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Abstract. Analysis of karst spring recession hydrographs
is essential for determining hydraulic parameters, geomet-
ric characteristics, and transfer mechanisms that describe the
dynamic nature of karst aquifer systems. The extraction and
separation of different fast- and slow-flow components con-
stituting a karst spring recession hydrograph typically in-
volve manual and subjective procedures. This subjectivity
introduces a bias that exists, while manual procedures can
introduce errors into the derived parameters representing the
system. To provide an alternative recession extraction proce-
dure that is automated, fully objective, and easy to apply, we
modified traditional streamflow extraction methods to iden-
tify components relevant for karst spring recession analysis.
Mangin’s karst-specific recession analysis model was fitted
to individual extracted recession segments to determine ma-
trix and conduit recession parameters. We introduced differ-
ent parameter optimization approaches into Mangin’s model
to increase the degree of freedom, thereby allowing for
more parameter interaction. The modified recession extrac-
tion and parameter optimization approaches were tested on
three karst springs under different climate conditions. Our
results showed that the modified extraction methods are ca-
pable of distinguishing different recession components and
derived parameters that reasonably represent the analyzed
karst systems. We recorded an average Kling–Gupta effi-
ciency KGE> 0.85 among all recession events simulated by
the recession parameters derived from all combinations of
recession extraction methods and parameter optimization ap-
proaches. While there are variabilities among parameters es-
timated by different combinations of extraction methods, op-
timization approaches, and seasons, we found much higher

variability among individual recession events. We provided
suggestions to reduce the uncertainty among individual re-
cession events and raised questions about how to improve
confidence in the system’s attributes derived from recession
parameters.

1 Introduction

Groundwater from karst aquifers forms essential water
sources globally (Stevanović, 2018; Goldscheider et al.,
2020). Karst aquifers are characterized by a high degree of
heterogeneity and complex flow dynamics resulting from the
interplay of conduit and matrix drainage systems (Kiraly,
2003; Goldscheider and Drew, 2007). Groundwater flow is
rapid in the highly conductive conduit system, whereas it
is several orders of magnitude slower in the less conduc-
tive matrix system (Goldscheider, 2015). While both sys-
tems have significant storage capacities, the groundwater res-
idence time is longer in the matrix than in the conduit sys-
tem (Kovács et al., 2005). Several methods including detailed
site-specific speleological investigation (Ford and Williams,
2007), tracer tests (Goldscheider and Drew, 2007; Goldschei-
der and Neukum, 2010), hydrograph analysis (Fiorillo, 2014;
Kovács et al., 2005), and model ensembles (Fandel et al.,
2021) are used to characterize groundwater flow dynamics in
karst systems. Aside from hydrograph analysis, which usu-
ally requires only spring discharge time series data, other
methods are either expensive to apply, time-consuming or re-
quire more input. This, therefore, makes time series analysis
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a commonly applied method for karst aquifer flow analysis
and modeling (Ford and Williams, 2007).

Quantitative time series analysis provides lumped at-
tributes of the karst aquifer system that are rather difficult to
directly measure (Kovács et al., 2005). Karst spring recession
analysis still remains a vital quantitative time series analysis
tool for estimating aquifer parameters and geometric prop-
erties (Fiorillo, 2011). Discharge from karst springs reflects
the complex interplay of conduit and matrix systems and pro-
vides insight into the characteristics of the aquifer which sus-
tains the spring (Fiorillo, 2014; Kovács et al., 2005). This
also provides essential information for flow prediction as the
shape of the spring hydrograph reflects variable aquifer re-
sponses to different recharge pathways (Ford and Williams,
2007). Since the shape of the spring hydrograph describes
in an integrated manner how different aquifer storages and
processes control the spring flow (Jeannin and Sauter, 1998;
WMO, 2008), analyzing individual recession limbs of spring
hydrograph offers an extensive understanding of the struc-
tural, storage, and behavioral dynamics of the karst system’s
drainage (Bonacci, 1993).

Numerous studies have employed recession analyses of a
karst spring hydrograph to characterize karst aquifers, eval-
uate aquifer properties, manage groundwater resources, pre-
dict low flow and estimate baseflow parameters (Padilla et al.,
1994; Kovács et al., 2005; Fiorillo, 2014; Dewandel et al.,
2003). Derived or estimated recession coefficients are also
important parameters in karst models for simulating rainfall
discharge (Mazzilli et al., 2019; Fleury et al., 2007) and other
process-based modeling (Hartmann et al., 2013, 2014). Un-
like porous media, karst systems cannot be represented by
one single storage–discharge function (Ford and Williams,
2007). They comprise multiple subsystems of interconnected
conduit and matrix reservoirs, each with its own storage–
discharge characteristics (Jeannin and Sauter, 1998). Reces-
sion analysis models specifically developed for karst spring
analysis are usually comprised of two (Mangin, 1975) or
more (Fiorillo, 2011; Xu et al., 2018) independent storage–
discharge transfer functions to describe drainage characteris-
tics of different reservoirs and simulate recession flows. De-
wandel et al. (2003) provide a general overview and main
characteristics of commonly used recession models and those
specifically applied to karst systems.

Even though recession analysis of spring hydrographs
is cheaper in terms of resources required to explore the
flow dynamics and geometry of the karst aquifer sys-
tem, a major challenge in its application is the separa-
tion of the slow-flow (matrix-dominated) and quick-flow
(conduit-dominated) components. The most commonly used
karst spring hydrograph separation technique is the semi-
logarithmic plot that usually reveals two or more segments.
At least one of these segments, typically the last, repre-
sents linear reservoir drainage and is attributed to the slow-
flow (matrix) component (Bonacci, 1993; Ford and Williams,
2007). The other segment represents the quick-flow (conduit)

component – at times, a third segment representing the mixed
component is also identified. However, this approach is visu-
ally supervised and subjectively applied, thereby resulting in
imprecise and inconsistent estimations. The amount of time
required for the visual supervision exercise also makes it im-
practical to apply this approach to a large number of hydro-
graphs or multiple recession curves, especially if individual
recession segment analysis is to be considered for parameter
estimation.

However, in other fields of hydrology, there are a handful
of automated recession extraction methods that have been
developed for extracting streamflow recessions (Arciniega-
Esparza et al., 2017). These traditional extraction methods
aimed to explicitly identify baseflow recession periods by
using different statistical indices to detect less variable flow
conditions. During baseflow, streamflow is essentially sup-
ported by groundwater storage which provides a less vari-
able flow condition. Contributions from runoff and other un-
regulated sources that produce highly variable flow during
quick-flow recession are discarded by these extraction rou-
tines (Vogel and Kroll, 1996; Brutsaert, 2008). Although
these methods were developed to extract baseflow recession
from stream hydrographs, there is the possibility of adapt-
ing them for extracting matrix and conduit flow recessions of
karst springs. In addition to identifying the slow-flow reces-
sion component, such adaptation will focus on recognizing
the quick-flow component instead of discarding it. However,
as these methods are based on different statistical indices for
identifying the baseflow regime, they perform differently and
produce differing recession parameters (Santos et al., 2019;
Stoelzle et al., 2013). Therefore, while attempting to modify
these routines, it is also important to explore and compare the
differences in the estimated recession parameters that would
result from adapting these commonly used traditional reces-
sion extraction methods.

