Articles | Volume 25, issue 2
https://doi.org/10.5194/hess-25-619-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-619-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vapor plumes in a tropical wet forest: spotting the invisible evaporation
César Dionisio Jiménez-Rodríguez
CORRESPONDING AUTHOR
Water Resources Section, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
Tecnológico de Costa Rica, Escuela de Ingeniería Forestal, 159-7050, Cartago, Costa Rica
Miriam Coenders-Gerrits
Water Resources Section, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
Bart Schilperoort
Water Resources Section, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
Adriana del Pilar González-Angarita
independent researcher
Hubert Savenije
Water Resources Section, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
Related authors
Bart Schilperoort, César Jiménez Rodríguez, Bas van de Wiel, and Miriam Coenders-Gerrits
Geosci. Instrum. Method. Data Syst., 13, 85–95, https://doi.org/10.5194/gi-13-85-2024, https://doi.org/10.5194/gi-13-85-2024, 2024
Short summary
Short summary
Heat storage in the soil is difficult to measure due to vertical heterogeneity. To improve measurements, we designed a 3D-printed probe that uses fiber-optic distributed temperature sensing to measure a vertical profile of soil temperature. We validated the temperature measurements against standard instrumentation. With the high-resolution data we were able to determine the thermal diffusivity of the soil at a resolution of 2.5 cm, which is much higher compared to traditional methods.
César Dionisio Jiménez-Rodríguez, Mauro Sulis, and Stanislaus Schymanski
Biogeosciences, 19, 3395–3423, https://doi.org/10.5194/bg-19-3395-2022, https://doi.org/10.5194/bg-19-3395-2022, 2022
Short summary
Short summary
Vegetation relies on soil water reservoirs during dry periods. However, when this source is depleted, the plants may access water stored deeper in the rocks. This rock moisture contribution is usually omitted in large-scale models, which affects modeled plant water use during dry periods. Our study illustrates that including this additional source of water in the Community Land Model improves the model's ability to reproduce observed plant water use at seasonally dry sites.
Bart Schilperoort, Miriam Coenders-Gerrits, César Jiménez Rodríguez, Christiaan van der Tol, Bas van de Wiel, and Hubert Savenije
Biogeosciences, 17, 6423–6439, https://doi.org/10.5194/bg-17-6423-2020, https://doi.org/10.5194/bg-17-6423-2020, 2020
Short summary
Short summary
With distributed temperature sensing (DTS) we measured a vertical temperature profile in a forest, from the forest floor to above the treetops. Using this temperature profile we can see which parts of the forest canopy are colder (thus more dense) or warmer (and less dense) and study the effect this has on the suppression of turbulent mixing. This can be used to improve our knowledge of the interaction between the atmosphere and forests and improve carbon dioxide flux measurements over forests.
Xuan Chen, Job Augustijn van der Werf, Arjan Droste, Miriam Coenders-Gerrits, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 29, 3447–3480, https://doi.org/10.5194/hess-29-3447-2025, https://doi.org/10.5194/hess-29-3447-2025, 2025
Short summary
Short summary
The review highlights the need to integrate urban land surface and hydrological models to better predict and manage compound climate events in cities. We find that inadequate representation of water surfaces, hydraulic systems and detailed building representations are key areas for improvement in future models. Coupled models show promise but face challenges at regional and neighbourhood scales. Interdisciplinary communication is crucial to enhance urban hydrometeorological simulations.
Luuk D. van der Valk, Oscar K. Hartogensis, Miriam Coenders-Gerrits, Rolf W. Hut, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1128, https://doi.org/10.5194/egusphere-2025-1128, 2025
Short summary
Short summary
Commercial microwave links (CMLs), part of mobile phone networks, transmit comparable signals as instruments specially designed to estimate evaporation. Therefore, we investigate if CMLs could be used to estimate evaporation, even though they have not been designed for this purpose. Our results illustrate the potential of using CMLs to estimate evaporation, especially given their global coverage, but also outline some major drawbacks, often a consequence of unfavourable design choices for CMLs.
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025, https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary
Short summary
The quantification of precipitation into evaporation and runoff is vital for water resources management. The Budyko framework, based on aridity and evaporative indices of a catchment, can be an ideal tool for that. However, recent research highlights deviations of catchments from the expected evaporative index, casting doubt on its reliability. This study quantifies deviations of 2387 catchments, finding them minor and predictable. Integrating these into predictions upholds the framework's efficacy.
Luuk D. van der Valk, Oscar K. Hartogensis, Miriam Coenders-Gerrits, Rolf W. Hut, Bas Walraven, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2024-2974, https://doi.org/10.5194/egusphere-2024-2974, 2025
Short summary
Short summary
Commercial microwave links (CMLs), part of mobile phone networks, transmit comparable signals as instruments specially designed to estimate evaporation. Therefore, we investigate if CMLs could be used to estimate evaporation, even though they have not been designed for this purpose. Our results illustrate the potential of using CMLs to estimate evaporation, especially given their global coverage, but also outline some major drawbacks, often a consequence of unfavourable design choices for CMLs.
Hongkai Gao, Markus Hrachowitz, Lan Wang-Erlandsson, Fabrizio Fenicia, Qiaojuan Xi, Jianyang Xia, Wei Shao, Ge Sun, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 4477–4499, https://doi.org/10.5194/hess-28-4477-2024, https://doi.org/10.5194/hess-28-4477-2024, 2024
Short summary
Short summary
The concept of the root zone is widely used but lacks a precise definition. Its importance in Earth system science is not well elaborated upon. Here, we clarified its definition with several similar terms to bridge the multi-disciplinary gap. We underscore the key role of the root zone in the Earth system, which links the biosphere, hydrosphere, lithosphere, atmosphere, and anthroposphere. To better represent the root zone, we advocate for a paradigm shift towards ecosystem-centred modelling.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024, https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary
Short summary
Microwave links, often part of mobile phone networks, can be used to measure rainfall along the link path by determining the signal loss caused by rainfall. We use high-frequency data of multiple microwave links to recreate commonly used sampling strategies. For time intervals up to 1 min, the influence of sampling strategies on estimated rainfall intensities is relatively little, while for intervals longer than 5–15 min, the sampling strategy can have significant influences on the estimates.
