Articles | Volume 25, issue 5
https://doi.org/10.5194/hess-25-2931-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-2931-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimation of groundwater recharge from groundwater levels using nonlinear transfer function noise models and comparison to lysimeter data
Raoul A. Collenteur
CORRESPONDING AUTHOR
Institute of Earth Sciences, NAWI Graz Geocenter, University of Graz, Heinrichstrasse 26, 8010 Graz, Austria
Mark Bakker
Water Management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands
Gernot Klammler
JR-AquaConSol GMHB, Graz, Austria
Steffen Birk
Institute of Earth Sciences, NAWI Graz Geocenter, University of Graz, Heinrichstrasse 26, 8010 Graz, Austria
Related authors
Raoul A. Collenteur, Konrad Bogner, Massimiliano Zappa, Mario Schirmer, and Christian Moeck
EGUsphere, https://doi.org/10.5194/egusphere-2025-4653, https://doi.org/10.5194/egusphere-2025-4653, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Groundwater is vital for drinking water and farming, but recent droughts revealed it is less reliable than once believed. We developed and tested a new system in Switzerland that combines detailed weather forecasts with a groundwater model to anticipate changes weeks in advance. The system often predicted levels up to a month ahead well, though mountain regions proved harder to forecast. These results highlight both the promise and limits of such tools for improving future water planning.
Raoul Alexandre Collenteur, Konrad Bogner, Christian Moeck, Massimiliano Zappa, and Mario Schirmer
Abstr. Int. Cartogr. Assoc., 9, 5, https://doi.org/10.5194/ica-abs-9-5-2025, https://doi.org/10.5194/ica-abs-9-5-2025, 2025
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024, https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Short summary
We show the results of the 2022 Groundwater Time Series Modelling Challenge; 15 teams applied data-driven models to simulate hydraulic heads, and three model groups were identified: lumped, machine learning, and deep learning. For all wells, reasonable performance was obtained by at least one team from each group. There was not one team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024, https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Short summary
Geoscientists commonly use various potential evapotranpiration (PET) formulas for environmental studies, which can be prone to errors and sensitive to climate change. PyEt, a tested and open-source Python package, simplifies the application of 20 PET methods for both time series and gridded data, ensuring accurate and consistent PET estimations suitable for a wide range of environmental applications.
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-417, https://doi.org/10.5194/hess-2022-417, 2023
Manuscript not accepted for further review
Short summary
Short summary
This paper introduced PyEt, a Python package for the estimation of daily potential evapotranspiration (PET). The package enables the inclusion of model uncertainty and climate change into the estimation of PET in a consistent, tested, and reproducible environment. With PyEt, users can estimate PET using 20 different methods for both 1D and 3D data, allowing a more sophisticated and comprehensive consideration of PET in hydrological studies, particularly those related to climate change.
Raoul A. Collenteur, Konrad Bogner, Massimiliano Zappa, Mario Schirmer, and Christian Moeck
EGUsphere, https://doi.org/10.5194/egusphere-2025-4653, https://doi.org/10.5194/egusphere-2025-4653, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Groundwater is vital for drinking water and farming, but recent droughts revealed it is less reliable than once believed. We developed and tested a new system in Switzerland that combines detailed weather forecasts with a groundwater model to anticipate changes weeks in advance. The system often predicted levels up to a month ahead well, though mountain regions proved harder to forecast. These results highlight both the promise and limits of such tools for improving future water planning.
Raoul Alexandre Collenteur, Konrad Bogner, Christian Moeck, Massimiliano Zappa, and Mario Schirmer
Abstr. Int. Cartogr. Assoc., 9, 5, https://doi.org/10.5194/ica-abs-9-5-2025, https://doi.org/10.5194/ica-abs-9-5-2025, 2025
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024, https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Short summary
We show the results of the 2022 Groundwater Time Series Modelling Challenge; 15 teams applied data-driven models to simulate hydraulic heads, and three model groups were identified: lumped, machine learning, and deep learning. For all wells, reasonable performance was obtained by at least one team from each group. There was not one team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Geosci. Model Dev., 17, 7083–7103, https://doi.org/10.5194/gmd-17-7083-2024, https://doi.org/10.5194/gmd-17-7083-2024, 2024
Short summary
Short summary
Geoscientists commonly use various potential evapotranpiration (PET) formulas for environmental studies, which can be prone to errors and sensitive to climate change. PyEt, a tested and open-source Python package, simplifies the application of 20 PET methods for both time series and gridded data, ensuring accurate and consistent PET estimations suitable for a wide range of environmental applications.
