Articles | Volume 25, issue 11
https://doi.org/10.5194/hess-25-6041-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-6041-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
Jiancong Chen
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, University of
California, Berkeley, CA, USA,
Baptiste Dafflon
Earth and Environmental Sciences Area,
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Anh Phuong Tran
Earth and Environmental Sciences Area,
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Department of
Water Resources Engineering and Technology, Water Resources Institute, 8,
Phao Dai Lang, Dong Da, Hanoi, Vietnam
Nicola Falco
Earth and Environmental Sciences Area,
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Susan S. Hubbard
Earth and Environmental Sciences Area,
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Related authors
Jiancong Chen, Bhavna Arora, Alberto Bellin, and Yoram Rubin
Hydrol. Earth Syst. Sci., 25, 4127–4146, https://doi.org/10.5194/hess-25-4127-2021, https://doi.org/10.5194/hess-25-4127-2021, 2021
Short summary
Short summary
We developed a stochastic framework with indicator random variables to characterize the spatiotemporal distribution of environmental hot spots and hot moments (HSHMs) that represent rare locations and events exerting a disproportionate influence over the environment. HSHMs are characterized by static and dynamic indicators. This framework is advantageous as it allows us to calculate the uncertainty associated with HSHMs based on uncertainty associated with its contributors.
Jonathan Bachman, John Lamb, Craig Ulrich, Neslihan Taş, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2025-2341, https://doi.org/10.5194/egusphere-2025-2341, 2025
Short summary
Short summary
We studied how Arctic landscapes change as the ground thaws by comparing measurements taken ten years apart. We found that some areas sank and new ponds formed, with different patterns depending on the shape of the land. These changes affect how water and carbon flow and cycle through the environment. The results help understand how and where the Arctic is shifting, and highlight the need for repeated observations to track long-term changes.
Xiang Huang, Yu Zhang, Bo Gao, Charles J. Abolt, Ryan L. Crumley, Cansu Demir, Richard P. Fiorella, Bob Busey, Bob Bolton, Scott L. Painter, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2025-1753, https://doi.org/10.5194/egusphere-2025-1753, 2025
Short summary
Short summary
Predicting hydrological runoff in Arctic permafrost regions is difficult due to limited observations and complex terrain. We used a detailed physics-based model to improve runoff estimates in a Earth system land model. Our method improved runoff accuracy and worked well across two different Arctic regions. This helps make climate models more reliable for understanding water flow in permafrost areas under a changing climate.
Claire L. Bachand, Chen Wang, Baptiste Dafflon, Lauren N. Thomas, Ian Shirley, Sarah Maebius, Colleen M. Iversen, and Katrina E. Bennett
The Cryosphere, 19, 393–400, https://doi.org/10.5194/tc-19-393-2025, https://doi.org/10.5194/tc-19-393-2025, 2025
Short summary
Short summary
Temporally continuous snow depth estimates are important for understanding changing snow patterns and impacts on frozen ground in the Arctic. In this work, we developed an approach to predict snow depth from variability in snow–ground interface temperature using small temperature sensors that are cheap and easy to deploy. This new technique enables spatially distributed and temporally continuous snowpack monitoring that has not previously been possible.
Ian Shirley, Sebastian Uhlemann, John Peterson, Katrina Bennett, Susan S. Hubbard, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2023-968, https://doi.org/10.5194/egusphere-2023-968, 2023
Preprint archived
Short summary
Short summary
Snow depth has a strong impact on soil temperatures and carbon cycling in the arctic. Because of this, we want to understand why snow is deeper in some places than others. Using cameras mounted on a drone, we mapped snow depth, vegetation height, and elevation across a watershed in Alaska. In this paper, we develop novel techniques using image processing and machine learning to characterize the influence of topography and shrubs on snow depth in the watershed.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Carlotta Brunetti, John Lamb, Stijn Wielandt, Sebastian Uhlemann, Ian Shirley, Patrick McClure, and Baptiste Dafflon
Earth Surf. Dynam., 10, 687–704, https://doi.org/10.5194/esurf-10-687-2022, https://doi.org/10.5194/esurf-10-687-2022, 2022
Short summary
Short summary
This paper proposes a method to estimate thermal diffusivity and its uncertainty over time, at numerous locations and at an unprecedented vertical spatial resolution from soil temperature time series. We validate and apply this method to synthetic and field case studies. The improved quantification of soil thermal properties is a cornerstone for advancing the indirect estimation of the fraction of soil components needed to predict subsurface storage and fluxes of water, carbon, and nutrients.
