Articles | Volume 26, issue 20
https://doi.org/10.5194/hess-26-5291-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-5291-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Attributing trend in naturalized streamflow to temporally explicit vegetation change and climate variation in the Yellow River basin of China
Zhihui Wang
Key Laboratory of Soil and Water Conservation on the Loess Plateau, Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, 450003, China
Henan Key Laboratory of Ecological Environment Protection and
Restoration of the Yellow River Basin, Yellow River Institute of Hydraulic Research, Zhengzhou, 45003, China
Key Laboratory of Water Cycle and Related Land Surface Processes,
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
Daoxi Wang
Key Laboratory of Soil and Water Conservation on the Loess Plateau, Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, 450003, China
Henan Key Laboratory of Ecological Environment Protection and
Restoration of the Yellow River Basin, Yellow River Institute of Hydraulic Research, Zhengzhou, 45003, China
Peiqing Xiao
Key Laboratory of Soil and Water Conservation on the Loess Plateau, Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, 450003, China
Runliang Xia
Henan Engineering Research Center of Smart Water Conservancy, Yellow River Institute of Hydraulic Research, Zhengzhou, 45003, China
Pengcheng Sun
Key Laboratory of Soil and Water Conservation on the Loess Plateau, Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, 450003, China
Feng Feng
Yellow River Conservancy Technical Institute, Kaifeng, 475004, China
Related authors
No articles found.
Yongyong Zhang, Yongqiang Zhang, Xiaoyan Zhai, Jun Xia, Qiuhong Tang, Wei Wang, Jian Wu, Xiaoyu Niu, and Bing Han
Hydrol. Earth Syst. Sci., 29, 3257–3275, https://doi.org/10.5194/hess-29-3257-2025, https://doi.org/10.5194/hess-29-3257-2025, 2025
Short summary
Short summary
It is challenging to investigate flood variabilities and their formation mechanisms from massive event samples. This study explores spatiotemporal variabilities of 1446 flood events using hierarchical and partitional clustering methods. Control mechanisms of meteorological and physio-geographical factors are explored for individual flood event classes using constrained rank analysis. This gives insights into comprehensive changes in flood events and aids in flood prediction and control.
Ying Li, Chenghao Wang, Qiuhong Tang, Shibo Yao, Bo Sun, Hui Peng, and Shangbin Xiao
Atmos. Chem. Phys., 24, 10741–10758, https://doi.org/10.5194/acp-24-10741-2024, https://doi.org/10.5194/acp-24-10741-2024, 2024
Short summary
Short summary
For moisture tracking over the Tibetan Plateau, we recommend using high-resolution forcing datasets, prioritizing temporal resolution over spatial resolution for WAM2layers, while for FLEXPART coupled with WaterSip, we suggest applying bias corrections to optimize the filtering of precipitation particles and adjust evaporation estimates.
Lei Huang, Yong Luo, Jing M. Chen, Qiuhong Tang, Tammo Steenhuis, Wei Cheng, and Wen Shi
Earth Syst. Sci. Data, 16, 3993–4019, https://doi.org/10.5194/essd-16-3993-2024, https://doi.org/10.5194/essd-16-3993-2024, 2024
Short summary
Short summary
Timely global terrestrial evapotranspiration (ET) data are crucial for water resource management and drought forecasting. This study introduces the VISEA algorithm, which integrates satellite data and shortwave radiation to provide daily 0.05° gridded near-real-time ET estimates. By employing a vegetation index–temperature method, this algorithm can estimate ET without requiring additional data. Evaluation results demonstrate VISEA's comparable accuracy with accelerated data availability.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Yubo Liu, Monica Garcia, Chi Zhang, and Qiuhong Tang
Hydrol. Earth Syst. Sci., 26, 1925–1936, https://doi.org/10.5194/hess-26-1925-2022, https://doi.org/10.5194/hess-26-1925-2022, 2022
Short summary
Short summary
Our findings indicate that the reduction in contribution to the Iberian Peninsula (IP) summer precipitation is mainly concentrated in the IP and its neighboring grids. Compared with 1980–1997, both local recycling and external moisture were reduced during 1998–2019. The reduction in local recycling in the IP closely links to the disappearance of the wet years and the decreasing contribution in the dry years.
