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Abstract. Climate change is reshaping vulnerable ecosys-
tems, leading to uncertain effects on ecosystem dynamics,
including evapotranspiration (ET) and ecosystem respira-
tion (Reco). However, accurate estimation of ET and Reco
still remains challenging at sparsely monitored watersheds,
where data and field instrumentation are limited. In this
study, we developed a hybrid predictive modeling approach
(HPM) that integrates eddy covariance measurements, phys-
ically based model simulation results, meteorological forc-
ings, and remote-sensing datasets to estimate ET and Reco
in high space—time resolution. HPM relies on a deep learn-
ing algorithm and long short-term memory (LSTM) and re-
quires only air temperature, precipitation, radiation, normal-
ized difference vegetation index (NDVI), and soil tempera-
ture (when available) as input variables. We tested and val-
idated HPM estimation results in different climate regions
and developed four use cases to demonstrate the applicabil-
ity and variability of HPM at various FLUXNET sites and
Rocky Mountain SNOTEL sites in Western North America.
To test the limitations and performance of the HPM approach
in mountainous watersheds, an expanded use case focused on
the East River Watershed, Colorado, USA. The results indi-
cate HPM is capable of identifying complicated interactions
among meteorological forcings, ET, and R, variables, as
well as providing reliable estimation of ET and Rec, across
relevant spatiotemporal scales, even in challenging moun-
tainous systems. The study documents that HPM increases
our capability to estimate ET and R, and enhances process
understanding at sparsely monitored watersheds.

1 Introduction

Climate change has a profound influence on global and re-
gional energy, water, and carbon cycling, including evapo-
transpiration (ET), net ecosystem exchange (NEE), gross pri-
mary production (GPP), and ecosystem respiration (Reco).
ET is an important link between the water and energy cy-
cles: dynamic changes in ET can affect precipitation, soil
moisture, and surface temperature, leading to uncertain feed-
backs in the environment (Jung et al., 2010; Seneviratne et
al., 2006; Teuling et al., 2013). Thus, quantifying ET is par-
ticularly essential for improving our understanding of wa-
ter and energy interactions as well as watershed responses
to abrupt disturbances and gradual climate changes, which
is critical for water resources management, agriculture, and
other societal benefits (Anderson et al., 2012; Jung et al.,
2010; Rungee et al., 2019; Viviroli et al., 2007; Viviroli and
Weingartner, 2008). NEE, GPP, and Ry, which represent
the net carbon exchange, total carbon assimilation, and total
respiration in a specific ecosystem, respectively, play vital
roles in the response of the terrestrial ecosystem to global
climate change (Jung et al., 2017; Reichstein et al., 2005; Xu
et al., 2004). Particularly, increases in Rec, may contribute
to accelerating global warming through positive feedbacks
to the atmosphere (Cox et al., 2000; Gao et al., 2017; IPCC,
2019; Suleau et al., 2011); estimating and monitoring Reco
over relevant spatiotemporal scales is challenging. As de-
scribed below, there are many different strategies for mea-
suring and estimating ET and R, each of which has advan-
tages and limitations. This study is motivated by the recog-
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nition that current methods cannot provide ET and R, at
spatial scales and timescales (e.g., daily) needed to improve
prediction of changing terrestrial system behavior, particu-
larly in challenging mountainous watersheds.

Several ground-based approaches have been used to
provide in situ estimates or measurements of ET and
Reco. Ground-based flux chambers measure trace gases emit-
ted from the land surface, which can be used to estimate ET
and Reco (Livingston and Hutchinson, 1995; Pumpanen et
al., 2004). The eddy covariance method uses a tower with in-
stalled instruments to autonomously measure fluxes of trace
gases between the ecosystem and the atmosphere (Baldocchi,
2014; Wilson et al., 2001). ET is then calculated from the
latent heat flux, and R is calculated from the net carbon
fluxes using nighttime or daytime partitioning approaches
(van Gorsel et al., 2009; Lasslop et al., 2010; Reichstein et
al., 2005). The spatial footprint of obtained eddy covariance
fluxes is on the order of hundreds of meters, and the temporal
resolution of the measurements ranges from hours to decades
(Wilson et al., 2001). Tower-based in situ measurements of
fluxes have been integrated into the global AmeriFlux (http:
/lameriflux.1bl.gov/, last access: 1 July 2020) and FLUXNET
(https://FLUXNET.fluxdata.org/, last access: 1 July 2020)
networks. Eddy covariance towers are usually installed at
valley bottoms of mountainous watersheds (Strachan et al.,
2016). Data from flux towers should also be used carefully
as flux footprints may vary significantly across sites and
through time depending on site-specific information, turbu-
lent states of the atmosphere, and underlying surface charac-
teristics (Chu et al., 2021). Given the cost and efforts required
to install and maintain a flux tower, eddy covariance towers
are typically sparse and may not capture complex fluxes at
sites with complex terrains, such as montane environments.
Though measurements from a single flux tower may not cap-
ture heterogeneity in ET and Re, due to complex terrains,
they can support the development of statistical or physical-
based models integrated with other types of data to provide
ET and R, estimation as we describe herein.

Physically based numerical models, which represent land-
surface energy and water balance, have also been used to es-
timate ET and Reco (Tran et al., 2019; Williams et al., 2009),
such as the Community Land Model (CLM; Oleson et al.,
2013). Performance of these models depends on the accuracy
of inputs and parameters, such as soil type and leaf area in-
dex, which can be difficult to obtain at a sufficiently high spa-
tiotemporal resolution. The lack of measurements to infer pa-
rameters needed for models often leads to large discrepancies
between model-based and flux-tower-based ET and Reco €sti-
mates. Conceptual model uncertainty inherent in mechanistic
models can also lead to ET and Rgco estimation uncertainty
and errors. For example, Keenan et al. (2019) suggested that
current terrestrial carbon cycle models neglect inhibition of
leaf respiration that occurs during daytime, which can result
in a bias of up to 25 %. Chang et al. (2018) suggested that
process-based models may not represent transpiration accu-
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rately due to challenges in simulating the uneven hydraulic
distribution caused by complex terrain. Semi-analytical for-
mulations are also commonly used to estimate ET, includ-
ing the Budyko framework and its extensions (Budyko, 1961;
Greve et al., 2015; Zhang et al., 2008), Penman—Monteith’s
equation (Allen et al., 1998), and the Priestley—Taylor equa-
tion (Priestley and Taylor, 1972). However, these conceptual
uncertainties, in addition to data sparseness and data uncer-
tainty, still limit the applicability of these approaches.