Baptiste Dafflon, Stijn Wielandt, John Lamb, Patrick McClure, Ian Shirley, Sebastian Uhlemann, Chen Wang, Sylvain Fiolleau, Carlotta Brunetti, Franklin H. Akins, John Fitzpatrick, Samuel Pullman, Robert Busey, Craig Ulrich, John Peterson, and Susan S. Hubbard
The Cryosphere, 16, 719–736, https://doi.org/10.5194/tc-16-719-2022, https://doi.org/10.5194/tc-16-719-2022, 2022
Short summary
Short summary
This study presents the development and validation of a novel acquisition system for measuring finely resolved depth profiles of soil and snow temperature at multiple locations. Results indicate that the system reliably captures the dynamics in snow thickness, as well as soil freezing and thawing depth, enabling advances in understanding the intensity and timing in surface processes and their impact on subsurface thermohydrological regimes.
Haruko M. Wainwright, Sebastian Uhlemann, Maya Franklin, Nicola Falco, Nicholas J. Bouskill, Michelle E. Newcomer, Baptiste Dafflon, Erica R. Siirila-Woodburn, Burke J. Minsley, Kenneth H. Williams, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 26, 429–444, https://doi.org/10.5194/hess-26-429-2022, https://doi.org/10.5194/hess-26-429-2022, 2022
Short summary
Short summary
This paper has developed a tractable approach for characterizing watershed heterogeneity and its relationship with key functions such as ecosystem sensitivity to droughts and nitrogen export. We have applied clustering methods to classify hillslopes into
watershed zonesthat have distinct distributions of bedrock-to-canopy properties as well as key functions. This is a powerful approach for guiding watershed experiments and sampling as well as informing hydrological and biogeochemical models.
Qina Yan, Haruko Wainwright, Baptiste Dafflon, Sebastian Uhlemann, Carl I. Steefel, Nicola Falco, Jeffrey Kwang, and Susan S. Hubbard
Earth Surf. Dynam., 9, 1347–1361, https://doi.org/10.5194/esurf-9-1347-2021, https://doi.org/10.5194/esurf-9-1347-2021, 2021
Short summary
Short summary
We develop a hybrid model to estimate the spatial distribution of the thickness of the soil layer, which also provides estimations of soil transport and soil production rates. We apply this model to two examples of hillslopes in the East River watershed in Colorado and validate the model. The results show that the north-facing (NF) hillslope has a deeper soil layer than the south-facing (SF) hillslope and that the hybrid model provides better accuracy than a machine-learning model.
Jiancong Chen, Bhavna Arora, Alberto Bellin, and Yoram Rubin
Hydrol. Earth Syst. Sci., 25, 4127–4146, https://doi.org/10.5194/hess-25-4127-2021, https://doi.org/10.5194/hess-25-4127-2021, 2021
Short summary
Short summary
We developed a stochastic framework with indicator random variables to characterize the spatiotemporal distribution of environmental hot spots and hot moments (HSHMs) that represent rare locations and events exerting a disproportionate influence over the environment. HSHMs are characterized by static and dynamic indicators. This framework is advantageous as it allows us to calculate the uncertainty associated with HSHMs based on uncertainty associated with its contributors.
Cited articles
Abatzoglou, J. T., Barbero, R., Wolf, J. W., and Holden, Z. A.: Tracking
Interannual Streamflow Variability with Drought Indices in the U.S. Pacific
Northwest, J. Hydrometeorol., 15, 1900–1912, https://doi.org/10.1175/jhm-d-13-0167.1, 2014.
Ai, J., Jia, G., Epstein, H. E., Wang, H., Zhang, A., and Hu, Y.: MODIS-Based
Estimates of Global Terrestrial Ecosystem Respiration, J. Geophys. Res.-Biogeo., 123, 326–352, https://doi.org/10.1002/2017JG004107, 2018.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
evapotranspiration: Guidelines for computing crop requirements, FAO Irrigation and drainage paper 56, Food and Agriculture Organization, Rome, 1998.
Anderson, M. C., Allen, R. G., Morse, A., and Kustas, W. P.: Use of Landsat
thermal imagery in monitoring evapotranspiration and managing water
resources, Remote Sens. Environ., 112, 50–65, https://doi.org/10.1016/j.rse.2011.08.025, 2012.
