Articles | Volume 26, issue 21
Hydrol. Earth Syst. Sci., 26, 5431–5447, 2022
https://doi.org/10.5194/hess-26-5431-2022
Hydrol. Earth Syst. Sci., 26, 5431–5447, 2022
https://doi.org/10.5194/hess-26-5431-2022
Research article
01 Nov 2022
Research article | 01 Nov 2022

Karst spring recession and classification: efficient, automated methods for both fast- and slow-flow components

Tunde Olarinoye et al.

Related authors

Estimating karst groundwater recharge from soil moisture observations – a new method tested at the Swabian Alb, southwest Germany
Romane Berthelin, Tunde Olarinoye, Michael Rinderer, Matías Mudarra, Dominic Demand, Mirjam Scheller, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 27, 385–400, https://doi.org/10.5194/hess-27-385-2023,https://doi.org/10.5194/hess-27-385-2023, 2023
Short summary
Poor correlation between large-scale environmental flow violations and freshwater biodiversity: implications for water resource management and the freshwater planetary boundary
Chinchu Mohan, Tom Gleeson, James S. Famiglietti, Vili Virkki, Matti Kummu, Miina Porkka, Lan Wang-Erlandsson, Xander Huggins, Dieter Gerten, and Sonja C. Jähnig
Hydrol. Earth Syst. Sci., 26, 6247–6262, https://doi.org/10.5194/hess-26-6247-2022,https://doi.org/10.5194/hess-26-6247-2022, 2022
Short summary
Pitfalls and a feasible solution for using KGE as an informal likelihood function in MCMC methods: DREAM(ZS) as an example
Yan Liu, Jaime Fernández-Ortega, Matías Mudarra, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5341–5355, https://doi.org/10.5194/hess-26-5341-2022,https://doi.org/10.5194/hess-26-5341-2022, 2022
Short summary
Globally widespread and increasing violations of environmental flow envelopes
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022,https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Using LSTM to monitor continuous discharge indirectly with electrical conductivity observations
Yong Chang, Benjamin Mewes, and Andreas Hartmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-77,https://doi.org/10.5194/hess-2022-77, 2022
Revised manuscript under review for HESS
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
The origin of hydrological responses following earthquakes in a confined aquifer: insight from water level, flow rate, and temperature observations
Shouchuan Zhang, Zheming Shi, Guangcai Wang, Zuochen Zhang, and Huaming Guo
Hydrol. Earth Syst. Sci., 27, 401–415, https://doi.org/10.5194/hess-27-401-2023,https://doi.org/10.5194/hess-27-401-2023, 2023
Short summary
Advance prediction of coastal groundwater levels with temporal convolutional and long short-term memory networks
Xiaoying Zhang, Fan Dong, Guangquan Chen, and Zhenxue Dai
Hydrol. Earth Syst. Sci., 27, 83–96, https://doi.org/10.5194/hess-27-83-2023,https://doi.org/10.5194/hess-27-83-2023, 2023
Short summary
Three-dimensional hydrogeological parametrization using sparse piezometric data
Dimitri Rambourg, Raphaël Di Chiara, and Philippe Ackerer
Hydrol. Earth Syst. Sci., 26, 6147–6162, https://doi.org/10.5194/hess-26-6147-2022,https://doi.org/10.5194/hess-26-6147-2022, 2022
Short summary
Machine-learning-based downscaling of modelled climate change impacts on groundwater table depth
Raphael Schneider, Julian Koch, Lars Troldborg, Hans Jørgen Henriksen, and Simon Stisen
Hydrol. Earth Syst. Sci., 26, 5859–5877, https://doi.org/10.5194/hess-26-5859-2022,https://doi.org/10.5194/hess-26-5859-2022, 2022
Short summary
Frequency domain water table fluctuations reveal impacts of intense rainfall and vadose zone thickness on groundwater recharge
Luca Guillaumot, Laurent Longuevergne, Jean Marçais, Nicolas Lavenant, and Olivier Bour
Hydrol. Earth Syst. Sci., 26, 5697–5720, https://doi.org/10.5194/hess-26-5697-2022,https://doi.org/10.5194/hess-26-5697-2022, 2022
Short summary

Cited articles

Aksoy, H. and Wittenberg, H.: Nonlinear baseflow recession analysis in watersheds with intermittent streamflow, Hydrolog. Sci. J., 56, 226–237, https://doi.org/10.1080/02626667.2011.553614, 2011. 
Amit, H., Lyakhovsky, V., Katz, A., Starinsky, A., and Burg, A.: Interpretation of Spring Recession Curves, Ground Water, 40, 543–551, https://doi.org/10.1111/j.1745-6584.2002.tb02539.x, 2002. 
Arciniega-Esparza, S., Breña-Naranjo, J. A., Pedrozo-Acuña, A., and Appendini, C. M.: HYDRORECESSION: A Matlab toolbox for streamflow recession analysis, Comput. Geosci., 98, 87–92, https://doi.org/10.1016/j.cageo.2016.10.005, 2017. 
Atkinson, T. C.: Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain), J. Hydrol., 35, 93–110, https://doi.org/10.1016/0022-1694(77)90079-8, 1977. 
Beck, H. E., Zimmermann, N. E., Mcvicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Data Descriptor: Present and future Köppen-Geiger climate classification maps at 1-km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018. 
Download
Short summary
Analysis of karst spring recession is essential for management of groundwater. In karst, recession is dominated by slow and fast components; separating these components is by manual and subjective approaches. In our study, we tested the applicability of automated streamflow recession extraction procedures for a karst spring. Results showed that, by simple modification, streamflow extraction methods can identify slow and fast components: derived recession parameters are within reasonable ranges.