Remote-sensing products, such as Landsat imagery (Irons
et al., 2012), Sentinel-2 (Main-Knorn et al., 2017), and the
Moderate-Resolution Imaging Spectroradiometer (MODIS,
Xiong et al., 2009), have also been integrated to estimate
ET and R.c, (Abatzoglou et al., 2014; Daggers et al., 2018;
Mohanty et al., 2017; Paca et al., 2019). Ryu et al. (2011)
proposed the “Breathing Earth System Simulator” approach,
which integrates mechanistic models and MODIS data to
quantify ET and GPP with a spatial resolution of 1-5 km and
a temporal resolution of 8 d. Ai et al. (2018) extracted indices
from the MODIS dataset — and used the rate—temperature
curve and strong correlations between terrestrial carbon ex-
change and air temperature to estimate Reco at 1 km spatial
resolution and 8 d temporal resolution. Ma et al. (2018) de-
veloped a data fusion scheme that fused Landsat-like-scale
datasets and MODIS data to estimate ET and irrigation wa-
ter efficiency at a spatial scale of ~ 100m. However, even
though remote-sensing data cover large areas of the earth
surface, they typically do not provide information over both
high spatial and temporal resolution, and data quality is sub-
ject to cloud conditions. For example, Landsat has average
return periods of 16 d with a spatial resolution of 30 m (vis-
ible and near-infrared), whereas MODIS has 1-2 d temporal
resolution with a 250 m or 1 km spatial resolution depending
on the sensors. These resolutions are typically too coarse to
enable exploration of how aspects such as plant phenology,
snowmelt, and rainfall influence water and energy dynamics
of an ecosystem.

Combining machine-learning models with remote-sensing
products and meteorological inputs offers another option for
large-scale estimation of ET and Re¢,. Remotely sensed data
can be good proxies for plant productivity and can be eas-
ily implemented into machine-learning models for ET and
REco estimation, such as for an enhanced vegetation index,
land surface water index, and normalized difference vegeta-
tion index (NDVI) (Gao et al., 2015; Jagermeyr et al., 2014;
Migliavacca et al., 2015). Li and Xiao (2019) developed a
data-driven model to estimate gross primary production at a
spatial and temporal resolution of 0.05° and 8 d. Berryman et
al. (2018) demonstrated the value of a random forest model
to predict growing season soil respiration from subalpine
forests in the Southern Rocky Mountains ecoregion. Jung et
al. (2010) developed a model tree ensemble approach to up-
scale FLUXNET data, where they successfully estimated ET
and GPP. Other methods have used support vector machines,
artificial neural networks, random forest, and piecewise re-
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gression (Bodesheim et al., 2018; Metzger et al., 2013; Xiao
et al., 2014; Xu et al., 2018). These models were trained
with ground-measured flux observations and other variables
and then applied to estimate ET over continental or global
scales with remote-sensing and meteorological inputs. Some
of the most important inputs include the enhanced vegetation
index, aridity index, air temperature, and precipitation. The
spatiotemporal resolution of these approaches is constrained
by the resolution of remote-sensing products and meteoro-
logical inputs. Additionally, parameters such as leaf area in-
dex, cloudiness, and the vegetation types required by those
models may not be available at the required resolution, ac-
curacy or location. For example, in systems that have signifi-
cant elevation gradients, errors may occur when valley-based
FLUXNET data are used for training and then applied to hill-
slope or ridge ET and R, estimation.

Development of hybrid models that link direct measure-
ments and/or mechanistic models with data-driven methods
can benefit ET and R, estimation (Reichstein et al., 2019).
While remote-sensing data that cover large regions provide
promise for informing models, quantitative interpretation of
these data needed for input into mechanistic models is still
challenging (Reichstein et al., 2019). Physically based mod-
els can provide estimates of ET and Reco, but the estimate
error can be high, owing to parametric, structural, and con-
ceptual uncertainties as described above. Hybrid data-driven
frameworks are advantageous because they enable the in-
tegration of remote-sensing datasets, meteorological forc-
ings, and mechanistic model outputs of ET and Re, into
one model. Machine-learning approaches can then be applied
to extract the spatiotemporal patterns for ET and Rec, pre-
diction. The integration of multi-model and multi-data ap-
proaches can increase our modeling capability to estimate ET
and Reco and enhance our process understanding of ecosys-
tem water and carbon cycling under climate change.

In this study, we developed a hybrid predictive modeling
approach (HPM) to estimate daily ET and Rgco with eas-
ily acquired meteorological data (i.e., air temperature, pre-
cipitation, and radiation) and remote-sensing products (i.e.,
NDVI). HPM is hybrid as it can flexibly integrate direct mea-
surements from flux towers and/or physically based model
results (e.g., CLM) and utilize a deep learning long short-
term memory recurrent neural network (LSTM) to establish
statistical relationships among fluxes and meteorological and
remote-sensing inputs. Once developed, the corresponding
HPM can be used as a modeling tool to estimate ET and
Reco over space and time. We developed four use cases to
demonstrate the applicability of HPM based on site-specific
data and model availability. The remainder of this paper is
organized as follows. Section 2 mainly describes the sites
considered in this study and how data were acquired and pro-
cessed. Section 3 presents the methodology of the HPM ap-
proach, followed by the results of various use cases presented
in Sect. 4. Discussion and conclusion are provided in Sects. 5
and 6, respectively.
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2 Site information and data acquisition and processing

The HPM method was tested using data from a range of
different ecosystem types to explore its performance under
different conditions. We place a particular focus on moun-
tainous sites, given their regional and global importance yet
challenges associated with ET and R, in these regions, as
described above.

2.1 FLUXNET stations and ecoregions

Nine FLUXNET stations, which cover a wide range of cli-
mate and elevations, were selected for this study (Table 1
and Fig. 1). These stations have elevations from 129 m (US-
Var) to 3050 m (US-NR1), mean annual air temperature from
0.34° (CA-Oas) to 17.92° (US-SRM), and mean annual pre-
cipitation from 320 mm (US-Whs) to 800 mm (US-NRI).
These FLUXNET stations also cover a wide range of vegeta-
tion types (i.e., evergreen forest, deciduous forest, and shrub-
lands). As indicated by Hargrove et al. (2003), FLUXNET
stations were maintained to capture watershed dynamics in
different ecoregions, which are areas that display recurring
patterns of similar combinations of soil, vegetation, and land-
form characteristics (Omernik, 2004). Omernik and Grif-
fith (2014) delineated the boundaries of ecoregions through
pattern analysis that consider the spatial correlation of both
physical and biological factors (i.e., soils, physiography, veg-
etation, land use, geology, and hydrology) in a hierarchical
level. FLUXNET stations considered in this study are mainly
located in four unique ecoregions (Table 1). As is described
below, we developed a local-scale (i.e., point scale) HPM
approach that is representative of different ecoregions using
data provided at these FLUXNET stations to estimate ET and
Rgco and validated the HPM estimates with measurements
from stations within the same ecoregion.

2.2 SNOTEL stations

For reasons described below, we performed a deeper explo-
ration of HPM performance within one of the mountainous
watershed sites (the East River Watershed of the Upper Col-
orado River Basin, USA), which is located in the Western
Cordillera ecoregion. At this site, we utilized meteorologi-
cal forcing data from three snow telemetry (SNOTEL) sta-
tions. These sites include the Butte (ER-BT, ID: 380), Por-
phyry Creek (ER-PK, ID: 701), and Schofield Pass (ER-SP,
ID: 737) sites. A one-dimensional (vertical) CLM model was
developed at these SNOTEL stations that provides physically
model-based ET estimation (Tran et al., 2019). Table 1 sum-
marizes the SNOTEL stations used in this study and the cor-
responding climate characteristics. Figure 1 shows the geo-
graphical locations of FLUXNET and SNOTEL stations se-
lected in this study.