Cited articles
Aerospace Information Research Institute and Chinese Academy of Sciences: Global Land-cover Product with Fine Classification System, Aerospace Information Research Institute and Chinese Academy of Sciences,
http://www.geodata.cn/, last access: 4 November 2021.
Bai, M., Mo, X., Liu, S., and Hu, S.: Contributions of climate change and
vegetation greening to evapotranspiration trend in a typical hilly-gully
basin on the Loess Plateau: China, Sci. Total Environ., 657, 325–339,
https://doi.org/10.1016/j.scitotenv.2018.11.360, 2018.
Bai, J., Yang, S., Zhang, Y., Liu, X., and Guan, Y.: Assessing the Impact of
Terraces and Vegetation on Runoff and Sediment Routing Using the Time-Area
Method in the Chinese Loess Plateau, Water, 11, 803, https://doi.org/10.3390/w11040803, 2019.
Bao, Z., Zhang, J., Wang, G., Chen, Q., Guan, T., Yan, X., Liu, G., Liu, J.,
and Wang, J.: The impact of climate variability and land use/cover change on
the water balance in the Middle Yellow River Basin, China, J. Hydrol., 577,
123942, https://doi.org/10.1016/j.jhydrol.2019.123942, 2019.
Beijing Normal Universtiy: Global Land Surface Satellite (GLASS) LAI Product (v5.0), Beijing Normal Universtiy, http://glass-product.bnu.edu.cn/, last access: 7 January 2020.
Buendia, C., Bussi, G., Tuset, J., Vericat, D., Sabater, S., Palau, A., and
Batalla, RJ.: Effects of afforestation on runoff and sediment load in an
upland Mediterranean catchment, Sci. Total Environ., 540, 144–157,
https://doi.org/10.1016/j.scitotenv.2015.07.005, 2015.
Cao, B., Yu, L., Naipal, V., Ciais, P., Li, W., Zhao, Y., Wei, W., Chen, D., Liu, Z., and Gong, P.: A 30 m terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine (Version 1), Zenodo [data set], https://doi.org/10.5281/zenodo.3895585, 2020.
Cao, B., Yu, L., Naipal, V., Ciais, P., Li, W., Zhao, Y., Zhang, T., Chen,
D., Liu, Z., and Gong, P.: A 30 m terrace mapping in China using Landsat 8
imagery and digital elevation model based on the Google Earth Engine, Earth
Syst. Sci. Data, 13, 2437–2456, https://doi.org/10.5194/essd-13-2437-2021, 2021.
Cao, S., Chen, L., Shankman, D., Wang, C., Wang, X., and Zhang, H.: Excessive reliance on afforestation in China's arid and semi-arid regions: lessons in ecological restoration, Earth Sci. Rev., 104, 240–245,
https://doi.org/10.1016/j.earscirev.2010.11.002, 2011.
Chang, J., Zhang, H., Wang, Y., and Zhu, Y.: Assessing the impact of climate variability and human activities on streamflow variation, Hydrol. Earth Syst. Sci., 20, 1547–1560, https://doi.org/10.5194/hess-20-1547-2016, 2016.
Chen, J., Jönssonc, P., Tamura, M., Gu, Z., Matsushita, B., and Eklundh,
L.: A simple method for reconstructing a high-quality NDVI time-series data
set based on the Savitzky-Golay filter, Remote Sens. Environ., 91, 332–344, https://doi.org/10.1016/j.rse.2004.03.014, 2004.
Chen, S., Fu,Y., Geng, X., Hao Z., Tang, J., Zhang, X., Xu, Z., and Hao, F.:
Influences of Shifted Vegetation Phenology on Runoff Across a Hydroclimatic
Gradient, Front. Plant Sci., 12, 802664, https://doi.org/10.3389/fpls.2021.802664, 2022.
Cheng, G. and Jin, H.: Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China, Hydrogeol. J., 21, 5–23,
https://doi.org/10.1007/s10040-012-0927-2, 2013.
China Meteorological Administration: Observed Daily Meteorological Dataset, China Meteorological Administration [data set], http://data.cma.cn/, last access: 10 October 2019.
Cuo, L., Zhang, Y., Gao, Y., Hao, Z., and Cairang, L.: The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River basin, China, J. Hydrol., 502, 37–52, https://doi.org/10.1016/j.jhydrol.2013.08.003, 2013.
