots in the first column
(a, c, e, g) reporting an example of plots for sensitive and identifiable parameters and plots in the second column (b, d, f, h) reporting an
example of plots for an insensitive and non-identifiable parameter. (a, b) Parameter vs. likelihood plots. (c, d) Parameter distribution plots
for the top 20 %, 10 %, 5 %, 1 %, and 0.1 % of the results. (e, f) Regional sensitivity analysis plots from the top 1 % to the top 10 % of the
results. (g, h) Identifiability plots for the top 1 % of the model results.
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Figure A2. Dynamic identifiability analysis algorithm flowchart. (a) The BTC is subdivided into moving windows (size equal to 3 times
the BTC time step, Wagener et al., 2002b). (b) In each moving window the likelihood (efficiency) of every TSM simulation is evaluated via
the mean absolute error (Wagener and Kollat, 2007). (c) An efficiency threshold is chosen (e.g. top 10 %). (d) For the chosen model results,
the cumulative distribution function is built for each investigated parameter. (e) Steps from panels (b) to (d) are repeated for each moving
window, and model likelihood for the investigated parameter is plotted over time (white: minimum likelihood; black: maximum likelihood).
(f) The cumulative distribution function of the parameter distribution is plotted vs. the observed BTC together with the 90 % confidence
limits. Narrow limits indicate an identifiable parameter, while wide limits indicate a non-identifiable parameter. (g) A second plot reports the
metric of 1 minus the normalized distance between the 90 % confidence limits. Small values of this metric indicate that the selected time
window contains a narrow identifiability range for the investigated parameter and, therefore, that it is informative on that part of the BTC
(Wagener et al., 2002b).
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Appendix B: Observed vs. simulated BTCs

Figure B1 shows the observed BTC for the three tracer ex-
periments plotted against the top 100 simulated BTCs ob-
tained using the proposed iterative approach. The observed
poor visual fit on the tail of the BTC obtained at the end of
the iterative modelling approach (Fig. B1d–f) is controlled by
two factors: (i) the modelling structure of the TSM which as-
sumes an exponential residence time distribution and (ii) the
chosen objective function. By using alternative residence
time distributions, TSM proved to have a more accurate fit-
ting on the tail of the BTC (Haggerty et al., 2002; Bottacin-
Busolin et al., 2011). Also, the RMSE could not be the best
objective function for addressing a model fit on the tail of
the BTC because it gives higher importance to the sections
of the BTC with higher concentration values (peak of the
BTC) compared to the sections of the BTC with low con-
centration values (on the tail of the BTC). As an example, the
best-fitting BTC obtained at the end of the second TSM itera-
tion (E1) shows a visually better fit on the BTC tail (Fig. B2)
despite the large RMSE (1.5197 mg L−1).

Figure B1. Observed BTC (red line) together with the grey area comprised between the top 100 simulated BTCs and the best-fitting BTC
(blue dashed line) for (a, d) E1, (b, e) E2, and (c, f) E3. Results are reported for the first (a–c) and last (d–f) TSM iterations.

Figure B2. Observed BTC (red line) together with the grey area comprised between the top 100 simulated BTCs and the best-fitting BTC
(blue dashed line) for the second TSM iteration (E1).
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