Hydrol. Earth Syst. Sci., 25, 6041-6066, 2021
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Table 1. Summary of FLUXNET stations and SNOTEL stations information. * denotes SNOTEL stations and all others are FLUXNET
stations. Dfc, Bsk, and Csa represent subarctic or boreal climates, semi-arid climate, and Mediterranean hot summer climates, respectively.
ENF, DBF, WSA, GRA, and OSH represent evergreen needleleaf forest, deciduous broadleaf forests, woody savannas, grasslands, and open
shrubland, respectively. FLUXNET data were obtained from the FLUXNET2015 database.

Site ID Site name Latitude, Elevation Mean Mean Climate  Vegetation Ecoregion Period
longitude (m) annual annual Koeppen IGBP (Level II) of record
air (°)  precipitation
temperature (mm)
US-NR1  Niwot Ridge (40.0329, 3050 1.5 800 Dfc ENF Western 2000-2014
—105.5464) Cordillera
CA-Oas Saskatchewan — (53.6289, 530 0.34 428 Dfc DBF boreal 19972010
Western Boreal, —106.1978) Plain
Mature Aspen
CA-Obs Saskatchewan — (53.9872, 628.94 0.79 406 Dfc ENF Boreal 1999-2010
Western Boreal, —105.1178) Plain
Mature Spruce
US-SRM  Santa Rita (31.8214, 1120 17.92 380 Bsk WSA Western Sierra 2005-2015
Mesquite —110.8661) Madre Piedmont
US-Ton Tonzi Ranch (38.4316, 177 15.8 559 Csa WSA Mediterranean 2002-2015
—120.9660) California
US-Var Vaira Ranch (38.4133, 129 15.8 559 Csa GRA Mediterranean 2002-2015
— Tone —120.9507) California
US-Whs Walnut Gulch (31.7438, 1370 17.6 320 Bsk OSH Western Sierra 2008-2015
Lucky Hills —110.0522) Madre Piedmont
Shrub
US-Wkg  Walnut Gulch (31.7365, 1531 15.64 407 Bsk GRA Western Sierra 2005-2015
Kendall Grass —109.9419) Madre Piedmont
US-Me2  Metolius Mature (44.4523, 1253 6.28 523 Csb ENF Western 2012-2015
Ponderosa Pine —121.5574) Cordillera
ER-BTx  Butte (380) (38.894, 3096 2.38 821 Dfc N/A Western 1995-2017
—106.945) Cordillera
ER-SPx Schofield (39.02, 3261 2.46 1064 Dfc N/A Western 1995-2017
Pass (737) —107.05) Cordillera
ER-PK*  Porphyry (38.49, 3280 1.97 574 Dfc N/A Western 1995-2017
Creek (701) —106.34) Cordillera

2.3 East River Watershed characteristics and previous
analyses

Data from the East River Watershed were used to explore
how ET and Rec, dynamics estimated from the developed
HPM vary with different vegetation and meteorological forc-
ings. The East River Watershed is located northeast of the
town of Crested Butte, Colorado. This watershed has an aver-
age elevation of 3266 m, with significant gradients in topog-
raphy, hydrology, geomorphology, vegetation, and weather.
The mean annual air temperature in the East River is ~
2.4°C, with average daily air temperatures of —7.6 and
13.4°C in December and July respectively (Kakalia et al.,
2020) and an average of 1200mmyr~! total precipitation
(Hubbard et al., 2018). Consisting of montane, subalpine,
and alpine life zones, each with distinctive vegetation bio-
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diversity, the East River Watershed is a test bed for the US
Department of Energy Watershed Function Scientific Focus
Area Project, led by the Lawrence Berkeley National Labora-
tory (Hubbard et al., 2018). The project has acquired a range
of datasets, including hydrological, biogeochemical, remote-
sensing, and geophysical datasets.

Recently completed studies at the East River Watershed
were used in this study to inform HPM and to assess the re-
sults. For example, physically model-based estimations of
ET at this site (Tran et al., 2019) were used herein for
HPM development and validation. Falco et al. (2019) used
machine-learning-based remote-sensing methods to charac-
terize the spatial distribution of vegetation types, slopes, and
aspects within a hillslope at the East River Watershed, which
were used with obtained HPM estimates to explore how veg-
etation heterogeneity influences ET and Rgco dynamics. To

https://doi.org/10.5194/hess-25-6041-2021
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Figure 1. Location of sites considered in this study. Note that US-Ton and US-Var and US-Whs and US-Wkg are close to each other. East
River Watershed is located next to ER-BT. The white lines delineate Western US states and Canadian provinces. Circles represent FLUXNET
sites, diamonds represent SNOTEL sites, and the triangle represents the East River Watershed.

perform this assessment, we computed the spatial distribu-
tion of vegetation types at watershed scale based on Falco et
al. (2019). We evaluated manually and selected 16 locations
within the East River Watershed having different vegetation
types and slope aspects. These 16 locations were chosen to
be at the center of vegetation patched and covered by one
vegetation type. A summary of the locations is presented in
Table 2; the spatial distribution of the locations is shown in
Fig. 2.

2.4 Data collection and processing

To enhance transferability of the developed HPM strategy to
less intensively characterized watersheds, we selected only
“easy to measure” or “widely available” attributes, such as
precipitation, air temperature, radiation, and NDVI, as in-
puts to the HTM model. Soil temperature was used when
available. The data sources used for these inputs include
FLUXNET data (https://fluxnet.fluxdata.org/, last access:
1 July 2020), SNOTEL data (https://www.wcc.nrcs.usda.
gov/snow/, last access: 1 July 2020) and developed CLM
model (Tran et al., 2019) at SNOTEL stations, DAYMET
meteorological inputs (Thornton et al., 2017), and remote-
sensing data from Landsat imageries (Irons et al., 2012). We
identified some data gaps and erroneous data (especially dur-
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Figure 2. Vegetation classification of the East River Watershed, CO,
from Falco et al. (2019). East River sites selected in this study are
denoted by black circles.
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Table 2. Location and vegetation types of East River Watershed sampling points (Fig. 2).