Dan, L., Ji, J., Xie, Z., Chen, F., Wen, G., and Richey, J. E.: Hydrological
projections of climate change scenarios over the 3H region of China: A VIC
model assessment, J. Geophys. Res., 117, 148–227,
https://doi.org/10.1029/2011JD017131, 2012.
Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., Lü, Y., Zeng,
Y., Li, Y., Jiang, X., and Wu, B.: Revegetation in China's loess plateau is
approaching sustainable water resource limits, Nat. Clim. Change, 6,
1019–1022, https://doi.org/10.1038/nclimate3092, 2016.
Ford, T. W. and Quiring, S. M.: Influence of MODIS-derived dynamic vegetation on VIC-simulated soil moisture in Oklahoma, J. Hydrometeorol., 14, 1910–1921, https://doi.org/10.1175/JHM-D-13-037.1, 2013.
Fu, B.: On the calculation of the evaporation from land surface, Chinese J. Atmos. Sci., 5, 23–31, 1981.
Fu, G., Chen, S., Liu, C., and Shepard, D.: Hydro-climatic trends of the
Yellow River basin for the last 50 years, Climatic Change, 65, 149–178,
https://doi.org/10.1023/B:CLIM.0000037491.95395.bb, 2004.
Fu, S., Yang, Y., Liu, B., Liu, H., Liu, J., Liu, L., and Li, P.: Peak flow
rate response to vegetation and terraces under extreme rainstorms, Agric.
Ecosyst. Environ., 288, 106714, https://doi.org/10.1016/j.agee.2019.106714, 2020.
Fu, Y., Zhang, X., Piao, S., Hao, F., Geng, X., Vitasse, Y., and Janssens, I. A.: Daylength helps temperate deciduous trees to leaf-out at the optimal time, Global Change Biol., 25, 2410–2418, https://doi.org/10.1111/gcb.14633, 2019.
Gao, P., Mu, X.-M., Wang, F., and Li, R.: Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River, Hydrol. Earth Syst. Sci., 15, 1–10, https://doi.org/10.5194/hess-15-1-2011, 2011.
Geng, X., Zhou, X., Yin, G., Hao, F., Zhang, X., Hao, Z., and Fu, Y.: Extended growing season reduced river runoff in Luanhe River basin, J. Hydrol., 582, 124538, https://doi.org/10.1016/j.jhydrol.2019.124538, 2020.
Haddeland, I., Lettenmaier, D. P., and Skaugen, T.: Effects of irrigation on
the water and energy balances of the Colorado and Mekong river basins, J.
Hydrol., 324, 210–223, https://doi.org/10.1016/j.jhydrol.2005.09.028, 2006.
Hu, Y., Maskey, S., Uhlenbrook, S., and Zhao, H.: Streamflow trends and climate linkages in the source region of the Yellow River, China, Hydrol.
Process., 25, 3399–3411, https://doi.org/10.1002/hyp.8069, 2011.
Jia, X., Fu, B., Feng, X., Hou, G., Liu, Y., and Wang, X.: The trade-off and
synergy between ecosystem services in the Grain-for-Green areas in Northern
Shaanxi: China, Ecol. Indic., 43, 103–113, https://doi.org/10.1016/j.ecolind.2014.02.028, 2014.
Jin, H., He, R., Cheng, G., Wu, Q., Wang, S., Lü, L., and Chang, X.:
Changes in frozen ground in the Source Area of the Yellow River on the
Qinghai Tibet Plateau, China, their eco-environmental impacts, Environ. Res.
Lett., 4, 045206, https://doi.org/10.1088/1748-9326/4/4/045206, 2009.
Jin, H., Luo, D., Wang, S., Lü, L., and Wu, J.: Spatiotemporal variability of permafrost degradation on the Qinghai-Tibet Plateau, Sci. Cold Arid Reg., 3, 281–305, 2011.
Jin, Z., Guo, L., Yu, Y., Luo, D., Fan, F., and Chu, G.: Storm runoff
generation in headwater catchments on the Chinese Loess Plateau after long-term vegetation rehabilitation, Sci. Total Environ., 748, 141375,
https://doi.org/10.1016/j.scitotenv.2020.141375, 2020.
Joint Research Centre of the European Commission: Global Surface Water Dataset 1984–2020, Joint Research Centre of the European Commission [data set], https://global-surface-water.appspot.com/download, last access: 20 May 2021.