Following the extraction of recession events, the estima-
tion of recession parameters is done either by analyzing the
individual recession segment (IRS) or constructing a master
recession curve (MRC) from all events. The MRC approach
is commonly used in karst hydrology studies to estimate
spring recession parameters, though this approach is also
considered to be very biased toward long recession events
(Jachens et al., 2020). Also, the single parameters’ value de-
rived from this approach does not represent the actual dy-
namic nature and implicit heterogeneity of karst systems.
However, parameters derived from IRS analysis better de-
scribe the range of the aquifer system dynamics as well as
understanding the seasonal controls on recession behavior
(WMO, 2008). While seasonal control on recession has been
widely studied in porous media, studies assessing seasonal
effects on karst spring recession are still rare. An advantage
of the modified extraction methods presented in this study
is that it allowed us to employ the IRS analysis for parame-
ter estimation as well as project the analysis along seasonal
dimensions.
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Hence, this study aims to develop and test a robust and ob-
jective method for extracting karst spring recession compo-
nents as well as determining the parameters associated with
the different components of karst drainage systems. There-
fore, in this study, we develop an automated karst recession
extraction method that can identify matrix and conduit com-
ponents of the karst spring recession hydrograph by modify-
ing the traditional streamflow recession extraction routines.
We then estimate conduit and matrix recession parameters of
the IRS by using the combination of different modified re-
cession extraction methods and parameter optimization ap-
proaches of the karst recession model. We explore the effect
of seasonal influences on the karst conduit and matrix reces-
sion parameters as well as the aquifer system classification.
Finally, the performances of the different combinations of
modified extraction methods and karst recession model pa-
rameter optimization approaches were evaluated.

2 Data and methods

To develop an automatic karst-specific recession extraction
and analysis procedure that is objective and applicable to
large hydrograph samples, we first explored the applicabil-
ity of traditional recession extraction procedures originally
developed for non-karst streamflow recessions (Vogel and
Kroll, 1992; Brutsaert, 2008; Aksoy and Wittenberg, 2011).
Then we analyzed karst recession parameters using a two-
reservoir parallel drainage recession model (Mangin, 1975).
In the following subsections, the recession extraction and
analysis model, parameter optimization approaches, as well
as the various adaptations and modifications implemented
are described. For consistency, we used the terms “quick
flow” for the turbulent flow from highly conductive karst
drainage pathways (synonymous with conduit and storm
flow) and “slow flow” for the laminar flow contribution from
less conductive fissures and pores (synonymous with matrix,
diffuse, and base flow) (Atkinson, 1977; Larson and Mylroie,
2018).

2.1 Adapting streamflow methods to extract matrix
and conduit recession components

Three streamflow recession extraction methods (Vogel and
Kroll, 1992; Brutsaert, 2008; Aksoy and Wittenberg, 2011),
herein called recession extraction methods (REMs), were
adapted to extract matrix and conduit recession components
(Table 1). To develop an automated baseflow recession ex-
traction routine, Vogel and Kroll (1992) firstly smoothened
the stream hydrograph using a 3 d moving average. There-
after, the decreasing segments of the 3 d moving average are
selected as the recession hydrographs. Only segments with
10 or more consecutive days are recognized as recession can-
didates. To exclude surface and storm runoff influence at the
beginning of the recession, the first 30 % data points of each

recession segment are deleted. Additionally, the difference
between two consecutive streamflow values must be ≤ 30 %
for the pairs to be accepted. All recession segments that sat-
isfied these conditions are then accepted as slow-flow reces-
sion segments.

To objectively determine a streamflow recession that is de-
rived purely from a dry or low-flow period, Brutsaert (2008)
introduced a stricter recession extraction method. For stream-
flow Q, during time t , the Brutsaert method eliminates data
points with increasing or 0 values of dQ/dt as well as points
with abrupt dQ/dt values. To exclude data points that might
be influenced by storm runoff, three data points after a pos-
itive or 0 dQ/dt are removed – in major events, an addi-
tional fourth data point is removed. While Brutsaert (2008)
did not provide a description of a major event, Stoelzle et
al. (2013) applied the Brutsaert method in their study and de-
fined the major events as streamflow values exceeding 30 %
frequency. Therefore, we used this definition of a major event
from Stoelzle et al. (2013) in this study. Furthermore, the
Brutsaert method also excludes the last two data points be-
fore a positive or 0 dQ/dt and spurious data points with
larger −dQ/dt values.

Aksoy and Wittenberg (2011) extracted the baseflow com-
ponent from the daily streamflow hydrograph during reces-
sion by comparing the coefficient of variation (CV) of the
recession segment. All days with a decreasing or equal ob-
served flow rate are considered part of the recession curve.
Subsequently, a nonlinear reservoir model (Eq. 1) is iter-
atively fitted to the recession curve until the CV is ≤ 0.1.
The CV is defined as the ratio of standard deviation between
observed flow-rate measurements (Q) and calculated flow
rate (Qcalc) to the mean of the observed flow rates as ex-
pressed by Eq. (2). A segment of the recession curve with
CV≤ 0.1 is selected as the real baseflow recession; other-
wise, the segment is excluded. Only recession curves with 5 d
periods or longer are considered. If the number of days be-
comes less than 5 during iterative curve fitting and CV≤ 0.1
is not achieved, such a recession event is discarded (Aksoy
and Wittenberg, 2011). To ensure consistency between the
extraction method and the Mangin recession model used in
this study (see Sect. 2.2), the value of b in Eq. (1) is set to 1,
thereby making it a linear model.

Qt =Q0

[
1+

(1− b)Q1−b
0

ab

] 1
b−1

(1)

CV=

√
n2

n− 1

∑
(Q−Qcalc)

2∑
(Q)2

(2)

The three recession extraction approaches (Vogel and Kroll,
1992; Brutsaert, 2008; Aksoy and Wittenberg, 2011) were
specifically developed to extract streamflow recessions that
are mainly from slow-flow contributions. The rules and ex-
clusion criteria specified by each method are aimed at elimi-
nating the quick-flow influences from the extracted recession
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Table 1. Criteria for recession extraction methods (REMs).