Easting (m) Northing (m)  Vegetation type Aspect  Elevation (m)
327085 4309878  Deciduous forest South 2983
326288 4312504  Deciduous forest South 3177
330012 4313132  Deciduous forest North 3108
326854 4313192  Deciduous forest South 3098
328246 4312832 Meadow South 3095
327010 4315059 Meadow South 2790
328738 4306139 Meadow North 2890
334270 4309465 Meadow North 2929
333406.5 4308340 Riparian shrubland ~ South 2760
327846 4312497 Riparian shrubland  South 2723
334641 4305632  Riparian shrubland  North 2740
330760 4310097  Riparian shrubland  South 2855
329573 4314569  Evergreen forest South 3026
333106 4307313  Evergreen forest North 3102
325056 4310456  Evergreen forest South 2961
335141 4309614  Evergreen forest North 3131

ing winter seasons) for the ET estimates at US-NR1, which
were cleaned following the procedures presented in Rungee
et al. (2019). At the three selected SNOTEL stations, air tem-
perature data at these three SNOTEL stations were processed
following Oyler et al. (2015) and radiation data were ob-
tained from DAYMET. CLM models were generated follow-
ing Tran et al. (2019) for the SNOTEL stations and US-NR1.
At the East River Watershed sites, data were obtained from
DAYMET. NDVI time series were calculated from the red
band and near-infrared band from Landsat 5, 7, and 8 images
at all sites. We used the cloud-scoring algorithm provided
in the Google Earth Engine to mask clouds in all retrieved
data, only selecting the ones that had a simple cloud score
below 20 to ensure data quality. Given the different calibra-
tion sensors used in Landsat 5, 7, and 8, we also followed
the processes described in Homer et al. (2015) and Vogel-
mann et al. (2001) to keep NDVI computations consistent
over time. Landsat satellites have a return period of 16 d, and
thus we performed a reconstruction of NDVI time series to
obtain daily-scale time data (Sect. 3.2.2).

3 Hybrid predictive modeling framework

In this section, we illustrate the steps for building an HPM
model for ET and R, estimation over time and space. Fig-
ure 3 presents the general framework of HPM, which in-
cludes modules for data preprocessing, model development,
model validation, and predictive modeling.

3.1 Model framework
HPM establishes relationships among meteorological forc-

ings’ attributes, NDVI, ET, and R, (Fig. 3) using a deep-
learning-based module (fully connected deep neural net-
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works and long short-term memory recurrent neural net-
works). Long short-term memory (LSTM; Hochreiter and
Schmidhuber, 1997) is a type of recurrent neural network
(RNN) capable of learning temporal dependence without
suffering from optimization difficulties (e.g., vanishing er-
rors). An LSTM layer consists of memory blocks and unique
cell states that are controlled by three multiplicative units,
including the input, output, and forget gates. These gates
regulate the flow of information and decide which data in
a sequence are important to keep or throw away. Through
the LSTM structure, even information from the earlier time
steps can make its way to later time steps, reducing the ef-
fects of short-term memory and thus capturing long-term de-
pendence. LSTM has been previously used to capture such
dependencies between climate and environmental data. For
example, Kratzert et al. (2018) successfully used LSTM to
learn the long-term dependencies in hydrological data (e.g.,
storage effects within catchments, time lags between precip-
itation inputs and runoff generation) for rainfall-runoff mod-
eling. LSTM has also been used for gap filling in hydro-
logical monitoring networks in the spatiotemporal domain
(Ren et al., 2019). More information about the LSTM-RNN
method is provided by Olah (2015).

HPM modules include input attributes, model develop-
ment, validation, and prediction. Based on data availability,
input features are obtained from flux towers, CLM predic-
tions, gridded meteorological data, and remote-sensing data;
all data are preprocessed for gap filling, smoothing, and up-
dating. In the HPM model development module, individual
HPM models can be trained in two different ways based on
data availability: with data obtained from flux towers (“data-
driven HPM”) or with outputs from physically based models
(“mechanistic HPM”). A proportion of 70 % of these data
are used for training LSTM to learn the interactions among

https://doi.org/10.5194/hess-25-6041-2021
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input features, ET, and Re,, until a predefined “stopping cri-
teria” (e.g., root mean squared error, RMSE) is met, indicat-
ing subsequent training would lead to minimal improvement.
In most models, the configuration of the neural networks in-
cludes a first LSTM layer with 50 units, a second LSTM layer
with 25 units, a dense layer with 8 units having L2 regu-
larizers, and a final output dense layer. Dropout layers are
also embedded in the model to prevent overfitting. There are
11600 and 7600 parameters for the first and second LSTM
layers, 208 and 9 for the first and second dense layers, and
no parameters for the dropout layers. Other configurations
of networks may provide better estimation results; however,
they are not assessed in this study as the proposed configura-
tion already provide reasonable results.

In the validation module, we implemented a validation
procedure that uses the remaining 30 % of the data to as-
sess model performance. Estimation outputs from the trained
HPM models are also compared with other ET and Reco
data obtained from other independent sites or mechanistic
models within the same ecoregion. Statistical measures such
as adjusted R? and mean absolute error (MAE) are com-
puted to evaluate the performance of HPM models. In the
predictive model module, meteorological forcings data and
remote-sensing data are processed at target sites of inter-
est, and the validated HPM model is used to estimate ET
and R, at these sites. ET and Reco outputs estimated from
HPM at sparsely monitored watersheds then provide alter-
native datasets for process understanding within the target
watersheds.

3.2 Feature selection

At sparsely monitored watersheds, only weather reanalysis
data and remote-sensing data are commonly available. Thus,
we mainly considered air temperature, radiation, precipita-
tion, vegetation indices (e.g., NDVI), and variables inferred
from these data as inputs for HPM. Soil temperature when
available is used at FLUXNET sites. Other key attributes that
depend on depth- and site-specific characteristics such as soil
moisture and snow depth are not used in current HPM mod-
els due to data availability.

3.2.1 Snow information

In snow-influenced mountainous watersheds, we separated
precipitation data into snow precipitation (when air tem-
perature <() and rainfall precipitation (when air tempera-
ture >0), which is in line with what has been used in hydro-
logical models such as CLM (Oleson et al., 2013). Knowles
et al. (2016) discovered a significant correlation between
day of peak snow accumulation, snowmelt, and air tempera-
ture. To capture snow-related dynamics (e.g., snowmelt), we
constructed a categorical variable (sn) based on air and soil
temperature thresholds. Note that this may not be needed if
snow data become available and at sites where snow is rarely
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present.

0, during snow accumulation; air
temperature < 0
1, during snow melting; air temperature
sn = A , ey
> 0 while soil temperature < 0
2, no snow; air temperature and soil

temperature > (0
3.2.2 Vegetation information

We reconstructed daily NDVI values based on meteorolog-
ical forcing data (e.g., air temperature, precipitation, radi-
ation) using LSTM to increase the temporal coverage of
NDVI as the current HPM configuration requires daily in-
puts. Figure 4 represents Landsat-derived NDVI and recon-
structed NDVI values for two sites at the East River Wa-
tershed, CO: Butte (ER-BT) and Schofield Pass (ER-SP).
Though not ideal, as satellites continue to advance and more
training data becomes available, the accuracy of NDVI tem-
poral reconstruction is expected to increase.