Bart Schilperoort, César Jiménez Rodríguez, Bas van de Wiel, and Miriam Coenders-Gerrits
Geosci. Instrum. Method. Data Syst., 13, 85–95, https://doi.org/10.5194/gi-13-85-2024, https://doi.org/10.5194/gi-13-85-2024, 2024
Short summary
Short summary
Heat storage in the soil is difficult to measure due to vertical heterogeneity. To improve measurements, we designed a 3D-printed probe that uses fiber-optic distributed temperature sensing to measure a vertical profile of soil temperature. We validated the temperature measurements against standard instrumentation. With the high-resolution data we were able to determine the thermal diffusivity of the soil at a resolution of 2.5 cm, which is much higher compared to traditional methods.
Hubert H. G. Savenije
Proc. IAHS, 385, 1–4, https://doi.org/10.5194/piahs-385-1-2024, https://doi.org/10.5194/piahs-385-1-2024, 2024
Short summary
Short summary
Hydrology is the bloodstream of the Earth, acting as a living organism, with the ecosystem as its active agent. The ecosystem optimises its survival within the constraints of energy, water, climate and nutrients. It is capable of adjusting the hydrological system and, through evolution, adjust its efficiency of carbon sequestration and moisture uptake. In trying to understand future functioning of hydrology, we have to take into account the adaptability of the ecosystem.
Jiaxing Liang, Hongkai Gao, Fabrizio Fenicia, Qiaojuan Xi, Yahui Wang, and Hubert H. G. Savenije
EGUsphere, https://doi.org/10.5194/egusphere-2024-550, https://doi.org/10.5194/egusphere-2024-550, 2024
Preprint archived
Short summary
Short summary
The root zone storage capacity (Sumax) is a key element in hydrology and land-atmospheric interaction. In this study, we utilized a hydrological model and a dynamic parameter identification method, to quantify the temporal trends of Sumax for 497 catchments in the USA. We found that 423 catchments (85 %) showed increasing Sumax, which averagely increased from 178 to 235 mm between 1980 and 2014. The increasing trend was also validated by multi-sources data and independent methods.
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 12, 155–169, https://doi.org/10.5194/gi-12-155-2023, https://doi.org/10.5194/gi-12-155-2023, 2023
Short summary
Short summary
The study investigates how low-cost technology can be applied in data-scarce catchments to improve water resource management. More specifically, we investigate how drone technology can be combined with low-cost real-time kinematic positioning (RTK) global navigation satellite system (GNSS) equipment and subsequently applied to a 3D hydraulic model so as to generate more physically based rating curves.
Hongkai Gao, Fabrizio Fenicia, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2607–2620, https://doi.org/10.5194/hess-27-2607-2023, https://doi.org/10.5194/hess-27-2607-2023, 2023
Short summary
Short summary
It is a deeply rooted perception that soil is key in hydrology. In this paper, we argue that it is the ecosystem, not the soil, that is in control of hydrology. Firstly, in nature, the dominant flow mechanism is preferential, which is not particularly related to soil properties. Secondly, the ecosystem, not the soil, determines the land–surface water balance and hydrological processes. Moving from a soil- to ecosystem-centred perspective allows more realistic and simpler hydrological models.
Nutchanart Sriwongsitanon, Wasana Jandang, James Williams, Thienchart Suwawong, Ekkarin Maekan, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2149–2171, https://doi.org/10.5194/hess-27-2149-2023, https://doi.org/10.5194/hess-27-2149-2023, 2023
Short summary
Short summary
We developed predictive semi-distributed rainfall–runoff models for nested sub-catchments in the upper Ping basin, which yielded better or similar performance compared to calibrated lumped models. The normalised difference infrared index proves to be an effective proxy for distributed root zone moisture capacity over sub-catchments and is well correlated with the percentage of evergreen forest. In validation, soil moisture simulations appeared to be highly correlated with the soil wetness index.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Bart Schilperoort, Nick van de Giesen, Imasiku Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 1695–1722, https://doi.org/10.5194/hess-27-1695-2023, https://doi.org/10.5194/hess-27-1695-2023, 2023
Short summary
Short summary
Miombo woodland plants continue to lose water even during the driest part of the year. This appears to be facilitated by the adapted features such as deep rooting (beyond 5 m) with access to deep soil moisture, potentially even ground water. It appears the trend and amount of water that the plants lose is correlated more to the available energy. This loss of water in the dry season by miombo woodland plants appears to be incorrectly captured by satellite-based evaporation estimates.
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci., 26, 4187–4208, https://doi.org/10.5194/hess-26-4187-2022, https://doi.org/10.5194/hess-26-4187-2022, 2022
Short summary
Short summary
Frozen soil hydrology is one of the 23 unsolved problems in hydrology (UPH). In this study, we developed a novel conceptual frozen soil hydrological model, FLEX-Topo-FS. The model successfully reproduced the soil freeze–thaw process, and its impacts on hydrologic connectivity, runoff generation, and groundwater. We believe this study is a breakthrough for the 23 UPH, giving us new insights on frozen soil hydrology, with broad implications for predicting cold region hydrology in future.
César Dionisio Jiménez-Rodríguez, Mauro Sulis, and Stanislaus Schymanski
Biogeosciences, 19, 3395–3423, https://doi.org/10.5194/bg-19-3395-2022, https://doi.org/10.5194/bg-19-3395-2022, 2022
Short summary
Short summary
Vegetation relies on soil water reservoirs during dry periods. However, when this source is depleted, the plants may access water stored deeper in the rocks. This rock moisture contribution is usually omitted in large-scale models, which affects modeled plant water use during dry periods. Our study illustrates that including this additional source of water in the Community Land Model improves the model's ability to reproduce observed plant water use at seasonally dry sites.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Petra Hulsman, Nick van de Giesen, Imasiku Nyambe, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-114, https://doi.org/10.5194/hess-2022-114, 2022
Manuscript not accepted for further review
Short summary
Short summary
We compare performance of evaporation models in the Luangwa Basin located in a semi-arid and complex Miombo ecosystem in Africa. Miombo plants changes colour, drop off leaves and acquire new leaves during the dry season. In addition, the plant roots go deep in the soil and appear to access groundwater. Results show that evaporation models with structure and process that do not capture this unique plant structure and behaviour appears to have difficulties to correctly estimating evaporation.