Recession General Filter Slow-flow Adaptation for
extraction criteria selection quick-flow
method selection

Vogel Decreasing 3 d First 30 % of days Qt ≥ 0.7Qt−1 First 30 % of days,
moving day average Qt < 0.7Qt−1

Brutsaert dQ
dt < 0 First 3–4, dQt/dt < dQ(t−1)/dt First 3 or 4 d

and last 2 d dQt/dt > dQ(t−1)/dt

Aksoy dQ
dt ≤ 0 – CV≤ 0.10 CV> 0.10

segments. In karst systems, concentrated rapid flow through
the conduit networks constitutes the quick flow, while the
contribution from slow-velocity drains through the matrix
pores constitutes the slow flow. The quick and slow flows
represent flows from two different drainage structures, and
both contribute to the karst spring recession (Fiorillo, 2014;
Ford and Williams, 2007; Padilla et al., 1994).

Adapting the streamflow methods for karst spring reces-
sion analysis means considering both the slow- and quick-
flow components to model matrix and conduit spring dis-
charges. So, to adapt the traditional REMs, we (i) extracted
the spring flow recession curve based on the specific method
approach, (ii) attributed the part of the recession curve that
satisfied the specified method’s exclusion criteria as a slow-
flow (matrix) component, and (iii) assigned the remaining
part that is excluded as the quick-flow (conduit) component.
Table 1 provides an overview of the rule-based baseflow re-
cession extraction methods and changes made in adapting
them to include the quick-flow component of recession.

2.2 Karst spring recession analysis

2.2.1 Mangin model

After extraction, we applied Mangin’s (1975) recession anal-
ysis model which has been widely used for estimating
drainage characteristics and aquifer dynamics in fractured
non-homogeneous media (Schuler et al., 2020; Sivelle and
Jourde, 2021; Fleury et al., 2007; Liu et al., 2010; Xu et
al., 2018). To analyze the extracted recessions, we used
this method which considers a two-component recession
curve by distinguishing between quick-flow (mostly through
karstic conduits) and slow-flow (mostly through the fissure
matrix of the carbonate rock) recessions (Fig. 1). Mangin
presented two equations: Eq. (3) describes the linear storage–
discharge relationship from the saturated zone during slow-
flow conditions represented by the Maillet (1905) equation.

φt =Qr0e
−αt , (3)

whereQr0 is the baseflow contribution at the beginning of re-
cession when t = 0, α is the recession coefficient with a unit
of T−1, t is the lapsed time between discharge at any time t ,

Qt and initial discharge at t = 0, Q0, and Eq. (4) describes
the nonlinear relationship during quick-flow recession from
the unsaturated zone.

9t = q0
1− ηt
1+ εt

, (4)

where q0 is the difference between Q0 and Qr0 , and param-
eter η describes the infiltration rate through the unsaturated
zone. The parameter is defined as 1/ti for the duration of
quick-flow recession between t = 0 and ti = 1/η. ε in T−1

describes the regulating capacity of the unsaturated zone dur-
ing infiltration and characterizes the importance of concavity
of quick-flow recession (Padilla et al., 1994). The algebraic
sum of Eqs. (3) and (4) gives Eq. (5), which defines the dis-
charge at time t during the recession period.

Qt = φt +9t (5)

Since ti is the point of intersection of the slow-flow and
quick-flow components of the recession curve and infiltra-
tion stopped when t > ti (t > 1/η), the quick-flow compo-
nent ψt in Eq. (5) is essentially assumed to be 0 at that point
(ψt = 0) (Civita and Civita, 2008; Ford and Williams, 2007).
Therefore, the application of Mangin’s model requires firstly
fitting the slow-flow component φt to the slow-flow segment
of the recession curve using Eq. (3) to determine the reces-
sion coefficient α. Afterward, Eq. (5) was fitted to determine
the η and ε parameters of the quick-flow segment. However,
the accuracies of Qr0 , ti , and the linear representativeness of
the slow-flow component of the recession curve are critical
for the reliable estimation of recession coefficients (Ford and
Williams, 2007).

2.2.2 Mangin classification framework

Following the estimation of recession parameters α, η, and
ε using Eqs. (3)–(5) above, Mangin proposed a classification
scheme for karst systems based on two additional parame-
ters: (1) aquifer regulation capacity, K , and (2) infiltration
delay, i. To determine K , the dynamic volume, Vdyn, which
is defined as the volume of water stored in the phreatic zone
at the peak discharge time t0, is calculated using Eq. (6).
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Figure 1. An illustration of the karst spring recession curve show-
ing separation into linear and nonlinear components by the reces-
sion extraction method and fitting appropriate components of the
recession analysis model.

The average volume of water, Vann, discharged through the
spring’s outlet over 1 hydrological year is also calculated.
The regulation capacity K is therefore given by the ratio
of Vdyn and Vann as expressed with Eq. (7). This parame-
ter represents the extent of the phreatic zone and its ability
to regulate groundwater release from storage. While porous
aquifers can have values of K > 0.5, a typical karst system
is expected to have K < 0.5 (Marsaud, 1996; Dubois et al.,
2020).

Vdyn =
Qr0

α
(6)

K =
Vdyn

Vann
(7)

The infiltration delay, i, represents the retardation between
infiltration through the unsaturated zone and the spring’s out-
let. It is calculated as the value of the quick-flow component
on the second day (t = 2) of recession (Eq. 8). The value of i
ranges between 0 and 1, where a system characterized by fast
infiltration would have a value close to 0 and a slow infiltrat-
ing system tends towards 1.

i =
1− η · 2
1+ ε · 2

(8)

With the parameters K and i, five classes of karst systems
are defined (see also Fig. A1): (1) a well-developed system,
(2) a well-developed speleological network with large down-
stream flood plains, (3) upstream karstification with retarded
infiltration, (4) a complex system, and (5) a poorly devel-
oped system. Ford and Williams (2007) provided a detailed
review of karst aquifer recession analysis and application of
the Mangin model.

2.3 Estimation of recession parameters

For this study, the parameters were estimated for individ-
ual, automatically extracted recession events. That way, we
captured the variability of spring discharge across individ-
ual recharge events (Jachens et al., 2020). To assess the ef-
fects of seasonal variation on the karst spring recession pa-
rameters, we separated the extracted events into summer and
winter events. For simplicity, events that occurred between
April and September of the hydrological year are considered
summer events, while those from October to March are rec-
ognized as winter events. As mentioned in Sect. 2.2, in the
standard Mangin approach, the slow-flow component of the
recession curve (Eq. 3) is fitted at first to determine α. Also,
the η parameter of the quick-flow component (Eq. 4), which
is equivalent to 1/ti , is predetermined, meaning that quick
flow abruptly ends at ti days, which cannot be considered
optimal. Hence, reliable determination of ti through the ex-
traction routines (REMs) is vital for the estimation of the re-
cession parameters. These standard procedures involved with
the application of Mangin’s model resulted in less degree of
freedom for parameter interaction and an unrealistic abrupt
ending of quick flow after ti days. To increase the degree
of freedom and assess the importance of ti and the effect
of a priori estimated η(1/ti) on Mangin’s recession model,
we introduced three optimization approaches, which are re-
ferred to as parameter optimization approaches (POAs) in
this study.