Li, C., Zhang, Y., Shen, Y., Kong, D., and Zhou, X.: LUCC-Driven Changes in
Gross Primary Production and Actual Evapotranspiration in Northern China, J.
Geophys. Res.-Atmos., 125, 2019JD031705, https://doi.org/10.1029/2019JD031705, 2020.
Li, L. and Schwartz, M. D.: Landscape phenology: an integrative approach to
seasonal vegetation dynamics, Lands. Ecol., 24, 465–472,
https://doi.org/10.1007/s10980-009-9328-x, 2009.
Liang, W., Bai, D., Wang, F., Fu, B., Yan, J., Wang, S., Yang Y., Long, D.,
and Feng, M.: Quantifying the impacts of climate change and ecological
restoration on streamflow changes based on a Budyko hydrological model in
China's loess plateau, Water Resour. Res., 51, 6500–6519,
https://doi.org/10.1002/2014WR016589, 2015.
Liang, X., Lettenmaie, D. P., Wood, E., and Burges, S. J.: A simple hydrologically based model of land surface water and energy fluxes for
general circulation models, J. Geophys. Res.-Atmos., 99, 14415–14428,
https://doi.org/10.1029/94JD00483, 1994.
Liang, X., Wood, E., and Lettenmaier, D. P.: Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification, Global Planet. Change, 13, 195–206, https://doi.org/10.1016/0921-8181(95)00046-1, 1996.
Liu, D., Chen, Y., Cai, W., Dong, W., Xiao, J., Chen, J., Zhang, H., Xia,
J., and Yuan, W.: The contribution of China's Grain to Green Program to carbon sequestration, Landsc. Ecol., 29, 1675–1688, https://doi.org/10.1007/s10980-014-0081-4, 2014.
Liu, M., Adam, J. C., Richey, A. S., Zhu, Z., and Myneni, R. B.: Factors
controlling changes in evapotranspiration, runoff, and soil moisture over
the conterminous U.S: Accounting for vegetation dynamics, J. Hydrol., 565,
123–137, https://doi.org/10.1016/j.jhydrol.2018.07.068, 2018.
Liu, X. and Gao, Y.: Sediment reduction effects of check dams in the Loess
Plateau, Yellow River Conservancy Press, Zhengzhou, China, ISBN 9787550928749, 2020.
Liu, X., Gao, Y., and Dang, S.: Evaluation of sediment changes of the Loess
Plateau, Yellow River Conservancy Press, Zhengzhou, China, ISBN 9787030675996, 2021.
Liu, Z. and Liu, Y.: Does Anthropogenic Land Use Change Play a Role in
Changes of Precipitation Frequency and Intensity over the Loess Plateau of
China?, Remote Sens., 10, 1818, https://doi.org/10.3390/rs10111818, 2018.
Lohmann, D., Raschke, E., Nijssen, B., and Lettenmaier, D. P.: Regional
scale hydrology: II. Application of the VIC-2L model to the Weser River:
Germany, Hydrolog. Sci. J., 43, 143–158, https://doi.org/10.1080/02626669809492108, 1998.
Long, D., Pan, Y., Zhou, J., Chen, Y., Hou, X., Hong, Y., Scanlon, B. R.,
and Longuevergne, L.: Global analysis of spatiotemporal variability in merged
total water storage changes using multiple GRACE products and global
hydrological models, Remote Sens. Environ., 192, 198–216,
https://doi.org/10.1016/j.rse.2017.02.011, 2017.
Luan, J., Zhang, Y., Tian, J., Meresa, H. K., and Liu, D.: Coal mining impacts on catchment runoff, J. Hydrol., 589, 125101, https://doi.org/10.1016/j.jhydrol.2020.125101, 2020.
Matheussen, B., Kirschbaum, R. L., Goodman, I. A., O'Donnell, G. M., and
Lettenmaier, D. P.: Effects of land cover change on streamflow in the
interior Columbia River Basin (USA and Canada), Hydrol. Process., 14,
867–885,
https://doi.org/10.1002/(SICI)1099-1085(20000415)14:5<867::AID-HYP975>3.0.CO;2-5, 2000.
Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier,D. P., and Nijssen, B.:
A long-term hydrologically based dataset of land surface fluxes and states
for the conterminous United States, J. Climate, 15, 3237–3251, https://doi.org/10.1175/JCLI-D-12-00508, 2002.