3.3 Use cases

We developed four different use cases to demonstrate the
applicability of the HPM approach based on site-specific
data and model availability. Use case 1 focuses on ET and
Reco in the time domain, where a HPM is trained on direct
measurements from flux tower. A 70 %—-20 %—10 % training—
validation—prediction split of the data was used. The HPM
approach is useful for time series gap filling and future pre-
diction. Use case 2 and use case 3 have emphasis on pro-
viding ET and R, over space, where use case 2 uses data-
driven HPM and use case 3 utilizes mechanistic HPM. Data-
driven HPM is trained with data from the flux tower, and
mechanistic HPM is trained upon outputs from a mechanistic
model (e.g., CLM). The HPM approach is usually trained at
well-monitored watersheds where either flux data are avail-
able or data support the development of a mechanistic model.
After training, this HPM approach integrates meteorological
and remote-sensing inputs to provide ET and R, at target
sparsely monitored watersheds within the same ecoregion.
For both use case 2 and 3, we validated the HPM estima-
tions against data from other sites within the same ecore-
gion. Use case 4 focuses on the East River Watershed, where
we demonstrate how HPM can increase our understanding
of ecosystem fluxes and explore the limitations of HPM in
mountainous watersheds. Use case 4 estimations were vali-
dated against data extracted from other studies.
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Figure 4. Temporal reconstruction of NDVI at ER-BT (a) and ER-SP (b). Black lines represent reconstructed daily NDVI. Red points are

used for training, and blue points are used for validation.

4 Results

4.1 Use Case 1: ET and Rgco time series estimation
with an HPM approach developed at FLUXNET
sites

A local HPM approach was developed to estimate ET and
Reco using flux tower data obtained from FLUXNET sites
listed in Table 1. At all FLUXNET sites, air temperature,
precipitation, net radiation, NDVI, and soil temperature were
used. For US-NR1, CA-Oas, and CA-Obs, sn is also in-
cluded. The results, which are shown in Figs. 5 and A1-A4
and Table 3, reveal that the HPM approach was effective in

Hydrol. Earth Syst. Sci., 25, 6041-6066, 2021

estimating ET and Re¢,. The long-term trends in ET and Reco
are well captured by HPM. However, short-term fluctuations
in ET and R, during the summer periods are also not well
captured by HPM. For example, at US-Ton and US-Var, we
observed an increasing discrepancy in summertime ET and
Reco- This is mainly caused by insufficient training for sum-
mer extremes. At US-Me2, we observed significant increas-
ing errors in the validation set, especially for Reco, that are
caused by significant differences in raw data between 2002—
2010 (data used for training) and post-2011 (data used for
validation).

https://doi.org/10.5194/hess-25-6041-2021



J. Chen et al.: A deep learning hybrid predictive modeling (HPM) approach for estimating

CA-OASET
| Daily
JE— monthly ’
‘It$ —  1:1line p A
E © - B >
(S G
'_ . ® 0..
w . i
-
2 -
=2 D
5 - Py
o kY
Q. .
0 1 2 3 4 5
Measured ET [mm d~1]
CA-OASET
© raining Measuremeant (C)
Validatior . Monthly Emror
o -
T
= ‘ |
g€ . ’ '
= (] LY
R LA
| |
- 1 i ] “ | Ii 'l |
i.l‘.‘l‘ -"‘} ihlllg:m‘.f!;“a
o] kmq ‘-uL -‘L.iva.-']i.aw:' e, Jl

T
2005
Date

T
2010

6049
CA-OAS Reco
o
—_ Daily
N:-c monthly ik .... " . J
S 1l —— 1Tiline g
R s
0 i e
8 < 4 5
@ o "
pe] o 2
9 "
L A S -
5 +
o
o
o
0 2 4 6 8
Measured RECO [gCm™d™"]
CA-OAS Reco
o _| —— Training Measuremeant ( d )
- — Validatior . Monthly Error
- @
e | | |
E o .
%’ © I J ‘1 | '% ] Jk ‘ ﬁ \\
— ] 1 i I
8 <7 u‘ l I l ' , ‘ ‘l !
8 IR |
| | || l | | W [
oo nft -||]"' Iy
Mn il |,-:‘J | k[tﬁ f Vb | J ] .\z :
B R
2000 2005 2010

Figure 5. ET and Reco estimation with data from FLUXNET sites at CA-OAS. Panels (a) and (b) show the scatter plots of daily (blue)
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Panels (c¢) and (d) present the daily HPM estimation of ET and Reco separated by training, validation and prediction sets. Pink points depict

monthly error between HPM estimation and FLUXNET data. Results for other sites are included in the Appendices below (Figs. Al, A2,

A3, and A4).

Table 3. Statistical measures of HPM estimation of ET and Recq.

Site ID Train Test  Train Test Train Test Train Test
MAE MAE  adj. adj. MAE MAE adj. adj.

—ET —ET R? R? —Reco —Reco R? R?

mmd~!] [mmd=!] —ET -—ET [gCm2d~!] [gCm™2d™!] —Reco —Reco

US-NR1 0.19 0.11 095 098 0.33 0.18 0.91 0.98
CA-Oas 0.18 0.13 094 097 0.33 0.26 0.96 0.97
CA-Obs 0.12 0.09 095 096 0.29 0.25 0.96 0.97
US-SRM 0.22 0.17 092 094 0.24 0.19 0.80 0.87
US-Ton 0.22 0.17 092 094 0.43 0.36 0.76 0.82
US-Var 0.15 012 092 095 0.49 0.38 0.81 0.88
US-Whs 0.13 0.09 093 096 0.12 0.09 0.84 0.89
US-Wkg 0.19 0.15 087 091 0.18 0.15 0.85 0.91
US-Me2 0.36 043 081 075 0.75 0.83 0.88 0.85
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4.2 Use Case 2: ecoregion-based, data-driven HPM
Model for ET and Rgco estimation

In this section, we explored the use of a data-driven HPM
trained with one FLUXNET station to estimate ET and Reco
at other locations within the same ecoregion. Specifically,
we developed HPM models at US-Ton, CA-Oas, and US-
Wkg and provided ET and R, estimations at US-Var, CA-
Obs, and US-Whs at three ecoregions, respectively. Table 4
summarizes how we developed the data-driven HPM models
for spatially distributed estimation of ET and Reco as well
as the corresponding statistical summaries. Figures 6 and A5
present the time series of HPM-estimated ET and Rgco com-
pared to measurements from flux towers. HPM estimation
at US-Obs, US-Whs, and US-Var achieved an adjusted R?
of 0.87, 0.88, and 0.91 for ET and 0.95, 0.70, and 0.78 for
REco, respectively. These results show that HPM captures
the seasonal and long-term dynamics of ET and Rgco How-
ever, at sites that experience seasonally dry periods (e.g., US-
Whs), prediction accuracy decreases during the peak grow-
ing season. Although the prediction accuracy is not as high as
Use Case 1 (Sect. 4.1), this use case demonstrates that HPM
can learn the complicated relationships between responses
and features successfully and that a local data-driven HPM
can be used to fuse with data from other subsites for long-
term estimation of ET and Rgco within the same ecoregions.