– M1: this follows the standard approach for applying the
Mangin model as described by Padilla et al. (1994) and
Ford and Williams (2007). The slow-flow component
of the recession curve is fitted first with Eq. (3) for
ti ≤ t ≤ tn to determine the α value, while the quick-
flow component is assumed to be 0 during this period.
Afterwards, the second parameter ε is optimized by fit-
ting the quick-flow component with Eq. (5) using the
REM-predefined values of the η parameter (η = 1/ti)
for the event duration between t0 ≤ t < ti .

– M2: the conventional approach for fitting the Mangin
model (M1) does not provide for an independent or flex-
ible estimation of η. The prior definition of η as 1/ti re-
lies on the accuracy of the extraction method to detect
the point of inflexion ti . This however does not give the
flexibility to optimize η to a value that can provide a
better fit for the model. To provide for a more flexible
estimation of η, the α parameter is determined as in M1,
and then Eq. (5) is fitted to the complete segment of the
recession curve for t0 ≤ t ≤ tn to determine the best val-
ues of the ε and η parameters.

– M3: this is a very flexible approach that allows for α,
ε, η, and Qr0 values to be fitted numerically. The de-
termination of ti and Qr0 does not depend on the ex-
traction method; rather, the best fit for the parame-
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Table 2. Optimized recession parameters for the three different parameters of the optimization approaches (POAs) of the Mangin recession
analysis model.

Optimization Optimized Condition Slow-flow Quick-flow Degree of
approach parameters component component freedom

M1 α, ε η = 1/ti ti ≤ t ≤ tn t0 ≤ t ≤ ti Less flexible
M2 α, ε, η η 6= 1/ti ti ≤ t ≤ tn t0 ≤ t ≤ tn Intermediate
M3 α, ε, η, Qr0 η 6= 1/ti t0 ≤ t ≤ tn t0 ≤ t ≤ tn Very flexible

ters is obtained from the optimization process. The
Mangin model (Eq. 5) is fitted to the entire recession
curve, which allowed for absolute flexibility of ti and
robust parameter interaction during optimization. With
the model-calibrated ti(1/η), separating the quick- and
slow-flow segments now entirely relies on the optimiza-
tion exercise rather than extraction techniques.

For the optimization exercise, a nonlinear least squares pro-
cedure with spring discharge records was used. To avoid hav-
ing a negative value of conduit drainage contribution when
the optimized ti(1/η) is greater than the elapsing t value,
the quick-flow component, ψt (Eq. 4), was constrained to
a minimum value of 0. Table 2 provides a summary of the
different optimization approaches, parameters that were op-
timized, as well as the duration of the optimized correspond-
ing flow component.

2.4 Comparison and evaluation of REMs and POAs

The three REMs (Vogel, Brutsaert, and Aksoy) were com-
bined with the three POAs (M1, M2, and M3) of the re-
cession model to derive slow- and quick-flow recession pa-
rameters of selected karst springs for a total of nine pos-
sible methods. The recession parameters were derived sep-
arately for both summer and winter recession events. The
overall performance of the different REM and POA com-
binations was determined by calculating the goodness of fit
between observed spring recession discharges and ones sim-
ulated with the derived parameters using Kling–Gupta effi-
ciency (KGE) measures (Gupta et al., 2009). We used KGE
because it considers the common model error types – the
mean error, variability, and dynamics. The mean and in-
terquartile ranges of the derived parameters were compared
among different method pairs and seasons. The estimated re-
cession parameters were used to identify the dynamics of the
systems according to Mangin’s karst system classification
described in Sect. 2.2.2. The Mangin classification scheme
describes the aquifer drainage characteristics, conduit devel-
opment, and speleological network (El-Hakim and Bakalow-
icz, 2007; Mangin, 1975). Therefore, this was used to evalu-
ate the representativeness of recession parameters estimated
for the selected karst spring aquifer systems.

3 Test springs and data

The REMs and POAs were tested using three karst springs,
Lehnbachquellen, Saivu, and Qachquoch, located in Austria,
Switzerland, and Lebanon, respectively (Fig. 2). The selec-
tion of these springs is based on the geographical spread,
which covers different climate and hydrological settings,
availability of the discharge hydrograph at high resolution,
as well as literature references to the hydrological character-
ization of aquifer systems drained by the spring. Daily and
sub-daily spring discharge time series of the selected springs
were obtained from the WoKaS database (Olarinoye et al.,
2020). Important characteristics of the spring hydrographs
as well as the catchments in which they are located are pre-
sented in Table 3. The springs are located in catchments
distinguished by different climate conditions according to
the Köppen–Gieger classification (Beck et al., 2018). Lehn-
bachquellen is located in a snow-dominated, Saivu in a hu-
mid, and Qachquoch in a Mediterranean catchment. It should
be noted that, in a snow catchment, recession behavior will
be externally influenced by snow storage. However, we have
included a snow-dominated catchment in this study to assess
the impact of this external influence. The spring discharge
time series was measured at a uniform time step for each
spring and spanned between 3 and 13 years. All discharge
time series were aggregated to daily temporal resolution, and
missing data values which were only found (< 0.01 %) in
Lehnbachquellen spring discharge data were excluded.

4 Results

4.1 Extracted recessions and performances of POAs

The adapted recession extraction methods adequately iden-
tified karst spring conduit and matrix flow components. The
parameters obtained with the different REM–POA pairs also
produced satisfactory simulations of recession events. Only
complete recession events≥ 7 d were considered for analy-
sis. Here, complete recession referred to events that featured
both conduit and matrix components. For each spring hydro-
graph, a different number of recession events were identi-
fied by the REMs. As shown in Table 4, the Vogel method
captured the highest number of recession events across all
springs, followed by Brutsaert (except for Lehnbachquellen
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Figure 2. Map showing locations of the three test springs obtained from the WoKaS database and different Köppen–Geiger hydroclimatic
classes.

Table 3. Summary of test spring site properties and characteristics of spring discharge hydrographs.

Properties Lehnbachquellen Saivu Qachquoch

Climate description Snow-dominated Humid Mediterranean
Spring elevation (m a.s.l.) 1293 371 65
Köppen–Geiger Cold and no dry season Cold and humid Mediterranean, hot summer
Temporal resolution Daily Hourly Sub-hourly
Length 1999–2012 1993–1995 2014–2018
Missing data < 0.01 % 0 0
Mean discharge (m3 s−1) 0.06 0.29 1.08
Mean precipitation (mm yr−1) 1396 1201 523

Table 4. Recession event period extracted by the REMs for the three spring discharge hydrographs.