Menzel, A., Yuan, Y., Matiu, M., Sparks, T., Scheifinger, H., Gehrig, R.,
and Estrella, N.: Climate change fingerprints in recent European plant
phenology, Global Change Biol., 26, 2599–2612, https://doi.org/10.1111/gcb.15000, 2020.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R.
D., and Veith, T. L.: Model evaluation guidelines for systematic
quantification of accuracy in watershed simulations, T. ASABE, 50, 885–900, https://doi.org/10.13031/2013.23153, 2007.
Mu, X., Zhang, L., McVicar, T. R., Chille, B., and Gau, P.: Analysis of the
impact of conservation measures on stream flow regime in catchments of the
Loess Plateau, China, Hydrol. Process., 21, 2124–2134, https://doi.org/10.1002/hyp.6391, 2007.
National Tibetan Plateau Data Center: Siol map based Harmonized World Soil Database (v1.2), National Tibetan Plateau Data Center,
http://data.tpdc.ac.cn/en/, last access: 15 September 2019.
Nijssen, B., O'Donnell, G. M., Lettenmaier, D. P., Lohmann, D., and Wood, E.
F.: Predicting the discharge of global rivers, J. Climate, 14, 3307–3323,
https://doi.org/10.1175/1520-0442(2001)014<3307:PTDOGR>2.0.CO;2, 2001a.
Nijssen, B., Schnur, R., and Lettenmaier, D. P.: Global retrospective
estimation of soil moisture using the variable infiltration capacity land
surface model: 1980–1993, J. Climate, 14, 1790–1808, https://doi.org/10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2, 2001b.
Piao, S., Yin, G., Tan, J., Cheng, L., Huang, M., Li, Y., Liu, R., Mao, J.,
Myneni, R. B., Peng, S., Poulter, B., Shi, X., Xiao, Z., Zeng, N., and Zeng,
Z.: Detection and attribution of vegetation greening trend in China over the
last 30 years, Global Change Biol., 21, 1601–1609, https://doi.org/10.1111/gcb.12795, 2015.
Piao, S., Liu, Q., Chen, A., Janssens, I.. A., Fu, Y., Dai, J., Liu, L.,
Lian, X., Shen, M., and Zhu, X.: Plant phenology and global climate change:
current progresses and challenges, Global Change Biol., 25, 1922–1940,
https://doi.org/10.1111/gcb.14619, 2019.
Roderick, M. L. and Farquhar, G. D.: A simple framework for relating variations in runoff to variations in climatic conditions and catchment
properties, Water Resour. Res., 47, W00G07, https://doi.org/10.1029/2010WR009826, 2011.
Shao, R., Zhang, B., Su, T., Long, B., Cheng, L., Xue, Y., and Yang, W.:
Estimating the increase in regional evaporative water consumption as a
result of vegetation restoration over the loess plateau, J. Geophys. Res.-Atmos., 124, 11783–11802, https://doi.org/10.1029/2019JD031295, 2019.
Shi, X., Wood, A. W., and Lettenmaier, D. P.: How essential is hydrologic
model calibration to seasonal streamflow forecasting, J. Hydrometeorol., 9,
1350–1363, https://doi.org/10.1175/2008jhm1001.1, 2008.
Sun, W., Song, X., Mu, X., Gao, P., Wang, F., and Zhao, G.: Spatiotemporal
vegetation cover variations associated with climate change and ecological
restoration in the Loess Plateau, Agr. Forest Meteorol., 209–210, 87–99,
https://doi.org/10.1016/j.agrformet.2015.05.002, 2015.
Tang, Q.: Global change hydrology: Terrestrial water cycle and global change, Sci. China Earth. Sci., 63, 459–462, https://doi.org/10.1007/s11430-019-9559-9, 2020.
Tang, Q., Oki, T., Kanae, S., and Hu, H.: Hydrological cycles change in the
Yellow River basin during the last half of the twentieth century, J. Climate,
21, 1790–1806, https://doi.org/10.1175/2007JCLI1854.1, 2008.
Tang, Q., Vivoni, E. R., Muñoz-Arriola. F., and Lettenmaier, D. P.:
Predictability of Evapotranspiration Patterns Using Remotely Sensed Vegetation Dynamics during the North American Monsoon, J. Hydrometeorol., 13, 103–121, https://doi.org/10.1175/JHM-D-11-032.1, 2012.
