Articles | Volume 25, issue 11
Hydrol. Earth Syst. Sci., 25, 6041–6066, 2021
https://doi.org/10.5194/hess-25-6041-2021
Hydrol. Earth Syst. Sci., 25, 6041–6066, 2021
https://doi.org/10.5194/hess-25-6041-2021
Research article
25 Nov 2021
Research article | 25 Nov 2021

A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration

Jiancong Chen et al.

Related authors

Statistical characterization of environmental hot spots and hot moments and applications in groundwater hydrology
Jiancong Chen, Bhavna Arora, Alberto Bellin, and Yoram Rubin
Hydrol. Earth Syst. Sci., 25, 4127–4146, https://doi.org/10.5194/hess-25-4127-2021,https://doi.org/10.5194/hess-25-4127-2021, 2021
Short summary
Stochastic hydrogeology's biggest hurdles analyzed and its big blind spot
Yoram Rubin, Ching-Fu Chang, Jiancong Chen, Karina Cucchi, Bradley Harken, Falk Heße, and Heather Savoy
Hydrol. Earth Syst. Sci., 22, 5675–5695, https://doi.org/10.5194/hess-22-5675-2018,https://doi.org/10.5194/hess-22-5675-2018, 2018
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Coupled modelling of hydrological processes and grassland production in two contrasting climates
Nicholas Jarvis, Jannis Groh, Elisabet Lewan, Katharina H. E. Meurer, Walter Durka, Cornelia Baessler, Thomas Pütz, Elvin Rufullayev, and Harry Vereecken
Hydrol. Earth Syst. Sci., 26, 2277–2299, https://doi.org/10.5194/hess-26-2277-2022,https://doi.org/10.5194/hess-26-2277-2022, 2022
Short summary
Does maximization of net carbon profit enable the prediction of vegetation behaviour in savanna sites along a precipitation gradient?
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 525–550, https://doi.org/10.5194/hess-26-525-2022,https://doi.org/10.5194/hess-26-525-2022, 2022
Short summary
Modelling the artificial forest (Robinia pseudoacacia L.) root–soil water interactions in the Loess Plateau, China
Hongyu Li, Yi Luo, Lin Sun, Xiangdong Li, Changkun Ma, Xiaolei Wang, Ting Jiang, and Haoyang Zhu
Hydrol. Earth Syst. Sci., 26, 17–34, https://doi.org/10.5194/hess-26-17-2022,https://doi.org/10.5194/hess-26-17-2022, 2022
Short summary
Vegetation greening weakened the capacity of water supply to China's South-to-North Water Diversion Project
Jiehao Zhang, Yulong Zhang, Ge Sun, Conghe Song, Matthew P. Dannenberg, Jiangfeng Li, Ning Liu, Kerong Zhang, Quanfa Zhang, and Lu Hao
Hydrol. Earth Syst. Sci., 25, 5623–5640, https://doi.org/10.5194/hess-25-5623-2021,https://doi.org/10.5194/hess-25-5623-2021, 2021
Short summary
Structural changes to forests during regeneration affect water flux partitioning, water ages and hydrological connectivity: Insights from tracer-aided ecohydrological modelling
Aaron J. Neill, Christian Birkel, Marco P. Maneta, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 4861–4886, https://doi.org/10.5194/hess-25-4861-2021,https://doi.org/10.5194/hess-25-4861-2021, 2021
Short summary

Cited articles

Abatzoglou, J. T., Barbero, R., Wolf, J. W., and Holden, Z. A.: Tracking Interannual Streamflow Variability with Drought Indices in the U.S. Pacific Northwest, J. Hydrometeorol., 15, 1900–1912, https://doi.org/10.1175/jhm-d-13-0167.1, 2014. 
Ai, J., Jia, G., Epstein, H. E., Wang, H., Zhang, A., and Hu, Y.: MODIS-Based Estimates of Global Terrestrial Ecosystem Respiration, J. Geophys. Res.-Biogeo., 123, 326–352, https://doi.org/10.1002/2017JG004107, 2018. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for computing crop requirements, FAO Irrigation and drainage paper 56, Food and Agriculture Organization, Rome, 1998. 
Anderson, M. C., Allen, R. G., Morse, A., and Kustas, W. P.: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources, Remote Sens. Environ., 112, 50–65, https://doi.org/10.1016/j.rse.2011.08.025, 2012. 
Baldocchi, D.: Measuring fluxes of trace gases and energy between ecosystems and the atmosphere – the state and future of the eddy covariance method, Glob. Chang. Biol., 20, 3600–3609, https://doi.org/10.1111/gcb.12649, 2014. 
Download
Short summary
The novel hybrid predictive modeling (HPM) approach uses a long short-term memory recurrent neural network to estimate evapotranspiration (ET) and ecosystem respiration (Reco) with only meteorological and remote-sensing inputs. We developed four use cases to demonstrate the applicability of HPM. The results indicate HPM is capable of providing ET and Reco estimations in challenging mountainous systems and enhances our understanding of watershed dynamics at sparsely monitored watersheds.