REM Lehnbachquellen Saivu Qachquoch

Total Summer Winter Total Summer Winter Total Summer Winter
(%) (%) (%) (%) (%) (%)

Vogel 157 0.53 0.47 33 0.42 0.58 41 0.37 0.63
Brutseart 122 0.39 0.61 25 0.48 0.52 36 0.47 0.53
Aksoy 146 0.50 0.50 19 0.58 0.42 31 0.48 0.52

spring), with Aksoy showing the least ability to capture re-
cession periods from the observed spring discharges. How-
ever, the average length of the recession events varied among
the different REMs in no particular order (see Fig. A2).
Based on the number of recognizable recession events, the
REMs were defined as permissive (Vogel), less permissive
(Brutsaert), and restrictive (Aksoy).

Figure 3 shows how the parameters derived from the dif-
ferent REM and POA combinations performed in simulat-
ing recession events using the KGE measures. With the ex-
clusion of outliers, a high KGE value is achieved across all
combinations, ranging between 0.70 and 1.0. More than half

of all simulated events across the three springs produced a
KGE> 0.9 for all REM–POA pairs. However, the lowest per-
formance in all three springs is related to POAs combined
with the Vogel extraction method. While there was no vivid
observable pattern among the extraction methods (REMs)
and recession model performances, the POAs showed other-
wise. A clear systematic order for the KGE median is found
within the POAs: M1<M2<M3. This is more noticeable in
the humid and Mediterranean springs, except for the Vogel–
M2 combination in the humid spring, which is not in the sys-
tematic order.
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Figure 3. Boxplot of KGE measures between observed and simulated recession events based on parameters derived from the different REMs
and POAs. The boxplots represent the interquartile ranges of KGE with the median shown in white lines and outliers marked in colored
points.

4.2 Variability of recession parameters among the
different REMs and POAs and seasons

Figures 4 and 5, respectively, show the results of the op-
timized slow-flow and quick-flow recession parameters for
both the summer and winter periods. These parameter sets
are combinations of α, η, and ε that produced the best simula-
tion fit (i.e., the highest KGE value) with the different REM–
POA pairs. Recession curve fitting based on the individual
segment led to a large number of parameter combinations
with the nine possible REM–POA pairs. The modification of
REMs and POAs produced complex parameter interactions;
for simplification, we explored the results along dimensions:
(1) variability among the methods and (2) variability within
seasons.

The results from Fig. 4 show that REMs and POAs only
have marginal effects on the estimation of the recession co-
efficient, α, when compared to the seasonality effect. Also,
there are differences in how the REMs and POAs impacted
the estimated values of α among the three karst spring catch-
ments. Although the values of the mean, median, and in-
terquartile ranges of α estimated by all the REMs for the
snow-dominated catchment seem to be similar, slight differ-
ences can still be observed. The slow-flow recession param-
eters estimated by the permissive REM (Vogel) are within
slightly higher ranges. On the other hand, the estimation
of α in the humid and Mediterranean catchments seems to
be more impacted by the POAs. By increasing the degree of
freedom of the POAs, higher values of α are estimated, most
noticeably with the M3 parameter optimization approach.

While the impacts of methodological approaches (i.e.,
REMs and POAs) are marginal on the estimated values
of α, seasonal impacts on the values and variabilities of
the parameter are more evident. The Saivu and Qachquoch
springs in humid and Mediterranean catchments, respec-
tively, showed similar dynamics in terms of seasonal vari-
ability of α, while the Lehnbachquellen spring located in a
snow-dominated catchment showed a different seasonal dy-
namic. For the Lehnbachquellen spring, the values of the es-

Figure 4. Distribution and variability of the slow-flow recession
parameter, α, obtained by the combination of REM (Vogel, Brut-
saert, and Aksoy) and POA (M1, M2, and M3) for summer and
winter periods: (a) Lehnbachquellen spring in the snow-dominated
catchment, (b) Saivu spring located in the humid catchment, and
(c) Qachquoch spring in the Mediterranean catchment. The box-
plots represent the interquartile range, whisker lines correspond to
the most extreme parameter values, and outliers are marked as cir-
cles with corresponding box color.

timated α parameter are higher for summer recession events,
noticeably with the Vogel and Aksoy extraction techniques
(Fig. 4). During the summer period, estimated α values also
showed less variability with the Vogel and Brutsaert REMs,
while Aksoy gave more varied results for the same sea-
son. Meanwhile, an opposite situation is seen with the Saivu
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Figure 5. Distribution and variability of the quick-flow recession parameters, η and ε (y axis of ε in log scale), obtained by the combination
of REM (Vogel, Brutsaert, and Aksoy) and POA (M1, M2, and M3) for summer and winter periods: (a, d) Lehnbachquellen spring in the
snow-dominated catchment, (b, e) Saivu spring located in the humid catchment, and (c, f) Qachquoch spring in the Mediterranean catchment.
The boxplots represent the interquartile range, whisker lines correspond to the most extreme parameter values, and outliers are marked as
circles with corresponding box color.

and Qachquoch springs. The median values and interquartile
ranges of α are higher in winter for estimations done with the
Vogel and Brutsaert extraction methods. For these springs,
estimations associated with the Aksoy extraction method oc-
casionally gave slightly lower α values during winter and less
parameter variability. For all the spring systems, the seasonal
variability of α is more observable with analysis associated
with Vogel, which is the most permissive REM.

Both the recession analysis methodology (REMs and
POAs) as well as seasons have significant impacts on the
estimated values of the infiltration rate, η, and curve con-
cavity, ε, parameters. The most visible pattern from Fig. 5
is that the increasing degree of freedom during optimiza-
tion usually results in higher estimates (M3>M2>M1) and
larger variability of η. However, this pattern may slightly
vary among the different spring systems. The values of the
η parameter spanned 1 order of magnitude for REM and POA
combinations across all the spring locations. The springs in
the snow-dominated (Lehnbachquellen) and Mediterranean
(Qachquoch) catchments showed similar dynamics in terms
of a seasonal variation of η. The estimated median and mean
values of η are higher in winter for both springs. While pa-
rameter variability between seasons is relatively comparable
in the snow-dominated catchment, larger variability is seen
during winter in the Mediterranean catchment. In the humid

catchment, the spring (Saivu) showed an opposite seasonal
pattern, and summer events have higher η values as well as
larger variability.