Tang, Y., Tang, Q., Tian, F., Zhang, Z., and Liu, G.: Responses of natural
runoff to recent climatic variations in the Yellow River basin, China, Hydrol. Earth Syst. Sci., 17, 4471–4480, https://doi.org/10.5194/hess-17-4471-2013, 2013.
Tesemma, Z. K., Wei, Y., Peel, M. C., and Western, A.: The effect of
year-to-year variability of leaf area index on Variable Infiltration Capacity model performance and simulation of runoff, Adv. Water Resour., 83, 310–322, https://doi.org/10.1016/j.advwatres.2015.07.002, 2015.
Tian, Y., Li, F., and Liu, P.: Economic analysis of rainwater harvesting and
irrigation methods, with an example from China, Agr. Water Manage., 60, 217–226, https://doi.org/10.1016/S0378-3774(02)00171-3, 2003.
Todini, E.: The ARNO rainfall-runoff model, J. Hydrol., 175, 339–382,
https://doi.org/10.1016/S0022-1694(96)80016-3, 1996.
University of Washington Computational Hydrology Group: Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model (v4.1.2.a), University of Washington, https://vic.readthedocs.io/en/master/, last access: 14 December 2017.
Vivoni, E. R., Moreno, H. A., Mascaro, G., Rodriguez, G. C., Watts, C. J.,
Payan, J. G., and Russell, L. S.: Observed relation between evapotranspiration and soil moisture in the North American monsoon region,
Geophys. Res. Lett., 35, 2008GL036001, https://doi.org/10.1029/2008GL036001, 2008.
Wang, G., Zhang, J., Jin, J., Pagano, T. C., Calow, R., Bao, Z., Liu, C., Liu, Y., and Yan, X.: Assessing water resources in China using PRECIS
projections and a VIC model, Hydrol. Earth Syst. Sci., 16, 231–240,
https://doi.org/10.5194/hess-16-231-2012, 2012.
Wang, G., Zhang, J., and Yang, Q.: Attribution of runoff change for the Xinshui River catchment on the Loess Plateau of China in a changing environment, Water, 8, 267, https://doi.org/10.3390/w8060267, 2016.
Wang, G., Zhang, J., He, R., Liu, C., Ma, T., Bao, Z., and Liu, Y.: Runoff
sensitivity to climate change for hydro-climatically different catchments in
China, Stoch. Environ. Res. Risk A., 31, 1011–1021, https://doi.org/10.1007/s00477-016-1218-6, 2017.
Wang, Y., Shao, M., Zhu, Y., and Liu, Z.: Impacts of land use and plant
characteristics on dried soil layers in different climatic regions on the
Loess Plateau of China, Agr. Forest Meteorol., 151, 437–448,
https://doi.org/10.1016/j.agrformet.2010.11.016, 2011.
Wang, Y., Wang, S., Wang, C., and Zhao, W.: Runoff sensitivity increases
with land use/cover change contributing to runoff decline across the middle
reaches of the Yellow River basin, J. Hydrol., 600, 126536,
https://doi.org/10.1016/j.jhydrol.2021.126536, 2021.
Wang, Z., Yao W., Tang, Q., Liu, L., Xiao, P., Kong, X., Zhang, P., Shi, F.,
and Wang, Y.:Continuous Change Detection of Forest/Grassland and Cropland in
the Loess Plateau of China Using All Available Landsat Data, Remote Sens., 10, 1775, https://doi.org/10.3390/rs10111775, 2018.
Wang, Z., Cui, Z., He, T., Tang, Q., Xiao P., Zhang, P., and Wang, L.:
Attributing the Evapotranspiration Trend in the Upper and Middle Reaches of
Yellow River Basin Using Global Evapotranspiration Products, Remote Sens., 14, 175, https://doi.org/10.3390/rs14010175, 2022.
Wu, C., Hou, X., Peng, D., Alemu, G., and Xu, S.: Land surface phenology of
China's temperate ecosystems over 1999–2013: Spatial-temporal patterns,
interaction effects, covariation with climate and implications for productivity, Agr. Forest Meteorol., 216, 177–187, https://doi.org/10.1016/j.agrformet.2016.01.087, 2016.
Wu, J., Miao, C., Zhang, X., Yang, T., and Duan, Q.: Detecting the quantitative hydrological response to changes in climate and human activities, Sci. Total Environ., 586, 328–337, https://doi.org/10.1016/j.scitotenv.2017.02.010, 2017.