Baldocchi, D.: Measuring fluxes of trace gases and energy between ecosystems
and the atmosphere – the state and future of the eddy covariance method,
Glob. Chang. Biol., 20, 3600–3609, https://doi.org/10.1111/gcb.12649, 2014.
Baldocchi, D. D., Ma, S., Rambal, S., Misson, L., Ourcival, J. M., Limousin,
J. M., Pereira, J., and Papale, D.: On the differential advantages of
evergreenness and deciduousness in mediterranean oak woodlands: A flux
perspective, Ecol. Appl., 20, 1583–1597, https://doi.org/10.1890/08-2047.1, 2010.
Berryman, E. M., Vanderhoof, M. K., Bradford, J. B., Hawbaker, T. J., Henne,
P. D., Burns, S. P., Frank, J. M., Birdsey, R. A., and Ryan, M. G.:
Estimating Soil Respiration in a Subalpine Landscape Using Point, Terrain,
Climate, and Greenness Data, J. Geophys. Res.-Biogeo., 123,
3231–3249, https://doi.org/10.1029/2018JG004613, 2018.
Bodesheim, P., Jung, M., Gans, F., Mahecha, M. D., and Reichstein, M.: Upscaled diurnal cycles of land-atmosphere fluxes: a new global half-hourly data product, Earth Syst. Sci. Data, 10, 1327–1365, https://doi.org/10.5194/essd-10-1327-2018, 2018.
Budyko, M. I.: The Heat Balance of the Earth's Surface, Sov. Geogr., 2,
3–13, https://doi.org/10.1080/00385417.1961.10770761, 1961.
Carroll, R. W. H., Gochis, D., and Williams, K. H.: Efficiency of the Summer
Monsoon in Generating Streamflow Within a Snow-Dominated Headwater Basin of
the Colorado River, Geophys. Res. Lett., 47, e2020GL090856, https://doi.org/10.1029/2020GL090856,
2020.
Chang, L. L., Dwivedi, R., Knowles, J. F., Fang, Y. H., Niu, G. Y.,
Pelletier, J. D., Rasmussen, C., Durcik, M., Barron-Gafford, G. A., and
Meixner, T.: Why Do Large-Scale Land Surface Models Produce a Low Ratio of
Transpiration to Evapotranspiration?, J. Geophys. Res.-Atmos., 123, 9109–9130, https://doi.org/10.1029/2018JD029159, 2018.
Chen, J., Dafflon, B., Tran, A., Falco, N., and Hubbard, S.: Hybrid predictive modeling approach simulated evapotranspiration and ecosystem respiration data. Watershed Function SFA, ESS-DIVE repository [data set], https://doi.org/10.15485/1633810, 2020.
Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn,
M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi,
D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G.,
Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K.,
Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A.,
Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa,
H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T.,
Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick,
K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E.,
Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E.
S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C.,
Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A.,
Ueyama, M., Vargas, R., Wood, J. D., and Zona, D.: Representativeness of
Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites,
Agric. For. Meteorol., 301–302, 108350, https://doi.org/10.1016/j.agrformet.2021.108350, 2021.
Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J.
C., Skakun, S. V., and Justice, C.: The Harmonized Landsat and Sentinel-2
surface reflectance data set, Remote Sens. Environ., 219, 145–161, https://doi.org/10.1016/j.rse.2018.09.002, 2018.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.:
Acceleration of global warming due to carbon-cycle feedbacks in a coupled
climate model, Nature, 408, 184–187, https://doi.org/10.1038/35041539, 2000.
Daggers, T. D., Kromkamp, J. C., Herman, P. M. J., and van der Wal, D.: A
model to assess microphytobenthic primary production in tidal systems using
satellite remote sensing, Remote Sens. Environ., 211, 129–145,
https://doi.org/10.1016/j.rse.2018.03.037, 2018.
Falco, N., Wainwright, H., Dafflon, B., Léger, E., Peterson, J.,
Steltzer, H., Wilmer, C., Rowland, J. C., Williams, K. H., and Hubbard, S.
S.: Investigating Microtopographic and Soil Controls on a Mountainous Meadow
Plant Community Using High-Resolution Remote Sensing and Surface Geophysical
Data, J. Geophys. Res.-Biogeo., 124, 1618–1636, https://doi.org/10.1029/2018JG004394, 2019.
FLUXNET: FLUXNET measurements, available at: https://FLUXNET.fluxdata.org, last access: 1 July 2020.