4.3 Use Case 3: ecoregion-based, mechanistic HPM
estimation of ET

Mechanistic HPM, which is trained upon physically based
model simulations, provides an avenue for estimating fluxes
in ecoregions where flux towers are not available. Consistent
results between measured ET and CLM-estimated ET at US-
NR1 (adjusted R%?=0.88; k =0.95, Fig. S1) indicate inde-
pendent CLM simulations can be effectively used to develop
the mechanistic HPM. We applied mechanistic HPM trained
with a 1-dimensional (vertical) CLM developed at ER-BT
(Tran et al., 2019) to estimate ET at sites classified as part
of the western Cordillera ecoregion (i.e., ER-SP, ER-PK, and
US-NR1). We then compared ET estimation from HPM to in-
dependent CLM-based ET estimations at ER-SP and ER-PK.
Figure 7 shows a high consistency between HPM estimation
and the validation data. For all scenarios, an adjusted R? of
0.8 or greater is observed (Table 4), which strongly indicates
that mechanistic HPM can provide accurate ET estimation at
sites of similar ecoregions. These results suggest the broad
applicability of mechanistic HPM to estimate ET based on
ecoregion characteristics. This approach is expected to be
particularly useful for regions where flux towers are difficult
to install or where measured fluxes are not representative of
the landscape, such as in mountainous watersheds.
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4.4 Use Case 4: HPM approach improved our
prediction capability and process understanding at
the East River Watershed

With the proposed HPM approach (e.g., mechanistic HPM),
we were able to estimate ET and Reco at selected locations
at the East River Watershed, CO, USA with only meteoro-
logical forcings and remote-sensing data. Our estimations
are comparable to other independent studies, such as Mu et
al. (2007) (Fig. S2) and Berryman et al. (2018). HPM esti-
mations enhanced our understanding of watershed processes
and enabled us to explore the limitations in the developed
HPM approach especially at mountainous watersheds.
Physiology differences among vegetation types and dy-
namic changes in meteorological conditions were well cap-
tured by input features and HPM at the East River Water-
shed. Not surprisingly, the reconstructed NDVI indicated that
deciduous forests have the highest peak NDVI, followed by
grasslands, shrublands, and evergreen forests, whereas an-
nual variation of NDVI in evergreen forests is smaller than
the other vegetation types (Fig. 8). Year 2012 is regarded as a
foresummer drought year with earlier than normal snowmelt,
and year 2015 is regarded as a normal water year. The Palmer
drought severity index (PDSI) is —5.2 and —1.5 for June
and —4.6 and 1.1 for August in 2012 and 2015, respec-
tively. Dynamic changes in meteorological conditions be-
tween 2012 and 2015 were also reflected in the reconstructed
NDVI time series. We observed an earlier rise of NDVI in
2012: March, April, and May mean NDVI values for decid-
uous forest sites are 0.07, 0.2, and 0.37 compared to 0.06,
0.15, and 0.33 in 2015. Similar trends were observed for
other vegetation types during spring months as well. NDVI
values remain high during the peak growing season (decid-
uous forest > grassland > shrubland > evergreen forest) for
both 2012 and 2015. However, we observed NDVI declines
for grasslands and shrublands since August in 2012 but not
until September in 2015. During autumn periods, NDVI de-
clines significantly following the sharp decline in radiation.
HPM-estimated ET and R, also show different dynam-
ics with different vegetation types and meteorological con-
ditions. Figure 9a and b present the time series of estimated
ET and R, associated with deciduous forests, respectively.
Figure 9¢c and d present the ET and R, differences between
deciduous forests sites and evergreen forests, shrublands, and
grasslands. Before peak growing season, evergreen forests
have the greatest ET and Rec, compared to the other vege-
tation types. ET of evergreen forests is about 10 % greater
than deciduous forests, whereas ET of deciduous forests dur-
ing peak growing season is greater than evergreen forests,
shrublands and meadows. After growing season, the NDVI
of deciduous forests is less than 0.2 (loss of leaves) com-
pared to the NDVI of evergreen forests. Before peak growing
season, Rq., of evergreen forests is slightly greater than de-
ciduous forests, meadow grasslands, and shrublands. During
peak growing season, we observed the largest Rec, for decid-
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Figure 6. ET and Reco estimation at CA-Obs using HPM trained at CA-Oas. Other sites are presented in Fig. AS.
Table 4. Statistical summary of HPM estimation over space with FLUXNET sites and SNOTEL stations with CLM.

Target site  Training site  Level II ecoregion ET MSE ET Reco MSE  Reco
(monthly)  adj. (monthly) adj.
mmd~!]  R? [gCm2dl] RZ2

CA-Obs CA-Oas Boreal Plain 0.39 0.88 036 097

US-Var US-Ton Mediterranean California 0.34 0.70 0.67 0.70

US-Whs US-Wkg Western Sierra Madre Piedmont 0.13 094 0.17  0.85

ER-SP ER-BT Western Cordillera 0.20 0.92 - -

ER-PK ER-BT Western Cordillera 0.24  0.90 - -

uous forests sites (~ 6 gC m~2 d_l), followed by meadows,
shrublands, and evergreen forests. Rec, of deciduous forests
is around 17 % greater than R, of evergreen forests. How-
ever, we did not observe significant differences in annual ET
among these four vegetation types (e.g., DF: 535 to 573 mm,
MS: 534 to 570 mm, RS: 532 to 567 mm, and EF: 532 to
569 mm across 7 years in this study). Total annual Rec, of
deciduous forests is greater than the other vegetation types
(DF1: 642 to 698 gCm~2, MS1: 588 to 636 gCm~2, RSI:
589 to 636 gC m~2, and EF1: 592 to 639 gC m~2). These re-
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sults indicate HPM R, models are sensitive to vegetation
types, and HPM ET models are mostly constrained by mete-
orological conditions.

Considering the inter-annual variability in meteorological
forcings, we further selected year 2014 (large snow precip-
itation ~ 587 mm but small rain precipitation ~ 275 mm) in
addition to 2012 (drought year) and 2015 (small snow pre-
cipitation ~ 383 mm and large rain precipitation ~ 477 mm)
to test HPM performance. As HPM does not have the capa-
bility to identify the snow and monsoon precipitation con-
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Figure 7. The HPM approach trained with CLM simulation at ER-BT is used to estimate ET at ER-SP and ER-PK. Panels (a) and (c) display
the time series of HPM estimation of ET (red lines) and independent CLM estimation at ER-SP and ER-PK. Panels (b) and (d) show the
scatter plots of daily (blue) and monthly (red) ET at these sites. Darker blue clouds represent greater density of data points.
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Figure 8. Reconstructed NDVI time series at selected locations in the East River Watershed for 2011 to 2018 (a) and for 2015 (b, normal
water year). Black, red, green, and blue lines represent the time series of NDVI for deciduous forests, evergreen forests, meadow grasslands,
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tribution to fluxes, we separated annual ET and Re, into
pre-June (January—June) and post-July (July—-December) to
quantify the contribution from snow and monsoon. Earlier
snowmelt that occurred in 2012 boosted spring ET and Reo,
and we observed larger March-mean ET and R.., compared
to 2014 and 2015, that are characterized by later snowmelt.
Occurrences of foresummer drought in 2012 led to moisture-
limiting conditions, resulting in large fluctuations of ET
and Reco during May and June. ET fluctuated from 2.9 to
1.9mmd~! during late May and 3.53 to 2.6 mmd~" dur-
ing early June. However, early occurrence of monsoon in
2012 led to a peak ET in early July. Due to late snowmelt,
ET did not significantly fluctuate in 2014 and 2015. How-
ever, peak ET shifted towards late July in 2014. Regarding
Reco dynamics, foresummer drought conditions led to varia-
tions in Reco from ~ 4 to 6 gC m~2d-!in 2012. In 2014, we
observed more steady increase of Rec, during the early and
peak growing seasons. For late-summer and autumn months
(August—October), ET decreased steadily in all 3 years re-
gardless of monsoon precipitation inputs, following the sig-
nificant decline in radiation. Pre-June ET and Reco (255 mm
and 217gCm~2d™!) were both greater in 2012 compared
to 2014 (223 mm and 178 gCm~2d~") and 2015 (230 mm
and 197 gCm~2d~") in deciduous forests. While there were
no significant differences in post-July ET among the 3 years
(318, 316, and 306 mm), 2012 was the highest. Within de-
ciduous forests and annually over 2012, 2014, and 2015,
ET was 573, 539, and 536 mm, and R, was 698, 642, and
652 gCm™2, respectively. Similar trends were observed for
other vegetation types.