Wu, J., Wang, Z., Dong, Z., Tang, Q., Lv, X., and Dong, G.: Analysis of
Natural Streamflow Variation and Its Influential Factors on the Yellow River
from 1957 to 2010, Water, 10, 1155, https://doi.org/10.3390/w10091155, 2018.
Wu, Q. and Zhang, T.: Recent permafrost warming on the Qinghai-Tibetan
Plateau, J. Geophys. Res.-Atmos., 113, D13108, https://doi.org/10.1029/2007JD009539, 2008.
Wu, Z., Chen, S., De Boeck, H. J., Stenseth, N. C., Tang, J., Vitasse, Y.,
and Morellato, P.: Atmospheric brightening counteracts warming-induced
delays in autumn phenology of temperate trees in Europe, Global Ecol.
Biogeogr., 30, 2477–2487, https://doi.org/10.1111/geb.13404, 2012.
Xiao, Z., Liang, S., Wang, J., Chen, P. Yin, X., Zhang, L., and Song, J.:
Use of general regression neural networks for generating the GLASS leaf area
index product from time-series MODIS surface reflectance, IEEE T. Geosci. Remote, 52, 209–223, https://doi.org/10.1109/TGRS.2013.2237780, 2014.
Xie, H., Xie, Z., Yuan, Q., Duan, Q., Zheng, X., Liang, X., Chen, G., and
Guo, F.: Regional parameter estimation of the VIC land surface model:
methodology and application to river basins in China, J. Hydrometeorol., 8, 447–468, https://doi.org/10.1175/JHM568.1, 2007.
Xie, X., Liang, S., Yao, Y., Jia, K., Meng, S., and Li, J.: Detection and
attribution of changes in hydrological cycle over the Three-North region of
China: Climate change versus afforestation effect, Agr. Forest Meteorol., 203, 74–87, https://doi.org/10.1016/j.agrformet.2015.01.003, 2015
Xu, Z., Li, J., and Liu, C.: Long-term trend analysis for major climate
variables in the Yellow River Basin, Hydrol. Process., 21, 1935–1948,
https://doi.org/10.1002/hyp.6405, 2007.
Yang, S., Kang, T., Bu, J., Chen, J., and Gao, Y.: Evaluating the Impacts of
Climate Change and Vegetation Restoration on the Hydrological Cycle over the
Loess Plateau, China, Water, 11, 2241, https://doi.org/10.3390/w11112241, 2019.
Yang, W., Chen, H., Xu, C., Huo, R., Chen, J., and Guo, S.: Temporal and
spatial transferabilities of hydrological models under different climates
and underlying surface conditions, J. Hydrol., 591, 125276, https://doi.org/10.1002/hyp.6405, 2020.
Yao, W., Xu, J., and Ran, D.: Evaluation of water and sediment changes of
the Yellow River Basin, The Yellow River Water Conservancy Press, Zhenzhou,
Henan, ISBN 9787550901414, 2011.
Yao, Y., Xie, X., Meng, S., Zhu, B., Zhang, K., and Wang, Y.: Extended
Dependence of the Hydrological Regime on the Land Cover Change in the
Three-North Region of China: An Evaluation under Future Climate Conditions,
Remote Sens., 11, 81, https://doi.org/10.3390/rs11010081, 2019.
Yapo, P., Gupta, H. V., and Sorooshian, S.: Multiobjective global optimization for hydrologic models, J. Hydrol., 204, 83–97,
https://doi.org/10.1016/S0022-1694(97)00107-8, 1998.
Yuan, X., Ma, F., Wang, L., Zheng, Z., Ma, Z., Ye, A., and Peng, S.: An experimental seasonal hydrological forecasting system over the Yellow River basin – Part 1: Understanding the role of initial hydrological conditions, Hydrol. Earth Syst. Sci., 20, 2437–2451, https://doi.org/10.5194/hess-20-2437-2016, 2016.
Yuan, X., Zhang, M., Wang, L., and Zhou, T.: Understanding and seasonal
forecasting of hydrological drought in the Anthropocene, Hydrol. Earth Syst.
Sci., 21, 5477–5492, https://doi.org/10.5194/hess-21-5477-2017, 2017.