The estimation of the curve concavity parameter, ε, also
reflected the influence of recession analysis methods and sea-
sonal variations. The values of ε extend over 3 orders of mag-
nitude across the three spring locations. In a differing pattern
from η, increasing the flexibility of the POA led to low and
more consistent ε values. We observed a decreasing order of
M1<M2<M3 in the estimated values of the ε parameter
for both the summer and winter periods, although combina-
tions of Brutsaert and Aksoy REMs with the most flexible
POA (M3) slightly contradicted this order at times, particu-
larly for the humid and Mediterranean springs. Although the
mean and median values showed slightly higher winter pa-
rameter estimations, the parameter ranges are similar for both
summer and winter periods in the snow-dominated catch-
ment. There is no consistent seasonal pattern in the dynam-
ics of ε estimated for the humid and Mediterranean springs.
However, an understated pattern is seen in higher (Saivu
spring – humid) or lower (Qachquoch spring – Mediter-
ranean) estimations of ε in summer, especially with the M1
parameterization approach.

In general, for the respective seasons, there is relatively
better consistency among REM–POA pairs in estimating
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both slow- and quick-flow recession parameters, as shown
by the results in Figs. 4 and 5. In fact, there is much higher
parameter variability among recession events than the differ-
ent REM–POA combinations and seasons.

4.3 Aquifer characterization

To evaluate the overall representativeness of estimated re-
cession parameters based on the modified REMs and dif-
ferent POAs for the selected karst spring systems, we deter-
mined the drainage properties of the spring’s aquifer using
the parameters derived from the individual recession event.
As described in Sect. 2.2.2, retardation between infiltration
and output defined by the infiltration delay parameter, i, and
aquifer regulation power, K , was calculated for individual
recession events. Figure 6 shows the mean aquifer classi-
fications as well as their standard deviations based on per-
event estimated K and i values. The values of K and i were
calculated for individual recession events with the recession
parameters derived from the nine REM–POA combinations.
As shown by the standard deviation bounds of the drainage
properties derived from individual recession segments in
Fig. 6, there is an overlap of calculated drainage proper-
ties and aquifer classes between the seasons. The method-
ological differences in the selected REM and POA resulted
in large variations in the calculated mean values of infiltra-
tion delay, i, among the springs. The estimated mean val-
ues i for the three spring systems used in this study cov-
ered similar ranges (0.20 to 0.65). With the exception of the
Lehnbachquellen spring, there was a good coherency in the
mean K values determined from all combinations of REM
and POA for each spring. In addition, the systems are more
distinguishable by their ability to store and regulate ground-
water outflow through the springs.

Among the three karst springs, only the Qachquoch spring
showed a clear impact of seasonality in the system’s clas-
sification. In summer, the estimated mean K values are <
0.1 years, which is unanimous among the REM–POA com-
binations, whereas mean K values up to 0.45 and standard
deviations of 1.75 years were estimated for the winter reces-
sions. This resulted in a system classification extending from
class I (well-developed system) to class IV (complex sys-
tem) in summer and a system characterized as predominately
class III (fairly karstified system) in winter. Groundwater has
a very short residence time in the Saivu spring system for
both the summer and winter periods. The mean regulation ca-
pacity of the system is< 0.1 years, although a slightly higher
value (ca. 0.15 years) was derived during the winter season.
Due to this low regulation power,K , of the Saivu spring sys-
tem, it was characterized predominately as class I in both the
summer and winter periods. Only a handful of method com-
binations placed the system in class III.

While the other two springs (Qachquoch and Saivu)
showed either clear or slight seasonal influence in the karst
system characterization, the Lehnbachquellen spring did not

Figure 6. Karst aquifer type classification based on mean values
of K and i calculated with recession parameters estimated by the
different combinations of REM and POA for both summer (full-
shaded color) and winter (light-shaded color) periods. Distributions
of the per-event mean K and i derived from all method combi-
nations for each spring are represented by colored symbols; areas
covered by unfilled boxes are the standard deviations.

show a systematic seasonal impact in its characterization.
Both the estimated mean infiltration delay i and regulation
power K showed a highly inconsistent pattern for the Lehn-
bachquellen spring. The mean K values ranged between
0.25 and 0.80 years, with standard deviation values> 3 years
for both summer and winter recession events. With these
high K values, the Lehnbachquellen system has the high-
est capacity to withhold groundwater among the three karst
springs used in this study. The wide dispersion of both K
and i made it impossible to confine the system to a specific
class. The Lehnbachquellen system therefore falls within
three classes: class II (a well-developed system with large
downstream flood plains), class III, and class V (a poorly de-
veloped system).

5 Discussion

5.1 Quality of extracted recessions

With the modification of the traditional REMs, we were
able to establish a completely objective approach to distin-
guish between slow- and quick-flow recession components.
Furthermore, POAs with more flexibility showed better im-
provement over the conventional parametrization procedure.
The REMs tested use different empirical approaches to scru-
tinize genuine baseflow records, and hence they have a differ-
ent level of tolerance. The ability of the extraction methods
to identify recession periods from hydrograph time series de-
pends on the level of their restrictiveness. The Vogel extrac-
tion method defined by a 3 d moving average to smoothen
the hydrograph and also allowing for a 30 % increase in
subsequent flow rates is more permissive than the Brutsaert
and Aksoy methods that strictly enforced dQ/dt < 0. Hence,

Hydrol. Earth Syst. Sci., 26, 5431–5447, 2022 https://doi.org/10.5194/hess-26-5431-2022



T. Olarinoye et al.: Karst spring recession and classification 5441

more recession events were extracted by the Vogel method.
A study by Stoelzle et al. (2013) also showed the Vogel pro-
cedure to be more permissive, as it was able to extract almost
50 % more events than Brutsaert. Although the main reces-
sion selection condition for the Brutsaert and Aksoy methods
is determined by decreasing dQ/dt , constraining real base-
flow recessions to discharge data points with less than 10 %
(CV≤ 0.1) deviations makes the Aksoy method more restric-
tive than the Brutsaert method.

Generally, all combinations of REM–POA performed ac-
ceptably well, and increasing restrictiveness of the extraction
method gave an improved model performance. Even though
restrictiveness led to better performance, this should not be a
basis for outright accepting a restrictive REM over a less re-
strictive one. For instance, standard removal of 3 or 4 d by the
Brutsaert method as a storm-flow-influenced period is spec-
ulative and could lead to an unrealistic estimation of conduit
flow duration, ti (ti = 1/η), yet it performed better than the
permissive Vogel method, although such a problem of un-
realistic ti estimation inherent in the Brutsaert method was
eliminated, and general improvement in model performances
was achieved by increasing parameter flexibility during op-
timization. Overall, the adapted REMs and the introduced
three POAs provided a range of results that adequately rep-
resented the karst systems. However, there are still aspects of
automated recession extraction that could benefit from fur-
ther improvement for their general application in karst hy-
drology. For instance, the heterogeneous nature of the karst
system results in a very dynamic spring discharge pattern;
by introducing more tolerance to the REMs to accommo-
date the usual karst spring discharge anomaly, a longer re-
cession event can be extracted. In addition, while all REM–
POA pairs are good from the model performance perspective,
it will be misleading to define the best pair of REM and POA
based on this without evaluating whether the estimated pa-
rameters are realistic.