Lívia M. P. Rosalem, Miriam Coenders-Gerritis, Jamil A. A. Anache, Seyed M. M. Sadeghi, and Edson Wendland
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-59, https://doi.org/10.5194/hess-2022-59, 2022
Manuscript not accepted for further review
Short summary
Short summary
We monitored the interception process on an undisturbed savanna forest and applied two interception models to evaluate their performance at different time scales and study their seasonal response. As results, both models performed well at a monthly scale and could represent the seasonal trends observed. However, they presented some limitations to predict the evaporative processes on a daily basis.
Laurène J. E. Bouaziz, Emma E. Aalbers, Albrecht H. Weerts, Mark Hegnauer, Hendrik Buiteveld, Rita Lammersen, Jasper Stam, Eric Sprokkereef, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 26, 1295–1318, https://doi.org/10.5194/hess-26-1295-2022, https://doi.org/10.5194/hess-26-1295-2022, 2022
Short summary
Short summary
Assuming stationarity of hydrological systems is no longer appropriate when considering land use and climate change. We tested the sensitivity of hydrological predictions to changes in model parameters that reflect ecosystem adaptation to climate and potential land use change. We estimated a 34 % increase in the root zone storage parameter under +2 K global warming, resulting in up to 15 % less streamflow in autumn, due to 14 % higher summer evaporation, compared to a stationary system.
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 11, 1–23, https://doi.org/10.5194/gi-11-1-2022, https://doi.org/10.5194/gi-11-1-2022, 2022
Short summary
Short summary
The study was conducted along the Luangwa River in Zambia. It combines low-cost instruments such as UAVs and GPS kits to collect data for the purposes of water management. A novel technique which seamlessly merges the dry and wet bathymetry before application in a hydraulic model was applied. Successful implementation resulted in water authorities with small budgets being able to monitor flows safely and efficiently without significant compromise on accuracy.
Vassilis Aschonitis, Dimos Touloumidis, Marie-Claire ten Veldhuis, and Miriam Coenders-Gerrits
Earth Syst. Sci. Data, 14, 163–177, https://doi.org/10.5194/essd-14-163-2022, https://doi.org/10.5194/essd-14-163-2022, 2022
Short summary
Short summary
This work provides a global database of correction coefficients for improving the performance of the temperature-based Thornthwaite potential evapotranspiration formula and aridity indices (e.g., UNEP, Thornthwaite) that make use of this formula. The coefficients were produced using as a benchmark the ASCE-standardized reference evapotranspiration formula (formerly FAO-56) that requires temperature, solar radiation, wind speed, and relative humidity data.
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915, https://doi.org/10.5194/hess-25-4887-2021, https://doi.org/10.5194/hess-25-4887-2021, 2021
Short summary
Short summary
Deforestation affects how catchments store and release water. Here we found that deforestation in the study catchment led to a 20 % increase in mean runoff, while reducing the vegetation-accessible water storage from about 258 to 101 mm. As a consequence, fractions of young water in the stream increased by up to 25 % during wet periods. This implies that water and solutes are more rapidly routed to the stream, which can, after contamination, lead to increased contaminant peak concentrations.
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-264, https://doi.org/10.5194/hess-2021-264, 2021
Manuscript not accepted for further review
Short summary
Short summary
Permafrost hydrology is one of the 23 major unsolved problems in hydrology. In this study, we used a stepwise modeling and dynamic parameter method to examine the impact of permafrost on streamflow in the Hulu catchment in western China. We found that: topography and landscape are dominant controls on catchment response; baseflow recession is slower than other regions; precipitation-runoff relationship is non-stationary; permafrost impacts on streamflow mostly at the beginning of melting season.
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Petra Hulsman, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 957–982, https://doi.org/10.5194/hess-25-957-2021, https://doi.org/10.5194/hess-25-957-2021, 2021
Short summary
Short summary
Satellite observations have increasingly been used for model calibration, while model structural developments largely rely on discharge data. For large river basins, this often results in poor representations of system internal processes. This study explores the combined use of satellite-based evaporation and total water storage data for model structural improvement and spatial–temporal model calibration for a large, semi-arid and data-scarce river system.
Bart Schilperoort, Miriam Coenders-Gerrits, César Jiménez Rodríguez, Christiaan van der Tol, Bas van de Wiel, and Hubert Savenije
Biogeosciences, 17, 6423–6439, https://doi.org/10.5194/bg-17-6423-2020, https://doi.org/10.5194/bg-17-6423-2020, 2020
Short summary
Short summary
With distributed temperature sensing (DTS) we measured a vertical temperature profile in a forest, from the forest floor to above the treetops. Using this temperature profile we can see which parts of the forest canopy are colder (thus more dense) or warmer (and less dense) and study the effect this has on the suppression of turbulent mixing. This can be used to improve our knowledge of the interaction between the atmosphere and forests and improve carbon dioxide flux measurements over forests.
Justus G. V. van Ramshorst, Miriam Coenders-Gerrits, Bart Schilperoort, Bas J. H. van de Wiel, Jonathan G. Izett, John S. Selker, Chad W. Higgins, Hubert H. G. Savenije, and Nick C. van de Giesen
Atmos. Meas. Tech., 13, 5423–5439, https://doi.org/10.5194/amt-13-5423-2020, https://doi.org/10.5194/amt-13-5423-2020, 2020
Short summary
Short summary
In this work we present experimental results of a novel actively heated fiber-optic (AHFO) observational wind-probing technique. We utilized a controlled wind-tunnel setup to assess both the accuracy and precision of AHFO under a range of operational conditions (wind speed, angles of attack and temperature differences). AHFO has the potential to provide high-resolution distributed observations of wind speeds, allowing for better spatial characterization of fine-scale processes.
D. Alex R. Gordon, Miriam Coenders-Gerrits, Brent A. Sellers, S. M. Moein Sadeghi, and John T. Van Stan II
Hydrol. Earth Syst. Sci., 24, 4587–4599, https://doi.org/10.5194/hess-24-4587-2020, https://doi.org/10.5194/hess-24-4587-2020, 2020
Short summary
Short summary
Where plants exist, rain must pass through canopies to reach soils. We studied how rain interacts with dogfennel – a highly problematic weed that is abundant in pastures, grasslands, rangelands, urban forests and along highways. Dogfennels evaporated large portions (approx. one-fifth) of rain and drained significant (at times > 25 %) rain (and dew) down their stems to their roots (via stemflow). This may explain how dogfennel survives and even invades managed landscapes during extended droughts.