Gao, X., Mei, X., Gu, F., Hao, W., Li, H., and Gong, D.: Ecosystem
respiration and its components in a rainfed spring maize cropland in the
Loess Plateau, China, Sci. Rep., 7, 17614, https://doi.org/10.1038/s41598-017-17866-1, 2017.
Gao, Y., Yu, G., Li, S., Yan, H., Zhu, X., Wang, Q., Shi, P., Zhao, L., Li,
Y., Zhang, F., Wang, Y., and Zhang, J.: A remote sensing model to estimate
ecosystem respiration in Northern China and the Tibetan Plateau, Ecol.
Modell., 304, 34–43, https://doi.org/10.1016/j.ecolmodel.2015.03.001, 2015.
van Gorsel, E., Delpierre, N., Leuning, R., Black, A., Munger, J. W., Wofsy,
S., Aubinet, M., Feigenwinter, C., Beringer, J., Bonal, D., Chen, B., Chen,
J., Clement, R., Davis, K. J., Desai, A. R., Dragoni, D., Etzold, S.,
Grünwald, T., Gu, L., Heinesch, B., Hutyra, L. R., Jans, W. W. P.,
Kutsch, W., Law, B. E., Leclerc, M. Y., Mammarella, I., Montagnani, L.,
Noormets, A., Rebmann, C. and Wharton, S.: Estimating nocturnal ecosystem
respiration from the vertical turbulent flux and change in storage of CO2,
Agric. For. Meteorol., 149, 1919–1930,
https://doi.org/10.1016/j.agrformet.2009.06.020, 2009.
Greve, P., Gudmundsson, L., Orlowsky, B., and Seneviratne, S. I.: Introducing
a probabilistic Budyko framework, Geophys. Res. Lett., 42, 2261–2269,
https://doi.org/10.1002/2015GL063449, 2015.
Hargrove, W. W., Hoffman, F. M., and Law, B. E.: New analysis reveals
representativeness of the amerflux network, Eos, Washington, DC, 84, 529–535, https://doi.org/10.1029/2003EO480001, 2003.
Hochreiter, S. and Schmidhuber, J.: Long Short-Term Memory, Neural Comput., 9, 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735, 1997.
Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston,
J., Herold, N., Wickham, J., and Megown, K.: Completion of the 2011 national
land cover database for the conterminous United States – Representing a
decade of land cover change information, Photogramm. Eng. Remote Sensing, 81, 346–354, 2015.
Hu, J., Moore, D. J. P., Burns, S. P., and Monson, R.: Longer growing seasons
lead to less carbon sequestration by a subalpine forest, Glob. Chang. Biol.,
16, 771–783, https://doi.org/10.1111/j.1365-2486.2009.01967.x, 2010.
Hubbard, S. S., Williams, K. H., Agarwal, D., Banfield, J., Beller, H.,
Bouskill, N., Brodie, E., Carroll, R., Dafflon, B., Dwivedi, D., Falco, N.,
Faybishenko, B., Maxwell, R., Nico, P., Steefel, C., Steltzer, H., Tokunaga,
T., Tran, P. A., Wainwright, H., and Varadharajan, C.: The East River,
Colorado, Watershed: A Mountainous Community Testbed for Improving
Predictive Understanding of Multiscale Hydrological–Biogeochemical
Dynamics, Vadose Zo. J., 17, 180061, https://doi.org/10.2136/vzj2018.03.0061, 2018.
IPCC: IPCC 2019 – Special report on climate change, desertification, land
degradation, sustainable land management, food security, and greenhouse gas
fluxes in terrestrial ecosystem, Res. Handb. Clim. Chang. Agric. Law, Cambridge University Press, https://doi.org/10.4337/9781784710644, 2019.
Irons, J. R., Dwyer, J. L., and Barsi, J. A.: The next Landsat satellite: The
Landsat Data Continuity Mission, Remote Sens. Environ., 122, 11–21, https://doi.org/10.1016/j.rse.2011.08.026, 2012.
Jägermeyr, J., Gerten, D., Lucht, W., Hostert, P., Migliavacca, M., and
Nemani, R.: A high-resolution approach to estimating ecosystem respiration
at continental scales using operational satellite data, Glob. Chang. Biol.,
20, 1191–1210, https://doi.org/10.1111/gcb.12443, 2014.
Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J.,
Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., De Jeu, R., Dolman, A.