5.2 Effects of recession analysis methods and
seasonality on extracted recession parameters

5.2.1 Effects of REM–POA combinations on extracted
recession parameters

Methodological choices of REM and POA combinations
have impacts on the estimated recession parameters. The ex-
tent to which the parameters are influenced by the meth-
ods largely varied between the slow- and quick-flow re-
cession parameters. There was relatively higher consistency
and better stability among all REM–POA pairs in estimat-
ing slow-flow recession parameters that describe the drainage
characteristics of the matrix block within the phreatic zone.
Depending on the catchment’s hydroclimatic settings, both
REMs and POAs proved to have marginal impacts on the es-
timation of the slow-flow recession parameters, though this
is slightly contrary to other studies that found that slow-flow

recession coefficients are majorly influenced by the extrac-
tion method used, while the parameterization approach only
has a marginal impact (e.g., Stoelzle et al., 2013; Santos et
al., 2019).

Although the combination of REM and POA affected the
estimation of conduit drainage characteristics, the effect of
the POA is more pronounced. Increasing the degree of pa-
rameter freedom during optimization with the different POA
formulations often resulted in a significant reduction in the
variability of the parameters. This was also accompanied by
either low or high estimation of conduit drainage param-
eters. The more flexible parameterization approaches (M2
and M3) generally led to higher infiltration rates through
the unsaturated zone. The infiltration rate is predetermined
(η = 1/ti) in the original parameterization procedure of Man-
gin’s model (M1), thereby restricting the fitting of the quick-
flow recession curve only to the optimization of parameter ε,
which regulates infiltration through the unsaturated zone.
The values of ε smaller than 0.01 have been reported as in-
dicating very slow infiltration, and values between 1 and 10
show a domination of fast infiltration (Ford and Williams,
2007; El-Hakim and Bakalowicz, 2007). To compensate for
the inflexibility due to the predetermined infiltration rate,
the regulation effect of the unsaturated zone was amplified,
which is evident in the higher and more varied values of ε es-
timated with the M1 parameterization procedure. By means
of excluding a fixed number of days (3–4) as the influenced
stage of recession, Brutsaert paired with M1 also led to sim-
ilar values of η estimated for all springs. This makes it an
unsuitable combination, especially with a long recession pe-
riod. In their study, Santos et al. (2019) found analysis with
the Brutsaert method to be more robust and appropriate for
short recession samples.

Despite the impacts of methodological choices on the
uncertainty of estimated recession parameters, variability
among events exceeded the variability among methods.
These high variabilities are attributed to different lengths of
extracted recession events, differences in karstic processes
such as recharge, infiltration, as well as conduit pathways
that are activated within the unsaturated and saturated zones
for each event. Even though karst systems are very heteroge-
neous and it is important to capture the impacts of the vari-
able karstic processes through the analysis of individual re-
cession segments, the high uncertainty among events makes
it difficult to define a set of representative recession parame-
ters.

Per-event recession analysis is very useful for better under-
standing the karst system dynamics compared to master re-
cession analysis, which is unable to depict the hydrodynamic
behavior of karst. However, the high uncertainty found with
this approach is still a challenge and a bit difficult to cope
with. We believe there are still possibilities for improvement
with this approach; for example, defining a systematic ap-
proach to quantify parameter uncertainties will help to in-
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crease the confidence of the individual recession segment
analysis.

5.2.2 Seasonal influences on recession parameters

The seasonal variability of the slow-flow recession parameter
is interconnected with the choice of REM. Among the three
different REMs used in this study, a clear seasonal variabil-
ity of α was more noticeable with Vogel, which is the most
permissive REM. However, the observed seasonal variabil-
ity diminished with increasing restrictiveness of the REM.
Also, the pattern of the seasonal variability of α was not the
same for all three catchments, and this emphasized the in-
fluence of climatic controls on karst aquifer drainage. For
instance, humid and dry regions are usually characterized by
long recession and perhaps a significant drop in the ground-
water table during summer. From the results presented in the
previous section, we identified lower values of α in summer
compared to winter. As the parameter α signifies the slope of
slow-flow recession, a higher value means a steeper slope and
faster emptying of the aquifer. The lower α values seen dur-
ing summer emphasized the drought resistance of the system
due to a decrease in the aquifer hydraulic head. Meanwhile,
the snow-dominated catchment showed an opposite behav-
ior, with higher values of α in summer. This occurred due
to the accumulation and melting of snow. The snow melting
process during the summer period would result in a higher
hydraulic head, while frozen ice packs in winter translate to a
lesser hydraulic gradient. As previously mentioned, a higher
hydraulic head would promote faster drainage of the aquifer,
resulting in higher values of the α parameter.

For quick-flow recession parameters, seasonal variability
is independent of the REM. The three springs showed dif-
ferent seasonal patterns which could be directly linked to
their hydroclimatic settings. Seasonal influence on quick-
flow recession parameters was not clearly seen in the snow-
dominated catchment. This could be attributed to the snow
melting process discussed above. Since snowmelt compen-
sates for hydrologic flow during warmer periods, there would
be a constant influx from the surface throughout the year, and
soil wetness conditions would not change significantly. This
explains the lack of any evident seasonal differences between
parameters η and ε estimated for the Lehnbachquellen spring
in the snow-dominated catchment. However, the Saivu spring
in the humid and Qachquoch spring in the Mediterranean
catchment showed clear seasonal influences. Estimated val-
ues of infiltration rates η for Saivu were higher in summer
(lower in winter) and lower in summer (higher in winter) for
the Qachquoch spring. This pattern is believed to be con-
trolled by the peculiarity of the different geographic and cli-
matic settings. In a humid catchment, higher temperatures in
summer would result in drier soil conditions, which would
consequently facilitate faster infiltration. However, for the
Mediterranean settings, soil conditions are dry due to rela-
tively warmer temperatures all year round. This makes pre-

cipitation a limiting factor, and with more precipitation in
winter, faster infiltration through the unsaturated zone would
occur.