Cited articles
Abu-Hamdeh, N. H.: Thermal Properties of Soils as affected by Density and Water
Content, Biosyst. Eng., 86, 97–102,
https://doi.org/10.1016/S1537-5110(03)00112-0, 2003. a
Adams, D. K., Fernandes, R. M. S., Kursinski, E. R., Maia, J. M., Sapucci,
L. F., Machado, L. A. T., Vitorello, I., Monico, J. F. G., Holub, K. L.,
Gutman, S. I., Filizola, N., and Bennett, R. A.: A dense GNSS meteorological
network for observing deep convection in the Amazon, Atmos. Sci.
Lett., 12, 207–212, https://doi.org/10.1002/asl.312, 2011. a
Allen, L. H., Lemon, E., and Müller, L.: Environment of a Costa Rican Forest,
Ecology, 53, 102–111, https://doi.org/10.2307/1935714, 1972. a
Allen, S. T., Aubrey, D. P., Bader, M. Y., Coenders-Gerrits, M., Friesen, J.,
Gutmann, E. D., Guillemette, F., Jiménez-Rodríguez, C., Keim, R. F.,
Klamerus-Iwan, A., Mendieta-Leiva, G., Porada, P., Qualls, R. G.,
Schilperoort, B., Stubbins, A., and Van Stan II, J. T.: Key Questions on the
Evaporation and Transport of Intercepted Precipitation, 269–280,
Springer International Publishing, Cham, https://doi.org/10.1007/978-3-030-29702-2_16,
2020. a
Barr, A. G., King, K. M., Gillespie, T. J., Den Hartog, G., and Neumann, H. H.:
A comparison of bowen ratio and eddy correlation sensible and latent heat
flux measurements above deciduous forest, Bound.-Lay. Meteorol., 71,
21–41, https://doi.org/10.1007/BF00709218, 1994. a
Bassette, C. and Bussière, F.: Partitioning of splash and storage during
raindrop impacts on banana leaves, Agr. Forest Meteorol., 148,
991–1004, https://doi.org/10.1016/j.agrformet.2008.01.016, 2008. a
Berg, J., Goldstein, D., Varghese, P., and Trafton, L.: DSMC simulation of
Europa water vapor plumes, Icarus, 277, 370–380,
https://doi.org/10.1016/j.icarus.2016.05.030, 2016. a
Bigg, E. K., Soubeyrand, S., and Morris, C. E.: Persistent after-effects of heavy rain on concentrations of ice nuclei and rainfall suggest a biological cause, Atmos. Chem. Phys., 15, 2313–2326, https://doi.org/10.5194/acp-15-2313-2015, 2015. a
Bosveld, F. C. and Bouten, W.: Evaluating a Model of Evaporation and
Transpiration with Observations in a Partially Wet Douglas-Fir Forest,
Bound.-Lay. Meteorol., 108, 365–396, https://doi.org/10.1023/A:1024148707239,
2003. a
Bosveld, F. C., Holtslag, A. M., and Van Den Hurk, B. J.: Nighttime convection
in the interior of a dense Douglas fir forest, Bound.-Lay. Meteorol.,
93, 171–195, https://doi.org/10.1023/A:1002039610790, 1999. a
Breedt, H. J., Craig, K. J., and Jothiprakasam, V. D.: Monin-Obukhov similarity
theory and its application to wind flow modelling over complex terrain,
J. Wind Eng. Indust. Aerodynam., 182, 308–321,
https://doi.org/10.1016/j.jweia.2018.09.026, 2018. a
Brubaker, K. L., Entekhabi, D., and Eagleson, P. S.: Estimation of Continental
Precipitation Recycling, J. Climate, 6, 1077–1089,
https://doi.org/10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2, 1993. a
Campbell Scientific Inc.: CSAT3B Three-Dimensional Sonic Anemometer, available at:
https://s.campbellsci.com/documents/us/manuals/csat3b.pdf
(last access: 29 June 2020), 2019. a
Camuffo, D.: Chapter 20 – Measuring Wind and Indoor Air Motions, in:
Microclimate for Cultural Heritage (Third Edition), edited by: Camuffo, D.,
483–511, Elsevier, third edition edn.,
https://doi.org/10.1016/B978-0-444-64106-9.00020-1, 2019. a, b
Centre for Atmospheric Science: Sonic Anemometers, available at:
http://www.cas.manchester.ac.uk/restools/instruments/meteorology/sonic/ (last access: 29 June 2020), Department of Earth and Environmental Sciences. The
University of Manchester, 2020. a
Chen, Q., Fan, J., Hagos, S., Gustafson Jr., W. I., and Berg, L. K.: Roles of
wind shear at different vertical levels: Cloud system organization and
properties, J. Geophys. Res.-Atmos., 120, 6551–6574,
https://doi.org/10.1002/2015JD023253, 2015. a
Cooper, D., Leclerc, M., Archuleta, J., Coulter, R., Eichinger, W., Kao, C.,
and Nappo, C.: Mass exchange in the stable boundary layer by coherent
structures, Agr. Forest Meteorol., 136, 114–131,
https://doi.org/10.1016/j.agrformet.2004.12.012, 2006. a, b, c
Costa, J., Egipto, R., Sánchez-Virosta, A., Lopes, C., and Chaves, M.: Canopy
and soil thermal patterns to support water and heat stress management in
vineyards, Agr. Water Manag., 216, 484–496,
https://doi.org/10.1016/j.agwat.2018.06.001, 2019. a
Couvreux, F., Hourdin, F., and Rio, C.: Resolved Versus Parametrized
Boundary-Layer Plumes. Part I: A Parametrization-Oriented Conditional
Sampling in Large-Eddy Simulations, Bound.-Lay. Meteorol., 134,
441–458, https://doi.org/10.1007/s10546-009-9456-5, 2010. a, b
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A., and Hansen, M. C.:
Classifying drivers of global forest loss, Science, 361, 1108–1111,
https://doi.org/10.1126/science.aau3445, 2018. a
da Cunha, A. R.: Evaluation of measurement errors of temperature and relative
humidity from HOBO data logger under different conditions of exposure to
solar radiation, Environ. Monit. Assess., 187, 236,
https://doi.org/10.1007/s10661-015-4458-x, 2015. a
David, J. S., Valente, F., and Gash, J. H.: Evaporation of Intercepted
Rainfall, in: Encyclopedia of Hydrological Sciences, chap. 43, American
Cancer Society, https://doi.org/10.1002/0470848944.hsa046, 2006. a
Dubayah, R. O., Sheldon, S. L., Clark, D. B., Hofton, M. A., Blair, J. B.,
Hurtt, G. C., and Chazdon, R. L.: Estimation of tropical forest height and
biomass dynamics using lidar remote sensing at La Selva, Costa Rica, J. Geophys. Res.-Biogeosc., 115, G00E09, https://doi.org/10.1029/2009JG000933,
2010. a
Dunin, F. X., O'Loughlin, E. M., and Reyenga, W.: Interception loss from
eucalypt forest: Lysimeter determination of hourly rates for long term
evaluation, Hydrol. Process., 2, 315–329,
https://doi.org/10.1002/hyp.3360020403, 1988. a, b
Dunkerley, D. L.: Evaporation of impact water droplets in interception
processes: Historical precedence of the hypothesis and a brief literature
overview, J. Hydrol., 376, 599–604,
https://doi.org/10.1016/j.jhydrol.2009.08.004, 2009. a, b
Egea, G., Padilla-Díaz, C. M., Martinez-Guanter, J., Fernández, J. E., and
Pérez-Ruiz, M.: Assessing a crop water stress index derived from aerial
thermal imaging and infrared thermometry in super-high density olive
orchards, Agr. Water Manag., 187, 210–221,
https://doi.org/10.1016/j.agwat.2017.03.030, 2017. a
Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso,
D., Gutierrez, V., van Noordwijk, M., Creed, I. F., Pokorny, J., Gaveau, D.,
Spracklen, D. V., Tobella, A. B., Ilstedt, U., Teuling, A. J., Gebrehiwot,
S. G., Sands, D. C., Muys, B., Verbist, B., Springgay, E., Sugandi, Y., and
Sullivan, C. A.: Trees, forests and water: Cool insights for a hot world,
Global Environ. Change, 43, 51–61,
https://doi.org/10.1016/j.gloenvcha.2017.01.002, 2017. a
Euser, T., Luxemburg, W. M. J., Everson, C. S., Mengistu, M. G., Clulow, A. D., and Bastiaanssen, W. G. M.: A new method to measure Bowen ratios using high-resolution vertical dry and wet bulb temperature profiles, Hydrol. Earth Syst. Sci., 18, 2021–2032, https://doi.org/10.5194/hess-18-2021-2014, 2014. a
FLUXNET: Fluxdata, The Data Portal serving the FLUXNET community, available at:
https://fluxnet.fluxdata.org/ (last access: 5 April 2020), 2020. a
Foken, T., Aubinet, M., and Leuning, R.: The Eddy Covariance Method, pp. 1–19,
Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-007-2351-1_1,
2012a. a, b, c, d
Foken, T., Leuning, R., Oncley, S. R., Mauder, M., and Aubinet, M.: Corrections
and Data Quality Control, pp. 85–131, Springer Netherlands, Dordrecht,
https://doi.org/10.1007/978-94-007-2351-1_4, 2012b. a
Fuentes, J. D., Chamecki, M., Nascimento dos Santos, R. M., Von Randow, C.,
Stoy, P. C., Katul, G., Fitzjarrald, D., Manzi, A., Gerken, T., Trowbridge,
A., Souza Freire, L., Ruiz-Plancarte, J., Furtunato Maia, J. M., Tóta, J.,
Dias, N., Fisch, G., Schumacher, C., Acevedo, O., Rezende Mercer, J., and
Yañez-Serrano, A. M.: Linking Meteorology, Turbulence, and Air Chemistry
in the Amazon Rain Forest, B. Am. Meteorol. Soc.,
97, 2329–2342, https://doi.org/10.1175/BAMS-D-15-00152.1, 2016. a
Göckede, M., Thomas, C., Markkanen, T., Mauder, M., Ruppert, J., and Foken,
T.: Sensitivity of Lagrangian Stochastic footprints to turbulence statistics,
Tellus B, 59, 577–586,
https://doi.org/10.1111/j.1600-0889.2007.00275.x, 2007. a
Goosse, H.: The energy balance, hydrological and carbon cycles, in: Climate
System Dynamics and Modelling, chap. 2, Cambridge University Press, 2015. a
Gotsch, S. G., Asbjornsen, H., Holwerda, F., Goldsmith, G. R., Weintraub,
A. E., and Dawson, T. E.: Foggy days and dry nights determine crown-level
water balance in a seasonal tropical montane cloud forest, Plant Cell
Environ., 37, 261–272, https://doi.org/10.1111/pce.12151, 2014. a
Herman, R. L., Ray, E. A., Rosenlof, K. H., Bedka, K. M., Schwartz, M. J., Read, W. G., Troy, R. F., Chin, K., Christensen, L. E., Fu, D., Stachnik, R. A., Bui, T. P., and Dean-Day, J. M.: Enhanced stratospheric water vapor over the summertime continental United States and the role of overshooting convection, Atmos. Chem. Phys., 17, 6113–6124, https://doi.org/10.5194/acp-17-6113-2017, 2017. a
Heusinkveld, V. W., Antoon van Hooft, J., Schilperoort, B., Baas, P.,
claire ten Veldhuis, M., and van de Wiel, B. J.: Towards a physics-based
understanding of fruit frost protection using wind machines, Agr.