J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball,
J., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D.,
Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N.,
Weber, U., Williams, C., Wood, E., Zaehle, S., and Zhang, K.: Recent decline
in the global land evapotranspiration trend due to limited moisture supply,
Nature, 467, 951–954, https://doi.org/10.1038/nature09396, 2010.
Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S.,
Ahlström, A., Arneth, A., Camps-Valls, G., Ciais, P., Friedlingstein,
P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale, D., Poulter, B.,
Raduly, B., Rödenbeck, C., Tramontana, G., Viovy, N., Wang, Y. P.,
Weber, U., Zaehle, S., and Zeng, N.: Compensatory water effects link yearly
global land CO2 sink changes to temperature, Nature, 541, 516–520,
https://doi.org/10.1038/nature20780, 2017.
Kakalia, Z., Varadharajan, C., Alper, E., Brodie, E., Burrus, M., Carroll,
R., Christianson, D., Hendrix, V., Henderson, M., Hubbard, S., Johnson, D.,
Versteeg, R., Williams, K., and Agarwal, D.: The East River Community
Observatory Data Collection: Diverse, multiscale data from a mountainous
watershed in the East River, Colorado, Authorea, 1–17, https://doi.org/10.22541/au.160157556.64095872, 2020.
Kampf, S., Markus, J., Heath, J., and Moore, C.: Snowmelt runoff and soil
moisture dynamics on steep subalpine hillslopes, Hydrol. Process., 29,
712–723, https://doi.org/10.1002/hyp.10179, 2015.
Keenan, T. F., Migliavacca, M., Papale, D., Baldocchi, D., Reichstein, M.,
Torn, M., and Wutzler, T.: Widespread inhibition of daytime ecosystem
respiration, Nat. Ecol. Evol., 3, 407–415,
https://doi.org/10.1038/s41559-019-0809-2, 2019.
Knowles, J. F., Blanken, P. D., and Williams, M. W.: Wet meadow ecosystems
contribute the majority of overwinter soil respiration from snow-scoured
alpine tundra, J. Geophys. Res.-Biogeo., 121, 1118–1130,
https://doi.org/10.1002/2015JG003081, 2016.
Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M.: Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005–6022, https://doi.org/10.5194/hess-22-6005-2018, 2018.
Lasslop, G., Reichstein, M., Papale, D., Richardson, A., Arneth, A., Barr,
A., Stoy, P., and Wohlfahrt, G.: Separation of net ecosystem exchange into
assimilation and respiration using a light response curve approach: Critical
issues and global evaluation, Glob. Chang. Biol., 16, 187–208,
https://doi.org/10.1111/j.1365-2486.2009.02041.x, 2010.
Li, X. and Xiao, J. A.: Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data, Remote Sens., 11, 517, https://doi.org/10.3390/rs11050517, 2019.
Livingston, G. P. and Hutchinson, G. L.: Enclosure-based measurement of
trace gas exchange: applications and sources of error, in: Biogenic trace gases: measuring emissions from soil and water, edited by: Matson, P. A. and Harris, R. C., Blackwell Science Ltd., Oxford, UK, 14–51, 1995.
Ma, Y., Liu, S., Song, L., Xu, Z., Liu, Y., Xu, T., and Zhu, Z.: Estimation
of daily evapotranspiration and irrigation water efficiency at a
Landsat-like scale for an arid irrigation area using multi-source remote
sensing data, Remote Sens. Environ., 216, 715–734,
https://doi.org/10.1016/j.rse.2018.07.019, 2018.
Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., and
Gascon, F.: Sen2Cor for Sentinel-2, Image and Signal Processing for
Remote Sensing XXIII, 1042704, 4 October 2017, Warsaw, Poland, https://doi.org/10.1117/12.2278218, 2017.
McCabe, M. F., Aragon, B., Houborg, R., and Mascaro, J.: CubeSats in
Hydrology: Ultrahigh-Resolution Insights Into Vegetation Dynamics and
Terrestrial Evaporation, Water Resour. Res., 53, 10017–10024,
https://doi.org/10.1002/2017WR022240, 2017.
Metzger, S., Junkermann, W., Mauder, M., Butterbach-Bahl, K., Trancón y Widemann, B., Neidl, F., Schäfer, K., Wieneke, S., Zheng, X. H., Schmid, H. P., and Foken, T.: Spatially explicit regionalization of airborne flux measurements using environmental response functions, Biogeosciences, 10, 2193–2217, https://doi.org/10.5194/bg-10-2193-2013, 2013.