5.3 How realistic are adapted REMs and POAs for
karst system analysis?

The karst system classification proposed by Mangin (1975)
is based on two parameters, K and i (see Sect. 2.2.2). These
two parameters were derived from the estimated recession
parameters (α, η, and ε), and thus the variability found in
the recession parameters is expected to be propagated to K
and i, although, if the derived mean values of K were con-
sidered, some level of coherency was found among all REM–
POA combinations and between the seasons. However, look-
ing at the estimated standard deviations, a large intra-event
and seasonal variation can be found. In a study by Grasso
and Jeannin (1994), the authors found regulation power, K ,
to be more stable for various years and events. These find-
ings did not agree with our analysis, the outcomes of which
showed a large variability amongK for different events, most
significantly in the snow-dominated catchment. Regulation
power is analogous to the memory effect, and the periodic
water release from external snow storage that is not captured
within the saturated zone in real time makesK fluctuate more
in the snow-dominated catchment. Considering the standard
deviations from the mean, in fact, the values of K exceeded
the maximum value of 1 originally proposed in the Man-
gin karst classification scheme. Mangin (1975) set a maxi-
mum value of 1 for K , with assumptions that real karst sys-
tems would not have a storage memory beyond 1 year. How-
ever, a karst system in a snow catchment could have K val-
ues greater than 1 due to snow accumulation and melting as
found in the Lehnbachquellen spring. Also, complex aquifer
systems, as in the case of the Qachquoch spring, could also
have higher K values.

Infiltration delay, i, is strongly dependent on recharge-type
contribution as well as catchment size (Jeannin and Sauter,
1998). Recharge is controlled by climatic input (rainfall)
which varies between seasons. However, the derived values
of i were hardly separated by season but were more varied
among individual recession events. The complex interplay
of REM and POA resulted in a compensation phenomenon
whereby the infiltration rate, η, was compensated by the re-
cession concavity parameter, ε. Since the infiltration delay is
defined by these parameters, it is difficult to explicitly infer
the specific effects of REM and POA on infiltration delay.

The northern Alps karst system where the Lehn-
bachquellen spring is located has been defined as a well-
karstified highly permeable unit interlayered with less per-
meable flysch formation (Chen et al., 2018; Goldschei-
der, 2005). Our analysis partly placed the karst system in
classes II and III, thereby showing some consistency with
literature evidence. Perrin et al. (2003) described the Saivu
spring system as a well-developed karstic network, and the
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majority of the method pairs used in this study placed this
spring in class I, therefore coherently agreeing with the au-
thors’ description. Taking into account the standard devia-
tions, the classification of the Qachquoch spring ranged be-
tween a medium and poorly karstified system. This is similar
to a recent study by Dubois et al. (2020) that categorized the
system as poorly karstified with a very large regulation ca-
pacity.

Given that the existing common karst spring recession
extraction method involves a visually supervised procedure
and subjectively determined duration of conduit infiltration,
an alternative faster, automated, and objective approach is
very useful. From our analysis, the resulting parameters of
extracted recession segments are within reasonable ranges,
and the derived systems’ classifications correspond to those
found in the literature. The good performance recorded be-
tween simulated and observed flow rates during recession
events attests to the potential transferability of traditional ex-
traction methods to karst systems. However, this good per-
formance does not necessarily translate to reliable parame-
ter estimates. It is therefore important to choose REM meth-
ods that give reasonable parameters, especially when paired
with a less flexible optimization approach. Furthermore, with
prior knowledge of the spring system, parameters ranges
can be reasonably constrained during optimization to achieve
more representative optimum parameters.

6 Conclusions

The application of karst spring hydrograph recession anal-
ysis is very broad, including estimation of storage capacity
(Fleury et al., 2007), describing discharge of the unsaturated
zone (Amit et al., 2002; Mudarra and Andreo, 2011), as well
as system classification (El-Hakim and Bakalowicz, 2007).
Most often manual recession extraction is used, and the high
subjectivity of the approach introduced bias to estimated pa-
rameters. For the first time in the literature, this study ex-
plored the applicability of automated traditional recession
extraction methods (REMs) originally developed for slow-
flow (baseflow) recession by adapting them to also identify
quick-flow recessions. We fitted individual extracted reces-
sion segments with Mangin’s recession model to determine
the conduit and matrix drainage recession characteristics. We
introduce new parameter optimization approaches (POAs)
different from the conventional procedure to increase the de-
gree of freedom of parameter interaction.

While we found that there were uncertainties in the esti-
mated recession parameters resulting from the methodologi-
cal choices (REM and POA combinations) and seasonal in-
fluences, the uncertainties among individual recession events
were much larger. The large variability among individual
events actually reflected the dynamic heterogeneous nature
of the karst system. The combination of this with REMs,
POAs, and seasons resulted in a more complex interplay and

only amplified the uncertainties. These uncertainties are ac-
tually useful for understanding the dynamic nature of the
karst system, but it is difficult to cope with and also needs to
be systematically quantified. To avoid these large uncertain-
ties, a master recession analysis approach has been a popular
alternative for karst spring hydrograph analysis. However, a
single recession parameter’s values derivable from the master
recession approach do not reflect the highly dynamic nature
of the karst system. The uncertainty of karst recession pa-
rameters derived from either the single or master recession
approach is presently not a discussion in karst hydrology.
Maybe such discussion needs to start to address the limita-
tions and difficulties encountered in this study. Herein, we
pose two major issues that need to be addressed as seen in
this study: (1) how can we do recession analysis more ob-
jectively with a single REM and separation technique that
accounts for all ranges and possible instances of slow and
quick flow, and (2) how can we incorporate a more robust pa-
rameter estimation and uncertainty quantification approach
into individual recession analyses? Answering these ques-
tions will help to expand confidence in the system’s drainage
characteristics that are derived from recession parameters.

Finally, this study has shown that there is a lot of potential
for extracting and separating karst spring recession compo-
nents by adapting the traditional REMs and introducing flex-
ible parameter optimization approaches. The adaptation of
the REMs in combination with the different parameter esti-
mation flexibility (POAs) provides a suite of automated tools
that can be used for karst recession study. This automated
multi-approach for parameter optimization is essential for
coping with the known biases of single and visually super-
vised recession analysis methods. Different REMs have their
specific advantages, and there is still room for improvement.
For example, other extraction methods can be tested and non-
linear reservoir models can also be considered for fitting the
matrix model.

Appendix A

Figure A1. The Mangin (1975) karst system classification scheme
based on K and i.
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Figure A2. Characteristics of extracted recession events by REMs for both winter and summer periods at the three study sites: (a) number
of identified complete recession events and (b) the average number of days when complete recession occurred.

Figure A3. Lehnbachquellen spring discharge hydrograph and ex-
tracted recession events recognized by the three REMs: (a) Vogel,
(b) Brutseart, and (c) Aksoy.

Figure A4. Saivu spring discharge hydrograph and extracted reces-
sion events recognized by the three REMs: (a) Vogel, (b) Brutseart,
and (c) Aksoy.
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Figure A5. Qachquoch spring discharge hydrograph and extracted
recession events recognized by the three REMs: (a) Vogel, (b) Brut-
seart, and (c) Aksoy.
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