Forest Meteorol., 282–283, 107868, https://doi.org/10.1016/j.agrformet.2019.107868,
2020. a
Holmes, T. R. H., Owe, M., De Jeu, R. A. M., and Kooi, H.: Estimating the soil
temperature profile from a single depth observation: A simple empirical
heatflow solution, Water Resour. Res., 44, 1–11,
https://doi.org/10.1029/2007WR005994, 2008. a
Huffman, J. A., Prenni, A. J., DeMott, P. J., Pöhlker, C., Mason, R. H., Robinson, N. H., Fröhlich-Nowoisky, J., Tobo, Y., Després, V. R., Garcia, E., Gochis, D. J., Harris, E., Müller-Germann, I., Ruzene, C., Schmer, B., Sinha, B., Day, D. A., Andreae, M. O., Jimenez, J. L., Gallagher, M., Kreidenweis, S. M., Bertram, A. K., and Pöschl, U.: High concentrations of biological aerosol particles and ice nuclei during and after rain, Atmos. Chem. Phys., 13, 6151–6164, https://doi.org/10.5194/acp-13-6151-2013, 2013. a
Izett, J. G., Schilperoort, B., Coenders-Gerrits, M., Baas, P., Bosveld, F. C.,
and van de Wiel, B. J. H.: Missed Fog?, Bound.-Lay. Meteorol., 173,
289–309, https://doi.org/10.1007/s10546-019-00462-3, 2019. a
Jacobs, A. F. G., Van Boxel, J. H., and El-Kilani, R. M. M.: Nighttime free
convection characteristics within a plant canopy, Bound.-Lay. Meteorol.,
71, 375–391, https://doi.org/10.1007/BF00712176, 1994. a
Jiménez-Rodríguez, C. D., González-Angarita, A. P., Coenders-Gerrits, A.,
Savenije, H., and Wenninger, J.: Meteorological data and isotope signatures
of water samples collected at La Selva,
https://doi.org/10.4121/uuid:e70993d2-5852-4f63-9aff-39451fbd3fde,
2019a. a
Jiménez-Rodríguez, C. D., González-Angarita, A. P., and Coenders-Gerrits,
A. M. J.: Vapor Plumes Video at La Selva Biological Station. 4TU.Centre for
Research Data, Dataset, 4TU.Centre for Research Data,
https://doi.org/10.4121/uuid:997cc9d8-2281-453e-b631-5f93cfebe00e,
2019b. a, b, c
Jiménez-Rodríguez, C. D., Coenders-Gerrits, M., Wenninger, J., Gonzalez-Angarita, A., and Savenije, H.: Contribution of understory evaporation in a tropical wet forest during the dry season, Hydrol. Earth Syst. Sci., 24, 2179–2206, https://doi.org/10.5194/hess-24-2179-2020, 2020. a, b, c, d
Jiménez-Rodríguez, C., Coenders, M., Schilperoort, B., Gonzalez-Angarita, A. P. (Adriana del Pilar): Visible vapor plumes in a tropical wet forest: R script, 4TU.ResearchData, Software, https://doi.org/10.4121/13720795, 2021. a
Kao, C.-Y., Hang, Y.-H., Cooper, D., Eichinger, W., Smith, W., and Reisner, J.:
High-resolution modeling of LIDAR data: Mechanisms governing surface water
vapor variability during SALSA, Agr. Forest Meteorol., 105, 185–194, https://doi.org/10.1016/S0168-1923(00)00182-9, 2000. a, b, c
Kelton, G. and Bricout, P.: wind velocity measurements using sonic
techniques1, B. Am. Meteorol. Soc., 45, 571–580,
https://doi.org/10.1175/1520-0477-45.9.571, 1964. a, b
Kern, C., Masias, P., Apaza, F., Reath, K. A., and Platt, U.: Remote
measurement of high preeruptive water vapor emissions at Sabancaya volcano by
passive differential optical absorption spectroscopy, J. Geophys.
Res.-Solid Ea., 122, 3540–3564, https://doi.org/10.1002/2017JB014020, 2017. a
Klaassen, W., Bosveld, F., and de Water, E.: Water storage and evaporation as
constituents of rainfall interception, J. Hydrol., 212–213,
36–50, https://doi.org/10.1016/S0022-1694(98)00200-5, 1998. a
Knoche, H. R. and Kunstmann, H.: Tracking atmospheric water pathways by direct
evaporation tagging: A case study for West Africa, J. Geophys.
Res.-Atmos., 118, 12345–12358, https://doi.org/10.1002/2013JD019976, 2013. a
Lankreijer, H., Lundberg, A., Grelle, A., Lindroth, A., and Seibert, J.:
Evaporation and storage of intercepted rain analysed by comparing two models
applied to a boreal forest, Agr. Forest Meteorol., 98–99,
595–604, https://doi.org/10.1016/S0168-1923(99)00126-4, 1999. a
Lapidot, O., Ignat, T., Rud, R., Rog, I., Alchanatis, V., and Klein, T.: Use of
thermal imaging to detect evaporative cooling in coniferous and broadleaved
tree species of the Mediterranean maquis, Agr. Forest
Meteorol., 271, 285–294, https://doi.org/10.1016/j.agrformet.2019.02.014, 2019. a
Lavers, D. A., Ralph, F. M., Waliser, D. E., Gershunov, A., and Dettinger,
M. D.: Climate change intensification of horizontal water vapor transport in
CMIP5, Geophys. Res. Lett., 42, 5617–5625,
https://doi.org/10.1002/2015GL064672, 2015. a
Lawford, R.: Some scientific questions and issues for the GEWEX
Continental-scale International Project (GCIP) research community, in:
Proceedings of the Second International Science Conference on Global Energy
and Water Cycle, 17–21 June, Washington, DC., pp. 162–167, 1996. a
LI-COR: LI-7500RS, Open Path CO2/H2O Gas Analyzer, available at:
https://www.licor.com/documents/c7tyf0czqn9ezkq1ki3b
(last access: 29 June 2020), 2016. a
Lieberman, D. and Lieberman, M.: Forest tree growth and dynamics at La Selva,
Costa Rica (1969–1982), J. Trop. Ecol., 3, 347–358,
https://doi.org/10.1017/S0266467400002327, 1987. a
Loescher, H., Gholz, H., Jacobs, J., and Oberbauer, S.: Energy dynamics and
modeled evapotranspiration from a wet tropical forest in Costa Rica, J. Hydrol., 315, 274–294, https://doi.org/10.1016/j.jhydrol.2005.03.040, 2005. a, b
Loescher, H. W., Bentz, J. A., Oberbauer, S. F., Ghosh, T. K., Tompson, R. V.,
and Loyalka, S. K.: Characterization and dry deposition of carbonaceous
aerosols in a wet tropical forest canopy, J. Geophys. Res.-Atmos., 109, D02309, https://doi.org/10.1029/2002JD003353, 2004. a
Lundquist, J. D. and Huggett, B.: Evergreen trees as inexpensive radiation
shields for temperature sensors, Water Resour. Res., 44, W00D04,
https://doi.org/10.1029/2008WR006979, 2008. a
Makarieva, A. M. and Gorshkov, V. G.: Biotic pump of atmospheric moisture as driver of the hydrological cycle on land, Hydrol. Earth Syst. Sci., 11, 1013–1033, https://doi.org/10.5194/hess-11-1013-2007, 2007. a
Makarieva, A. M., Gorshkov, V. G., and Li, B.-L.: Revisiting forest impact on
atmospheric water vapor transport and precipitation, Theor. Appl.