Matevž Vremec, Raoul A. Collenteur, and Steffen Birk
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-417, https://doi.org/10.5194/hess-2022-417, 2023
Manuscript not accepted for further review
Short summary
Short summary
This paper introduced PyEt, a Python package for the estimation of daily potential evapotranspiration (PET). The package enables the inclusion of model uncertainty and climate change into the estimation of PET in a consistent, tested, and reproducible environment. With PyEt, users can estimate PET using 20 different methods for both 1D and 3D data, allowing a more sophisticated and comprehensive consideration of PET in hydrological studies, particularly those related to climate change.
Veronika Forstner, Jannis Groh, Matevz Vremec, Markus Herndl, Harry Vereecken, Horst H. Gerke, Steffen Birk, and Thomas Pütz
Hydrol. Earth Syst. Sci., 25, 6087–6106, https://doi.org/10.5194/hess-25-6087-2021, https://doi.org/10.5194/hess-25-6087-2021, 2021
Short summary
Short summary
Lysimeter-based manipulative and observational experiments were used to identify responses of water fluxes and aboveground biomass (AGB) to climatic change in permanent grassland. Under energy-limited conditions, elevated temperature actual evapotranspiration (ETa) increased, while seepage, dew, and AGB decreased. Elevated CO2 mitigated the effect on ETa. Under water limitation, elevated temperature resulted in reduced ETa, and AGB was negatively correlated with an increasing aridity.
Cited articles
Ascott, M. J., Marchant, B. P., Macdonald, D., McKenzie, A. A., and Bloomfield, J. P.: Improved understanding of spatio-temporal controls on regional scale groundwater flooding using hydrograph analysis and impulse response functions, Hydrol. Process., 31, 4586–4599, https://doi.org/10.1002/hyp.11380, 2017. a
Bakker, M. and Schaars, F.: Solving Groundwater Flow Problems with Time Series Analysis: You May Not Even Need Another Model, Groundwater, 57, 826–833, https://doi.org/10.1111/gwat.12927, 2019. a
Bakker, M., Maas, K., and Von Asmuth, J. R.: Calibration of transient
groundwater models using time series analysis and moment matching,
Water Resour. Res., 44, W04420, https://doi.org/10.1029/2007WR006239, 2008. a
Bakker, M., Bartholomeus, R. P., and Ferré, T. P. A.: Groundwater recharge: processes and quantification, Hydrol. Earth Syst. Sci., 17, 2653–2655, https://doi.org/10.5194/hess-17-2653-2013, 2013. a
Berendrecht, W. L., Heemink, A. W., van Geer, F. C., and Gehrels, J. C.:
Decoupling of modeling and measuring interval in groundwater time series
analysis based on response characteristics, J. Hydrol., 278, 1–16,
https://doi.org/10.1016/S0022-1694(03)00075-1, 2003. a, b, c
Berendrecht, W. L., Heemink, A. W., van Geer, F. C., and Gehrels, J. C.: A
non-linear state space approach to model groundwater fluctuations,
Adv. Water Resour., 29, 959–973, https://doi.org/10.1016/j.advwatres.2005.08.009,
2006. a, b, c, d
Besbes, M. and De Marsily, G.: From infiltration to recharge: use of a
parametric transfer function, J. Hydrol., 74, 271–293,
https://doi.org/10.1016/0022-1694(84)90019-2, 1984. a
Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36, https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006. a
Beven, K. J.: Rainfall-runoff modelling: the primer, John Wiley & Sons, Chichester, UK, 488 pp., 2nd edition, 2011. a
Box, G. and Jenkins, G.: Time series analysis, control, and forecasting,
Holden-Day, San Francisco, USA, 1970. a
Campbell, G.: A Simple method for determining unsaturated conductivity from
moisture retention data, Soil Sci., June 1974, 311–314,