Though HPM estimations allowed us to explore differ-
ences in ET and R, across vegetation and meteorological
forcings heterogeneity, it is necessary to investigate the lim-
itations of the HPM approach. Figure 10 shows the absolute
value of monthly mean difference in ET (Fig. 10a and b)
and Reco (Fig. 10c and d) across SNOTEL stations (ER-BT,
ER-SP and ER-PK) and within selected East River locations.
We observed greater differences in air temperature and radi-
ation at the SNOTEL sites but very small differences at the
East River sites (Fig. S4). Differences in June air temperature
among SNOTEL sites were occasionally over 3 °C, while
DAYMET data from the East River indicated 0.2 °C differ-
ences. In addition, a radiation difference of ~ 80 W m~2 was
observed with SNOTEL data compared to 30 W m ™~ for East
River sites. As a result, ET differences across SNOTEL sta-
tions are 2.5 times greater than differences observed at the
East River locations. A similar level of differences (around
0.8¢gC m_2) was observed in Rec, within the East River Wa-
tershed and across SNOTEL stations. These results suggest
the insufficient resolution of input meteorological forcing
data at the East River sites have large uncertainties, which
have a significant influence over HPM ET and HPM R,
estimations. If high-resolution meteorological data become
available for the East River watershed, we believe the HPM
approach can better capture heterogeneities in ET and R, at
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the East River watershed and better distinguish the roles of
meteorological forcing and vegetation heterogeneity in ET
and R, distribution.

5 Discussion

Our study demonstrates that HPM provides reliable estima-
tions of ET and Reco, under various climate and vegetation
conditions. The unique gated structures and cell states of
LSTM allow HPM to track information from earlier times
and decide which information to pass along and which
information to forget. This effective configuration allows
LSTM to effectively capture the long-term dependencies and
ecological memory effects among meteorological forcings,
NDVI, ET, and Reco. With 70 % of the data used for train-
ing (model development), ET and R, estimation from HPM
achieves an average adjusted R? of 0.9 compared to flux
tower measurements. To demonstrate HPM’s applicability
for providing ET and R, estimation at sparsely monitored
watersheds, we presented four use cases, including predic-
tion ET and Rec, in the time domain, a data-driven HPM ap-
proach, and a mechanistic HPM approach. Results from the
four use cases suggest HPM is a powerful approach to esti-
mate ET and R, at target watersheds, requiring only five
commonly available input data, and can advance our under-
standing of watershed processes.

HPM was capable of incorporating information from
NDVI time series to delineate the physiological differences
among deciduous forests, evergreen forests, shrublands, and
grasslands. In our study, NDVI data indicated evergreen
forests have a longer growing season compared to other veg-
etation types, and deciduous forests have higher peak NDVI
values. Correspondingly, we also observed an earlier increase
in ET and R, for evergreen forests (before May) but larger
ET and R, for deciduous forests during peak growing sea-
son (around June and July). Baldocchi et al. (2010) found that
deciduous forests had a shorter growing season but showed a
greater capacity for assimilating carbon during the growing
season. Evergreen forests, on the other hand, had an extended
growing season but with a smaller capacity for gaining car-
bon. They found older leaves tend to have smaller leaf ni-
trogen and stomata conductance that lead to smaller ET and
Reco during peak growing seasons. Hu et al. (2010) found
that extended growing season length resulted in less annual
CO; uptake at Niwot Ridge, USA. They found increasing
growing season length is usually correlated with decreas-
ing snow water storage and decreasing forest carbon uptake.
Xu et al. (2020) suggested canopy photosynthetic capacity
is the driving force that leads to different resource use ef-
ficiencies (RUEs) between deciduous forests and evergreen
forests. Novick et al. (2015) focused on the net ecosystem
exchange of CO; and also suggested seasonality is less im-
portant for evergreen forests, where significant amounts of
carbon were assimilated outside of the active season. These
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Figure 9. ET (a) and Reco (b) estimation for the deciduous forest site DF1 at the East River Watershed. Panels (c) and (d) show the differences
in ET and Reco among various vegetation types and deciduous forest. Red, green, and blue lines represent the differences in evergreen forest,
meadow, and riparian shrubland compared to deciduous forest. Panels (e) and (f) zoom into 2015 to better display seasonal variations.

findings are consistent with what we found in HPM estima-
tions, where we observed a greater ET and R, contribution
during early and later seasons for evergreen forests compared
to deciduous forests that have significantly greater peak ET
and Reco during peak growing season. As HPM only requires

Hydrol. Earth Syst. Sci., 25, 6041-6066, 2021

five input features, and NDVTI is the only variable related with
vegetation types, we were not able to perform detailed analy-
sis delineating the physiological control on ET and Reco dy-
namics. But we believe HPM models are still useful as they

https://doi.org/10.5194/hess-25-6041-2021
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Figure 10. Absolute differences in monthly mean ET and Reco across SNOTEL stations and within East River Watershed. Panels (a) and (c)
describe the absolute differences in monthly mean ET and Reco between ER-BT, ER-SP, and ER-PK. Panels (b) and (d) describe the absolute
differences in monthly mean ET and Reco within East River Watershed between deciduous forests, evergreen forests, meadow grasslands,

and riparian shrublands.

can provide initial ET and Re, estimation that helps with site
selection and field campaign designs.

Temporal variability in meteorological conditions also
leads to unique ET and R, responses at the East River
Watershed, as shown by HPM estimations. A total of 3
years with a diverse combination of snow and rain precipi-
tation were analyzed. In 2012, a year that experienced ear-
lier snowmelt, both ET and R, increased early in the sea-
son. However, earlier growth in vegetation and increasing de-
mand for water resulted in foresummer drought conditions
that led to decreases in ET and Rec, in late May and June.
In 2014, HPM estimated a steady increase in ET and Reco
during spring months following radiation and air tempera-
ture trends, with no subsequent significant decline in ET and
Reco- This indicates that energy was still the key limiting fac-
tor for spring dynamics in 2014, leading to a smaller pre-June
ET and Rec, compared to 2012. Following an earlier arrival
of monsoon in 2012 compared to 2014 and 2015, we ob-
served higher mean ET and R, in July than in June, which
indicates the earlier arrival of monsoon precipitation greatly
reduced the moisture limiting condition caused by foresum-
mer drought and led to subsequent increase in ET and Reco.
During late-summer and autumn months, radiation declined
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significantly, with a ~ 30 % decrease in August and ~ 40 %
decrease in September. Though 2012, 2014, and 2015 had
diverse monsoon precipitation during these periods, HPM
did not estimate significant differences in post-July ET. This
result indicates the East River watershed is mainly under
energy-limiting rather than moisture-limiting conditions dur-
ing late-summer and autumn; and timing of monsoon arrival
is more important than the absolute amount of monsoon pre-
cipitation for ET dynamics. This result is consistent with
findings in Carroll et al. (2020). Their study also indicated an
earlier arrival of summer monsoon was effectively support-
ing ET and that the monsoon precipitation was quickly con-
sumed by vegetation, whereas a later arrival of summer mon-
soon water mainly contributed to streamflow under energy-
limiting conditions.