Zhai, R. and Tao, F.: Climate change in China affects runoff and terrestrial
ecosystem water retention more than changes in leaf area index and land
use/cover over the period 1982–2015, J. Geophys. Res.-Biogeo., 126,
e2020JG005902, https://doi.org/10.1029/2020JG005902, 2021.
Zhai, R., Tao, F., and Xu, Z.: Spatial-temporal changes in runoff and
terrestrial ecosystem water retention under 1.5 and 2 ∘C warming
scenarios across China, Earth Syst. Dynam., 9, 717–738,
https://doi.org/10.5194/esd-9-717-2018, 2018.
Zhang, S., Yang, H., Yang, D., and Jayawardena, A. W.: Quantifying the
effect of vegetation change on the regional water balance within the Budyko
framework, Geophys. Res. Lett., 43, 1140–1148, https://doi.org/10.1002/2015GL066952, 2016.
Zhang, S., Yang, D., Yang, Y., Piao, S., Yang, H., Lei, H., and Fu, B.:
Excessive afforestation and soil drying on China's Loess Plateau, J. Geophys. Res.-Biogeo., 123, 923–935, https://doi.org/10.1002/2017JG004038, 2018.
Zhang, X., Zhang, L., Zhao, J., Rustomji, P., and Hairsine, P.: Responses of
streamflow to changes in climate and land use/cover in the Loess Plateau,
China, Water Resour. Res., 44, 2007WR006711, https://doi.org/10.1029/2007WR006711, 2008.
Zhang, X., Tang, Q., Pan, M., and Tang, Y.: A Long-Term Land Surface
Hydrologic Fluxes and States Dataset for China, J. Hydrometeorol., 15,
2067–2084, https://doi.org/10.1175/JHM-D-13-0170.1, 2014.
Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., and Mi, J.: GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery, Earth Syst. Sci. Data, 13, 2753–2776, https://doi.org/10.5194/essd-13-2753-2021, 2021.
Zhang, Y., Peng, C., Li, W., Tian, L., Zhu, Q., Chen, H., Fang, X., Zhang,
G., Liu, G., Mu, X., Li, Z., Li, S., Yang, Y., Wang, J., and Xiao, X.:
Multiple afforestation programs accelerate the greenness in the `Three North' region of China from 1982 to 2013, Ecol. Indic., 61, 404–412,
https://doi.org/10.1016/j.ecolind.2015.09.041, 2016.
Zhang, Z., Chen, X., Xu, X., Yuan, L., Yong, B., and Yan, S.: Evaluating the
non-stationary relationship between precipitation and streamflow in nine
major basins of China during the past 50 years, J. Hydrol., 409, 81–93, https://doi.org/10.1016/j.jhydrol.2011.07.041, 2011.
Zhao, G., Tian, P., Mu, X., Jiao, J., Wang, F., and Gao, P.: Quantifying the
impact of climate variability and human activities on streamflow in the
middle reaches of the Yellow River basin, China, J. Hydrol., 519, 387–398,
https://doi.org/10.1016/j.jhydrol.2014.07.014, 2014.
Zhao, G., Li, E., Mu, X., Wen, Z., Rayburg, S., and Tian, P.: Changing trends and regime shift of streamflow in the Yellow River basin., Stoch. Environ. Res. Risk A., 29, 1331–1343, https://doi.org/10.1007/s00477-015-1058-9, 2015.
Zhu, B., Xie, X., Lu, C., Lei, T., Wang, Y., Jia, K., and Yao, Y.: Extensive
Evaluation of a Continental-Scale High-Resolution Hydrological Model Using
Remote Sensing and Ground-Based Observations, Remote Sens., 13, 1247,
https://doi.org/10.3390/rs13071247, 2021.
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G.,
Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L.,
Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y.,
Peng, S., Peñuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D.,
Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.:
Greening of the Earth and its drivers, Nat. Clim. Change, 6, 791–795,
https://doi.org/10.1038/nclimate3004, 2016.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(7342 KB) - Full-text XML
Short summary
Variable infiltration capacity simulation considering dynamic vegetation types and structural parameters is able to better capture the effect of temporally explicit vegetation change and climate variation in hydrological regimes. Vegetation greening including interannual LAI and intra-annual LAI temporal pattern change induced by large-scale ecological restoration and non-vegetation underlying surface change played dominant roles in the natural streamflow reduction of the Yellow River basin.
Variable infiltration capacity simulation considering dynamic vegetation types and structural...