Climatol., 111, 79–96, https://doi.org/10.1007/s00704-012-0643-9,
2013a. a
Makarieva, A. M., Gorshkov, V. G., Sheil, D., Nobre, A. D., and Li, B.-L.: Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics, Atmos. Chem. Phys., 13, 1039–1056, https://doi.org/10.5194/acp-13-1039-2013, 2013b. a
Mallick, K., Trebs, I., Boegh, E., Giustarini, L., Schlerf, M., Drewry, D. T., Hoffmann, L., von Randow, C., Kruijt, B., Araùjo, A., Saleska, S., Ehleringer, J. R., Domingues, T. F., Ometto, J. P. H. B., Nobre, A. D., de Moraes, O. L. L., Hayek, M., Munger, J. W., and Wofsy, S. C.: Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin, Hydrol. Earth Syst. Sci., 20, 4237–4264, https://doi.org/10.5194/hess-20-4237-2016, 2016. a
Manoli, G., Domec, J.-C., Novick, K., Oishi, A. C., Noormets, A., Marani, M.,
and Katul, G.: Soil-plant-atmosphere conditions regulating
convective cloud formation above southeastern US pine plantations, Glob.
Change Biol., 22, 2238–2254, https://doi.org/10.1111/gcb.13221, 2016. a
Mauder, M. and Zeeman, M. J.: Field intercomparison of prevailing sonic anemometers, Atmos. Meas. Tech., 11, 249–263, https://doi.org/10.5194/amt-11-249-2018, 2018. a, b, c
Moncrieff, J., Clement, R., Finnigan, J., and Meyers, T.: Averaging,
Detrending, and Filtering of Eddy Covariance Time Series, 7–31, Springer
Netherlands, Dordrecht, https://doi.org/10.1007/1-4020-2265-4_2, 2005. a, b
Murakami, S.: A proposal for a new forest canopy interception mechanism: Splash
droplet evaporation, J. Hydrol., 319, 72–82,
https://doi.org/10.1016/j.jhydrol.2005.07.002, 2006. a, b, c
Nakshabandi, G. A. and Kohnke, H.: Thermal conductivity and diffusivity of
soils as related to moisture tension and other physical properties,
Agric. Meteorol., 2, 271–279, https://doi.org/10.1016/0002-1571(65)90013-0,
1965. a
Nieto, H., Kustas, W. P., Torres-Rúa, A., Alfieri, J. G., Gao, F., Anderson,
M. C., White, W. A., Song, L., Alsina, M. d. M., Prueger, J. H., McKee, M.,
Elarab, M., and McKee, L. G.: Evaluation of TSEB turbulent fluxes using
different methods for the retrieval of soil and canopy component temperatures
from UAV thermal and multispectral imagery, Irrigation Science, 37, 389–406,
https://doi.org/10.1007/s00271-018-0585-9, 2019. a
Peters, G., Fischer, B., and Kirtzel, H. J.: One-Year Operational Measurements
with a Sonic Anemometer-Thermometer and a Doppler Sodar, J.
Atmos. Ocean. Tech., 15, 18–28,
https://doi.org/10.1175/1520-0426(1998)015<0018:OYOMWA>2.0.CO;2, 1998. a, b
Pielke, R.: Mesoscale Meteorological Modeling, International Geophysics,
Elsevier Science, available at:
https://books.google.nl/books?id=ExlFulltapcC (last access: 20 December 2019), 2013. a
Pöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman,
J. A., Borrmann, S., Farmer, D. K., Garland, R. M., Helas, G., Jimenez,
J. L., King, S. M., Manzi, A., Mikhailov, E., Pauliquevis, T., Petters,
M. D., Prenni, A. J., Roldin, P., Rose, D., Schneider, J., Su, H., Zorn,
S. R., Artaxo, P., and Andreae, M. O.: Rainforest Aerosols as Biogenic Nuclei
of Clouds and Precipitation in the Amazon, Science, 329, 1513–1516,
https://doi.org/10.1126/science.1191056, 2010. a
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, available at:
https://www.R-project.org/ (last access: 20 December 2019), 2017. a
Roberts, J.: Plants and water in forests and woodlands, in: Eco-Hydrology, 1st Edition, Taylor and Francis Group 181–236,
Routledge, https://doi.org/10.4324/9780203980095, 1999. a
Rodriguez-Gomez, C., Ramirez-Romero, C., Cordoba, F., Raga, G. B., Salinas, E.,
Martinez, L., Rosas, I., Quintana, E. T., Maldonado, L. A., Rosas, D.,
Amador, T., Alvarez, H., and Ladino, L. A.: Characterization of culturable
airborne microorganisms in the Yucatan Peninsula, Atmos. Environ.,
223, 117183, https://doi.org/10.1016/j.atmosenv.2019.117183, 2020. a
Rosa, I. M., Smith, M. J., Wearn, O. R., Purves, D., and Ewers, R. M.: The
Environmental Legacy of Modern Tropical Deforestation, Curr. Biol., 26,
2161–2166, https://doi.org/10.1016/j.cub.2016.06.013, 2016. a
Sanford Jr., R. L., Paaby, P., Luvall, J. C., and Phillips, E.: Climate,
geomorphology, and aquatic systems., in: La Selva. Ecology and natural
history of a Neotropical Rainforest, edited by: McDade, L. A., Bawa, K. S.,
Hespenheide, H. A., and Hartshorn, G. S., chap. 3, 19–33, The University
of Chicago Press, 1994. a, b
Savenije, H. H. G.: The importance of interception and why we should delete the
term evapotranspiration from our vocabulary, Hydrol. Process., 18,
1507–1511, https://doi.org/10.1002/hyp.5563, 2004. a
Saxton, K. and Rawls, W.: Soil Water Characteristic Estimates by Texture and
Organic Matter for Hydrologic Solutions, Soil Sci. Soc. Am.
