Articles | Volume 25, issue 5
https://doi.org/10.5194/hess-25-2931-2021
https://doi.org/10.5194/hess-25-2931-2021
Research article
 | 
31 May 2021
Research article |  | 31 May 2021

Estimation of groundwater recharge from groundwater levels using nonlinear transfer function noise models and comparison to lysimeter data

Raoul A. Collenteur, Mark Bakker, Gernot Klammler, and Steffen Birk

Related authors

PyEt v1.3.1: a Python package for the estimation of potential evapotranspiration
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024,https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Data-driven modeling of hydraulic head time series: results and lessons learned from the 2022 groundwater modeling challenge
Raoul Alexander Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Michael Fienen, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim Peterson, Janis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, Bryan Tolson, and Rojin Meysami
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-111,https://doi.org/10.5194/hess-2024-111, 2024
Revised manuscript accepted for HESS
Short summary
Technical note: Improved handling of potential evapotranspiration in hydrological studies with PyEt
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-417,https://doi.org/10.5194/hess-2022-417, 2023
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Assessing groundwater level modelling using a 1-D convolutional neural network (CNN): linking model performances to geospatial and time series features
Mariana Gomez, Maximilian Nölscher, Andreas Hartmann, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 4407–4425, https://doi.org/10.5194/hess-28-4407-2024,https://doi.org/10.5194/hess-28-4407-2024, 2024
Short summary
Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci., 28, 3519–3547, https://doi.org/10.5194/hess-28-3519-2024,https://doi.org/10.5194/hess-28-3519-2024, 2024
Short summary
High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation
Anna Pazola, Mohammad Shamsudduha, Jon French, Alan M. MacDonald, Tamiru Abiye, Ibrahim Baba Goni, and Richard G. Taylor
Hydrol. Earth Syst. Sci., 28, 2949–2967, https://doi.org/10.5194/hess-28-2949-2024,https://doi.org/10.5194/hess-28-2949-2024, 2024
Short summary
Towards understanding the influence of seasons on low-groundwater periods based on explainable machine learning
Andreas Wunsch, Tanja Liesch, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 28, 2167–2178, https://doi.org/10.5194/hess-28-2167-2024,https://doi.org/10.5194/hess-28-2167-2024, 2024
Short summary
Data-driven modeling of hydraulic head time series: results and lessons learned from the 2022 groundwater modeling challenge
Raoul Alexander Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Michael Fienen, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim Peterson, Janis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, Bryan Tolson, and Rojin Meysami
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-111,https://doi.org/10.5194/hess-2024-111, 2024
Revised manuscript accepted for HESS
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 300, D05109, 1998. a, b
Ascott, M. J., Marchant, B. P., Macdonald, D., McKenzie, A. A., and Bloomfield, J. P.: Improved understanding of spatio-temporal controls on regional scale groundwater flooding using hydrograph analysis and impulse response functions, Hydrol. Process., 31, 4586–4599, https://doi.org/10.1002/hyp.11380, 2017. a
Bakker, M. and Schaars, F.: Solving Groundwater Flow Problems with Time Series Analysis: You May Not Even Need Another Model, Groundwater, 57, 826–833, https://doi.org/10.1111/gwat.12927, 2019. a
Bakker, M., Maas, K., and Von Asmuth, J. R.: Calibration of transient groundwater models using time series analysis and moment matching, Water Resour. Res., 44, W04420, https://doi.org/10.1029/2007WR006239, 2008. a
Bakker, M., Bartholomeus, R. P., and Ferré, T. P. A.: Groundwater recharge: processes and quantification, Hydrol. Earth Syst. Sci., 17, 2653–2655, https://doi.org/10.5194/hess-17-2653-2013, 2013. a
Download
Short summary
This study explores the use of nonlinear transfer function noise (TFN) models to simulate groundwater levels and estimate groundwater recharge from observed groundwater levels. A nonlinear recharge model is implemented in a TFN model to compute the recharge. The estimated recharge rates are shown to be in good agreement with the recharge observed with a lysimeter present at the case study site in Austria. The method can be used to obtain groundwater recharge rates at sub-yearly timescales.