Uncertainties of HPM models arise from several aspects.
First, the current choice of only five input features based on
data availability may decrease estimation accuracy in cer-
tain environments, such as sites with seasonally dry periods.
Though the LSTM component within the HPM approach
can capture the memory effects and long-term dependencies
of watershed dynamics, rare extreme values are difficult to
be captured by LSTM due to insufficient training data for
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such cases. For example, we observed a decreasing predic-
tion accuracy for ET and Re., estimation at sites that ex-
perience drought conditions. Current use of meteorological
forcings data and NDVI may not provide sufficient data for
LSTM to identify droughts implicitly. Other key variables
(e.g., soil moisture) when available can potentially be use-
ful to help LSTM better quantify these rare events and in-
crease model performance. Secondly, parameterization and
insufficient spatiotemporal resolution of meteorological data
still remain a challenge. Field observations along the Rocky
Mountain ranges have shown that south-facing hillslopes
have significantly earlier snowmelt compared to north-facing
hillslopes (Kampf et al., 2015; Webb et al., 2018). However,
we did not observe the same level of heterogeneities in ra-
diation and air temperature in reanalysis data compared to
weather station data (Figs. S4 and S5). Mu et al. (2007) and
Zhang et al. (2019) suggested uncertainties in meteorologi-
cal inputs can result in large errors (i.e., >20 % MAE) and
reduce accuracy by 10 %-30 %. Additionally, HPM is also
influenced by remote-sensing inputs’ accuracy, including but
not limited to insufficient resolution, cloud conditions, spa-
tial averaging, temporal reconstruction, and any other algo-
rithms involved. But with recent advances in remote-sensing
and satellite technologies (McCabe et al., 2017) and har-
monized Landsat—Sentinel datasets (Claverie et al., 2018),
the spatial and temporal resolution should greatly increase
in the future (i.e., 3 m resolution and daily). Finally, errors
can stem from the HPM hybrid approaches and conceptual
model uncertainties. Any original errors in mechanistic mod-
els will be passed onto HPM estimations of ET and Rec,.
We recommend training a data-driven HPM approach and
a mechanistic HPM approach using long time series (e.g.,
>5 years) with high-quality data or simulations, which en-
ables the HPM approach to better memorize long-term de-
pendencies of ecosystem dynamics. Though some of the un-
certainties still remain a challenge, efforts have been made
to minimize them through the technical advances described
herein. Future HPM models can potentially be jointly trained
on FLUXNET and process-based simulations to bypass cer-
tain limitations and provide more accurate ET and Rec, at
sparsely monitored watersheds.

6 Conclusions

In this study, we developed and tested a hybrid predictive
modeling approach for ET and R, estimation, with an en-
hanced focus on a watershed in the Rocky Mountains. We de-
veloped individual HPM models at various FLUXNET sites
and at sites where data could support the proper development
of a mechanistic model (e.g., CLM). These models were
trained and validated against eddy covariance measurements
and CLM outputs. We further used these models for ET and
Reco estimation at watersheds within the same ecoregion to
test HPM’s capability of providing estimation over space,

Hydrol. Earth Syst. Sci., 25, 6041-6066, 2021

where only meteorological forcings data and remote-sensing
data were available. Lastly, we applied the HPM to provide
long-term estimation of ET and R, and test the sensitivity
of HPM to various vegetation and meteorological conditions
within the East River Watershed of CO, USA.

Given the promising results of HPM, the approach offers
an avenue for estimating ET and Rec, using easy-to-acquire
or commonly available datasets. This study also suggests that
the spatial heterogeneity of meteorological forcings and veg-
etation dynamics has significant impacts on ET and Reo dy-
namics, which may be currently underestimated due to the
typically coarse spatial resolution of data inputs. Parameters
related to energy and soil moisture conditions can be imple-
mented into HPM to increase HPM’s accuracy, especially
for sites in ecoregions limited by soil moisture conditions.
Lastly, it should be pointed out that HPM is not restricted to
estimation of ET and R, only. HPM also has great potential
for estimating other parameters important for water and car-
bon cycles given the right choice of input variables, such as
net ecosystem exchange (Fig. B1). Thus, we believe the pro-
posed HPM model can improve our prediction capabilities of
ET and R, at sparsely monitored watersheds and advance
our understanding of watershed dynamics.
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Appendix A: ET and Rgco estimation over time at

other FLUXNET sites
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Figure Al. ET estimation with data from selected FLUXNET sites at CA-OBS, US-NR1, US-SRM, and US-Ton. Panels (a), (c), (e), and (g)
present daily estimations of ET separated for training, validation, and prediction. Pink points depict monthly error between HPM estimation
and FLUXNET data. Panels (b), (d), (f), and (h) show the scatter plots of daily (blue) and monthly (red) ET. Darker blue clouds represent a
greater density of data points.
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Figure A2. ET estimation with data from selected FLUXNET sites at US-Var, US-Whs, US-Wkg, and US-Me2. Panels (a), (c), (e), and (g)
present daily estimations of ET separated for training, validation, and prediction. Pink points depict monthly error between HPM estimation
and FLUXNET data. Panels (b), (d), (f), and (h) show the scatter plots of daily (blue) and monthly (red) ET. Darker blue clouds represent a
greater density of data points.
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Figure A3. Reco estimation with data from selected FLUXNET sites at CA-OBS, US-NR1, US-SRM, and US-Ton. Panels (a), (c), (e),
and (g) present daily estimations of Reco separated for training, validation, and prediction. Pink points depict monthly error between HPM
estimation and FLUXNET data. Panels (b), (d), (f), and (h) show the scatter plots of daily (blue) and monthly (red) Reco. Darker blue clouds

represent a greater density of data points.
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Figure A4. Rqco estimation with data from selected FLUXNET sites at US-Var, US-Whs, US-Wkg, and US-Me?2. Panels (a), (c), (e), and (g)
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Appendix B: Tested NEE estimation over time at
CA-OAS and US-NR1

US-NR1 NEE
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Figure B1. HPM estimate of NEE at CA-OAS and US-NRI. R? values between estimation and measurements are 0.87, 0.83, and 0.81 at
CA-OAS and 0.94, 0.88, and 0.90 at US-NRI1 for the training set, validation set, and prediction set, respectively. Model inputs include air

temperature, soil temperature, sn, precipitation, and radiation.
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