J., 70, 1569–1578, https://doi.org/10.2136/sssaj2005.0117, 2006. a, b
Schellekens, J., Bruijnzeel, L. A., Scatena, F. N., Bink, N. J., and Holwerda,
F.: Evaporation from a tropical rain forest, Luquillo Experimental Forest,
eastern Puerto Rico, Water Resour. Res., 36, 2183–2196,
https://doi.org/10.1029/2000WR900074, 2000. a
Schilperoort, B., Coenders-Gerrits, M., Luxemburg, W., Jiménez Rodríguez, C., Cisneros Vaca, C., and Savenije, H.: Technical note: Using distributed temperature sensing for Bowen ratio evaporation measurements, Hydrol. Earth Syst. Sci., 22, 819–830, https://doi.org/10.5194/hess-22-819-2018, 2018. a
Shuttleworth, W.: Evaporation, in: Handbook of hydrology, edited by: Maidment,
D. R., chap. 4, 4.1–4.53, Mc-Graw Hill, Inc., New York, 1993. a
Sioris, C. E., Malo, A., McLinden, C. A., and D'Amours, R.: Direct injection of
water vapor into the stratosphere by volcanic eruptions, Geophys. Res.
Lett., 43, 7694–7700, https://doi.org/10.1002/2016GL069918, 2016. a
Sollins, P., Sancho M., F., Mata Ch., R., and Sanford Jr., R. L.: Soils and
soil process research, in: La Selva. Ecology and natural history of a
Neotropical Rainforest, edited by: McDade, L. A., Bawa, K. S., Hespenheide,
H. A., and Hartshorn, G. S., chap. 4, 34–53, The University of Chicago
Press, 1994. a, b
Sparks, W. B., Richter, M., deWitt, C., Montiel, E., Russo, N. D., Grunsfeld,
J. M., McGrath, M. A., Weaver, H., Hand, K. P., Bergeron, E., and Reach, W.:
A Search for Water Vapor Plumes on Europa using SOFIA, Astrophys.
J., 871, L5, https://doi.org/10.3847/2041-8213/aafb0a, 2019. a
Strong, M., Sharp, Z. D., and Gutzler, D. S.: Diagnosing moisture transport
using D/H ratios of water vapor, Geophys. Res. Lett., 34, L03404,
https://doi.org/10.1029/2006GL028307, 2007. a
Stull, R. B.: An introduction to boundary layer meteorology, vol. 4, Springer
Netherlands, Dordrecht, 1 edn., https://doi.org/10.1007/978-94-009-3027-8, 1988. a
Tang, H., Dubayah, R., Swatantran, A., Hofton, M., Sheldon, S., Clark, D. B.,
and Blair, B.: Retrieval of vertical LAI profiles over tropical rain forests
using waveform lidar at La Selva, Costa Rica, Remote Sens. Environ.,
124, 242–250, https://doi.org/10.1016/j.rse.2012.05.005, 2012. a
Terando, A. J., Youngsteadt, E., Meineke, E. K., and Prado, S. G.: Ad hoc
instrumentation methods in ecological studies produce highly biased
temperature measurements, Ecol. Evol., 7, 9890–9904,
https://doi.org/10.1002/ece3.3499, 2017. a, b
Thompson, A.: Simulating the adiabatic ascent of atmospheric air parcels using
the cloud chamber, Department of Meteorology, Penn State, 2007. a
Trzeciak, T. M., Garcia-Carreras, L., and Marsham, J. H.: Cross-Saharan
transport of water vapor via recycled cold pool outflows from moist
convection, Geophys. Res. Lett., 44, 1554–1563,
https://doi.org/10.1002/2016GL072108, 2017. a
Valsan, A. E., Priyamvada, H., Ravikrishna, R., Després, V. R., Biju, C.,
Sahu, L. K., Kumar, A., Verma, R., Philip, L., and Gunthe, S. S.:
Morphological characteristics of bioaerosols from contrasting locations in
southern tropical India – A case study, Atmos. Environ., 122,
321–331, https://doi.org/10.1016/j.atmosenv.2015.09.071, 2015. a, b
van der Ent, R. J. and Savenije, H. H. G.: Length and time scales of atmospheric moisture recycling, Atmos. Chem. Phys., 11, 1853–1863, https://doi.org/10.5194/acp-11-1853-2011, 2011. a, b
Wang, J., Krejci, R., Giangrande, S., Kuang, C., Barbosa, H. M. J., Brito, J.,
Carbone, S., Chi, X., Comstock, J., Ditas, F., Lavric, J., Manninen, H. E.,
Mei, F., Moran-Zuloaga, D., Pöhlker, C., Pöhlker, M. L., Saturno, J.,
Schmid, B., Souza, R. A. F., Springston, S. R., Tomlinson, J. M., Toto, T.,
Walter, D., Wimmer, D., Smith, J. N., Kulmala, M., Machado, L. A. T., Artaxo,
P., Andreae, M. O., Petäjä, T., and Martin, S. T.: Amazon boundary layer
aerosol concentration sustained by vertical transport during rainfall,
Nature, 539, 416–419, https://doi.org/10.1038/nature19819, 2016.
a
Wang, P. K.: Moisture plumes above thunderstorm anvils and their contributions
to cross-tropopause transport of water vapor in midlatitudes, J.
Geophys. Res.-Atmos., 108, 4194, https://doi.org/10.1029/2002JD002581, 2003. a
Wright, J. S., Fu, R., Worden, J. R., Chakraborty, S., Clinton, N. E., Risi,
C., Sun, Y., and Yin, L.: Rainforest-initiated wet season onset over the
southern Amazon, P. Natl. Acad. Sci., 114,
8481–8486, https://doi.org/10.1073/pnas.1621516114, 2017. a
Zhang, R., Huang, J., Wang, X., Zhang, J. A., and Huang, F.: Effects of
precipitation on sonic anemometer measurements of turbulent fluxes in the
atmospheric surface layer, Journal of Ocean University of China, 15,
389–398, https://doi.org/10.1007/s11802-016-2804-4, 2016. a
Short summary
During rainfall events, evaporation from tropical forests is usually ignored. However, the water retained in the canopy during rainfall increases the evaporation despite the high-humidity conditions. In a tropical wet forest in Costa Rica, it was possible to depict vapor plumes rising from the forest canopy during rainfall. These plumes are evidence of forest evaporation. Also, we identified the conditions that allowed this phenomenon to happen using time-lapse videos and meteorological data.
During rainfall events, evaporation from tropical forests is usually ignored. However, the water...