Migliavacca, M., Reichstein, M., Richardson, A. D., Mahecha, M. D.,
Cremonese, E., Delpierre, N., Galvagno, M., Law, B. E., Wohlfahrt, G.,
Andrew Black, T., Carvalhais, N., Ceccherini, G., Chen, J., Gobron, N.,
Koffi, E., William Munger, J., Perez-Priego, O., Robustelli, M., Tomelleri,
E., and Cescatti, A.: Influence of physiological phenology on the seasonal
pattern of ecosystem respiration in deciduous forests, Glob. Chang. Biol.,
21, 363–376, https://doi.org/10.1111/gcb.12671, 2015.
Mohanty, B. P., Cosh, M. H., Lakshmi, V., and Montzka, C.: Soil moisture
remote sensing: State-of-the-science, Vadose Zone J., 16, 1–9, https://doi.org/10.2136/vzj2016.10.0105, 2017.
Mu, Q. Z., Heinsch, F. A., Zhao, M., and Running, S. W.: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sens. Environ., 111, 519–536, 2007.
Natural Resources Conservation Service (NRCS): SNOTEL data, available at: https://www.wcc.nrcs.usda.gov/snow/, last access: 1 July 2020.
Novick, K. A., Oishi, A. C., Ward, E. J., Siqueira, M. B. S., Juang, J. Y.,
and Stoy, P. C.: On the difference in the net ecosystem exchange of CO2
between deciduous and evergreen forests in the southeastern United States,
Glob. Chang. Biol., 21, 827–842, https://doi.org/10.1111/gcb.12723, 2015.
Olah, C.: Understanding LSTM Networks,
available at: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (last access: 1 July 2020), 2015.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M.,
Koven, C. D., Levis, S., Li, F., Riley, J., Subin, Z. M., Swenson, S. C.,
Thornton, P. E., Bozbiyik, A., Fisher, R. A., Heald, C. L., Kluzek, E.,
Lamarque, J.-F., Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S.,
Ricciuto, D. M., Sacks, W. J., Sun, Y., Tang, J., and Yang, Z.-L.: Technical
Description of version 4.5 of the Community Land Model (CLM), NCAR Technical Note NCAR/TN-503+STR, https://doi.org/10.5065/D6RR1W7M, 2013.
Omernik, J. M.: Perspectives on the nature and definition of ecological
regions, Environ. Manage., 34, S27–38, https://doi.org/10.1007/s00267-003-5197-2, 2004.
Omernik, J. M. and Griffith, G. E.: Ecoregions of the Conterminous United
States: Evolution of a Hierarchical Spatial Framework, Environ. Manage.,
54, 1249–1266, https://doi.org/10.1007/s00267-014-0364-1, 2014.
Oyler, J. W., Dobrowski, S. Z., Ballantyne, A. P., Klene, A. E., and Running,
S. W.: Artificial amplification of warming trends across the mountains of
the western United States, Geophys. Res. Lett., 42, 153–161, https://doi.org/10.1002/2014GL062803,
2015.
Paca, V. H. da M., Espinoza-Dávalos, G. E., Hessels, T. M., Moreira, D.
M., Comair, G. F., and Bastiaanssen, W. G. M.: The spatial variability of
actual evapotranspiration across the Amazon River Basin based on remote
sensing products validated with flux towers, Ecol. Process., 8, 6, https://doi.org/10.1186/s13717-019-0158-8, 2019.
Priestley, C. H. B. and Taylor, R. J.: On the Assessment of Surface Heat
Flux and Evaporation Using Large-Scale Parameters, Mon. Weather Rev., 100, 81-=92, https://doi.org/10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2,
1972.
Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T.,
Niinistö, S., Lohila, A., Larmola, T., Morero, M., Pihlatie, M.,
Janssens, I., Yuste, J. C., Grünzweig, J. M., Reth, S., Subke, J. A.,
Savage, K., Kutsch, W., Østreng, G., Ziegler, W., Anthoni, P., Lindroth,
A., and Hari, P.: Comparison of different chamber techniques for measuring
soil CO2 efflux, Agric. For. Meteorol., 123, 159–176, https://doi.org/10.1016/j.agrformet.2003.12.001, 2004.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M.,
Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A.,
Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl,
A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T.,
Miglietta, F., Ourcival, J. M., Pumpanen, J., Rambal, S., Rotenberg, E.,
Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and
Valentini, R.: On the separation of net ecosystem exchange into assimilation
and ecosystem respiration: Review and improved algorithm, Glob. Chang.
