Articles | Volume 26, issue 1
Hydrol. Earth Syst. Sci., 26, 17–34, 2022
https://doi.org/10.5194/hess-26-17-2022
Hydrol. Earth Syst. Sci., 26, 17–34, 2022
https://doi.org/10.5194/hess-26-17-2022

Research article 04 Jan 2022

Research article | 04 Jan 2022

Modelling the artificial forest (Robinia pseudoacacia L.) root–soil water interactions in the Loess Plateau, China

Hongyu Li et al.

Related authors

A Tri-Approach for Diagnosing Gridded Precipitation Datasets for Watershed Glacio-Hydrological Simulation in Mountain Regions
Muhammad Shafeeque and Luo Yi
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-194,https://doi.org/10.5194/hess-2020-194, 2020
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
Jiancong Chen, Baptiste Dafflon, Anh Phuong Tran, Nicola Falco, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 25, 6041–6066, https://doi.org/10.5194/hess-25-6041-2021,https://doi.org/10.5194/hess-25-6041-2021, 2021
Short summary
Vegetation greening weakened the capacity of water supply to China's South-to-North Water Diversion Project
Jiehao Zhang, Yulong Zhang, Ge Sun, Conghe Song, Matthew P. Dannenberg, Jiangfeng Li, Ning Liu, Kerong Zhang, Quanfa Zhang, and Lu Hao
Hydrol. Earth Syst. Sci., 25, 5623–5640, https://doi.org/10.5194/hess-25-5623-2021,https://doi.org/10.5194/hess-25-5623-2021, 2021
Short summary
Structural changes to forests during regeneration affect water flux partitioning, water ages and hydrological connectivity: Insights from tracer-aided ecohydrological modelling
Aaron J. Neill, Christian Birkel, Marco P. Maneta, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 4861–4886, https://doi.org/10.5194/hess-25-4861-2021,https://doi.org/10.5194/hess-25-4861-2021, 2021
Short summary
How does water yield respond to mountain pine beetle infestation in a semiarid forest?
Jianning Ren, Jennifer C. Adam, Jeffrey A. Hicke, Erin J. Hanan, Christina L. Tague, Mingliang Liu, Crystal A. Kolden, and John T. Abatzoglou
Hydrol. Earth Syst. Sci., 25, 4681–4699, https://doi.org/10.5194/hess-25-4681-2021,https://doi.org/10.5194/hess-25-4681-2021, 2021
Short summary
Daily soil temperature modeling improved by integrating observed snow cover and estimated soil moisture in the USA Great Plains
Haidong Zhao, Gretchen F. Sassenrath, Mary Beth Kirkham, Nenghan Wan, and Xiaomao Lin
Hydrol. Earth Syst. Sci., 25, 4357–4372, https://doi.org/10.5194/hess-25-4357-2021,https://doi.org/10.5194/hess-25-4357-2021, 2021
Short summary

Cited articles

Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., and Srinivasan, C.: SWAT: Model use, calibration, and validation, T. ASABE, 55, 1491–1508, https://doi.org/10.13031/2013.42256, 2012. 
Bai, X., Jia, X., Jia, Y., Shao, M., and Hu, W.: Modeling long-term soil water dynamics in response to land-use change in a semi-arid area, J. Hydrol., 585, 124824, https://doi.org/10.1016/j.jhydrol.2020.124824, 2020. 
Bardgett, R. D., Mommer, L., and De Vries, F. T.: Going underground: root traits as drivers of ecosystem processes, Trends Ecol. Evol., 29, 692–699, https://doi.org/10.1016/j.tree.2014.10.006, 2014. 
Brunner, I., Herzog, C., Dawes, M. A., Arend, M., and Sperisen, C.: How tree roots respond to drought, Front Plant Sci., 6, 547–547, https://doi.org/10.3389/fpls.2015.00547, 2015. 
Campbell, G. S.: A Simple Method for Determining Unsaturated Conductivity from Moisture Retention Data, Soil Sci., 117, 6, 311–314, https://doi.org/10.1097/00010694-197406000-00001, 1974. 
Download
Short summary
Drying soil layers (DSLs) have been extensively reported in artificial forestland in the Loess Plateau, China, which has limited water resources and deep loess. To address this issue relating to plant root–soil water interactions, this study developed a root growth model that simulates both the dynamic rooting depth and fine-root distribution. Evaluation vs. field data proved a positive performance. Long-term simulation reproduced the evolution process of the DSLs and revealed their mechanisms.