Biol., 11, 1424–1439, https://doi.org/10.1111/j.1365-2486.2005.001002.x, 2005.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J.,
Carvalhais, N., and Prabhat: Deep learning and process understanding for
data-driven Earth system science, Nature, 566, 195–204,
https://doi.org/10.1038/s41586-019-0912-1, 2019.
Ren, H., Cromwell, E., Kravitz, B., and Chen, X.: Using Deep Learning to Fill Spatio-Temporal Data Gaps in Hydrological Monitoring Networks, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2019-196, in review, 2019.
Rungee, J., Bales, R., and Goulden, M.: Evapotranspiration response to
multiyear dry periods in the semiarid western United States, Hydrol.
Process., 33, 182– 194, https://doi.org/10.1002/hyp.13322, 2019.
Ryu, Y., Baldocchi, D. D., Kobayashi, H., Van Ingen, C., Li, J., Black, T.
A., Beringer, J., Van Gorsel, E., Knohl, A., Law, B. E., and Roupsard, O.:
Integration of MODIS land and atmosphere products with a coupled-process
model to estimate gross primary productivity and evapotranspiration from 1
km to global scales, Global Biogeochem. Cycles, 25, 1–24,
https://doi.org/10.1029/2011GB004053, 2011.
Seneviratne, S. I., Lüthi, D., Litschi, M., and Schär, C.:
Land-atmosphere coupling and climate change in Europe, Nature, 443, 205–209, https://doi.org/10.1038/nature05095, 2006.
Strachan, S., Kelsey, E. P., Brown, R. F., Dascalu, S., Harris, F., Kent,
G., Lyles, B., McCurdy, G., Slater, D., and Smith, K.: Filling the Data Gaps
in Mountain Climate Observatories Through Advanced Technology, Refined
Instrument Siting, and a Focus on Gradients, Mt. Res. Dev., 36, 518–527,
https://doi.org/10.1659/mrd-journal-d-16-00028.1, 2016.
Suleau, M., Moureaux, C., Dufranne, D., Buysse, P., Bodson, B., Destain, J.
P., Heinesch, B., Debacq, A., and Aubinet, M.: Respiration of three Belgian
crops: Partitioning of total ecosystem respiration in its heterotrophic,
above- and below-ground autotrophic components, Agric. For. Meteorol., 151, 633–643, https://doi.org/10.1016/j.agrformet.2011.01.012, 2011.
Teuling, A. J., Van Loon, A. F., Seneviratne, S. I., Lehner, I., Aubinet,
M., Heinesch, B., Bernhofer, C., Grünwald, T., Prasse, H., and Spank, U.:
Evapotranspiration amplifies European summer drought, Geophys. Res. Lett., 40, 2071–2075,
https://doi.org/10.1002/grl.50495, 2013.
Thornton, P. E., Thornton, M. M., Mayer, B. W., Wei, Y., Devarakonda, R.,
Vose, R. S., and Cook, R. B.: Daymet: Daily Surface Weather Data on a 1-km
Grid for North America, Version 3, ORNL DAAC, Oak Ridge, Tennessee, USA,
2017.
Tran, A. P., Rungee, J., Faybishenko, B., Dafflon, B., and Hubbard, S. S.:
Assessment of spatiotemporal variability of evapotranspiration and its
governing factors in a mountainous watershed, Water, 11, 243, https://doi.org/10.3390/w11020243, 2019.
Visser, A., Thaw, M., Deinhart, A., Bibby, R., Safeeq, M., Conklin, M.,
Esser, B., and Van der Velde, Y.: Cosmogenic Isotopes Unravel the
Hydrochronology and Water Storage Dynamics of the Southern Sierra Critical
Zone, Water Resour. Res., 55, 1429–1450, https://doi.org/10.1029/2018WR023665, 2019.
Viviroli, D. and Weingartner, R.: “Water Towers” – A Global View of the Hydrological Importance of Mountains, in: Mountains: Sources of Water, Sources of Knowledge, Advances in Global Change Research, edited by: Wiegandt E., vol 31, Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-6748-8_2 2008.
Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., and Weingartner,
R.: Mountains of the world, water towers for humanity: Typology, mapping,
and global significance, Water Resour. Res., 43, 1–13,
https://doi.org/10.1029/2006WR005653, 2007.
Vogelmann, J. E., Howard, S. M., Yang, L., Larson, C. R., Wylie, B. K., and
Van Driel, N.: Completion of the 1990s National Land Cover Data set for the
conterminous United States from Landsat thematic mapper data and ancillary
data sources, Photogramm. Eng. Remote Sensing, 67, 650–662, 2001.
Webb, R. W., Fassnacht, S. R., and Gooseff, M. N.: Hydrologic flow path development varies by aspect during spring snowmelt in complex subalpine terrain, The Cryosphere, 12, 287–300, https://doi.org/10.5194/tc-12-287-2018, 2018.
Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P., Verbeeck, H., Carvalhais, N., Jung, M., Hollinger, D. Y., Kattge, J., Leuning, R., Luo, Y., Tomelleri, E., Trudinger, C. M., and Wang, Y.-P.: Improving land surface models with FLUXNET data, Biogeosciences, 6, 1341–1359, https://doi.org/10.5194/bg-6-1341-2009, 2009.
Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D., and
Wullschleger, S. D.: A comparison of methods for determining forest
evapotranspiration and its components: Sap-flow, soil water budget, eddy
covariance and catchment water balance, Agric. For. Meteorol., 106,
153–168, https://doi.org/10.1016/S0168-1923(00)00199-4, 2001.
Xiao, J., Ollinger, S. V., Frolking, S., Hurtt, G. C., Hollinger, D. Y.,
Davis, K. J., Pan, Y., Zhang, X., Deng, F., Chen, J., Baldocchi, D. D., Law,
B. E., Arain, M. A., Desai, A. R., Richardson, A. D., Sun, G., Amiro, B.,
Margolis, H., Gu, L., Scott, R. L., Blanken, P. D., and Suyker, A. E.:
Data-driven diagnostics of terrestrial carbon dynamics over North America,
Agric. For. Meteorol., 197, 142–157, https://doi.org/10.1016/j.agrformet.2014.06.013, 2014.
Xiong, X., Wenny, B., and Barnes, W.: Overview of NASA Earth Observing Systems Terra and Aqua moderate resolution imaging spectroradiometer instrument calibration algorithms and on-orbit performance, J. Appl. Rem. Sens., 3, 032501, https://doi.org/10.1117/1.3180864, 2009.
Xu, H., Xiao, J., Zhang, Z., Ollinger, S. V., Hollinger, D. Y., Pan, Y., and
Wan, J.: Canopy photosynthetic capacity drives contrasting age dynamics of
resource use efficiencies between mature temperate evergreen and deciduous
forests, Glob. Chang. Biol., 26, 6156–6167, https://doi.org/10.1111/gcb.15312, 2020.
Xu, L., Baldocchi, D. D., and Tang, J.: How soil moisture, rain pulses, and
growth alter the response of ecosystem respiration to temperature, Global
Biogeochem. Cycles, 18, 1–10, https://doi.org/10.1029/2004GB002281, 2004.
Xu, T., Guo, Z., Liu, S., He, X., Meng, Y., Xu, Z., Xia, Y., Xiao, J.,
Zhang, Y., Ma, Y., and Song, L.: Evaluating Different Machine Learning
Methods for Upscaling Evapotranspiration from Flux Towers to the Regional
Scale, J. Geophys. Res.-Atmos., 123, 8674–8690,
https://doi.org/10.1029/2018JD028447, 2018.
Zhang, L., Potter, N., Hickel, K., Zhang, Y., and Shao, Q.: Water balance
modeling over variable time scales based on the Budyko framework – Model
development and testing, J. Hydrol., 360, 117–131,
https://doi.org/10.1016/j.jhydrol.2008.07.021, 2008.
Zhang, Y., Kong, D., Gan, R., Chiew, F. H. S., McVicar, T. R., Zhang, Q., and
Yang, Y.: Coupled estimation of 500 m and 8-day resolution global
evapotranspiration and gross primary production in 2002–2017, Remote Sens.
Environ., 222, 165–182, https://doi.org/10.1016/j.rse.2018.12.031, 2019.
Short summary
The novel hybrid predictive modeling (HPM) approach uses a long short-term memory recurrent neural network to estimate evapotranspiration (ET) and ecosystem respiration (Reco) with only meteorological and remote-sensing inputs. We developed four use cases to demonstrate the applicability of HPM. The results indicate HPM is capable of providing ET and Reco estimations in challenging mountainous systems and enhances our understanding of watershed dynamics at sparsely monitored watersheds.
The novel hybrid predictive modeling (HPM) approach uses a long short-term memory recurrent...