available at: https://journals.lww.com/soilsci/Fulltext/1974/06000/A_SIMPLE_METHOD_FOR_DETERMINING_UNSATURATED.1.aspx (last access: 27 May 2021), 1974. a
Collenteur, R. A., Bakker, M., Caljé, R., Klop, S. A., and Schaars, F.:
Pastas: Open Source Software for the Analysis of Groundwater Time
Series, Groundwater, 57, 877–885, https://doi.org/10.1111/gwat.12925, 2019. a, b, c
Collenteur, R. A., Bakker, M., Klammler, G., and Birk, S.: Supplementary Material to “Estimation of groundwater recharge from groundwater levels using non-linear transfer function noise models and comparison to lysimeter data”, Zenodo, https://doi.org/10.5281/zenodo.4548801, 2021a. a
Collenteur, R., Bakker, M., Caljé, R., and Schaars, F.: Pastas: open-source software for the analysis of hydrogeological time series (Version v0.17.0), Zenodo, https://doi.org/10.5281/zenodo.4817408, 2021b. a
Durbin, J. and Watson, G. S.: Testing for Serial Correlation in Least
Squares Regression: I, Biometrika, 37, 409–428, https://doi.org/10.2307/2332391, 1950. a
Fabbri, P., Gaetan, C., and Zangheri, P.: Transfer function-noise modelling of an aquifer system in NE Italy, Hydrol. Process., 25, 194–206,
https://doi.org/10.1002/hyp.7832, 2011. a
Fank, J.: Die Bedeutung der ungesättigten Zone für
Grundwasserneubildung und Nitratbefrachtung des Grundwassers in
quartären Lockersediment-Aquiferen am Beispiel des Leibnitzer
Feldes: (Steiermark, Österreich), Beiträge zur Hydrogeologie,
Graz, Austria, 49–50, 1999. a
Fenicia, F., Savenije, H. H. G., Matgen, P., and Pfister, L.: Is the groundwater reservoir linear? Learning from data in hydrological modelling, Hydrol. Earth Syst. Sci., 10, 139–150, https://doi.org/10.5194/hess-10-139-2006, 2006. a, b
Gao, H., Hrachowitz, M., Schymanski, S. J., Fenicia, F., Sriwongsitanon, N.,
and Savenije, H. H. G.: Climate controls how ecosystems size the root zone
storage capacity at catchment scale, Geophys. Res. Lett., 41,
7916–7923, https://doi.org/10.1002/2014GL061668, 2014. a
Groenendijk, P., Heinen, M., Klammler, G., Fank, J., Kupfersberger, H.,
Pisinaras, V., Gemitzi, A., Peña-Haro, S., García-Prats, A.,
Pulido-Velazquez, M., Perego, A., Acutis, M., and Trevisan, M.: Performance
assessment of nitrate leaching models for highly vulnerable soils used in
low-input farming based on lysimeter data, Sci. Total Environ., 499, 463–480, https://doi.org/10.1016/j.scitotenv.2014.07.002, 2014. a, b
Healy, R. W. and Cook, P. G.: Using groundwater levels to estimate recharge,
Hydrogeol. J., 10, 91–109, https://doi.org/10.1007/s10040-001-0178-0, 2002. a, b, c
Healy, R. W. and Scanlon, B. R.: Estimating Groundwater Recharge, Cambridge University Press, Cambridge, UK, 256 pp., https://doi.org/10.1017/CBO9780511780745, 2010. a
Hipel, K. W. and McLeod, A. I.: Time Series Modelling of Water
Resources and Environmental Systems, Elsevier, Amsterdam, The Netherlands, 1013 pp., 1994. a
Hocking, M. and Kelly, B. F. J.: Groundwater recharge and time lag measurement through Vertosols using impulse response functions, J. Hydrol., 535, 22–35, https://doi.org/10.1016/j.jhydrol.2016.01.042, 2016. a, b
Kavetski, D., Franks, S. W., and Kuczera, G.: Confronting input uncertainty in environmental modelling, in: Water Science and Application, 49–68, American Geophysical Union, San Francisco, USA, https://doi.org/10.1029/ws006p0049, 2003. a
Kirchner, J. W.: Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology, Water Resour. Res., 42, W03S04, https://doi.org/10.1029/2005WR004362, 2006. a
Klammler, G. and Fank, J.: Determining water and nitrogen balances for
beneficial management practices using lysimeters at Wagna test site
(Austria), Sci. Total Environ., 499, 448–462,
https://doi.org/10.1016/j.scitotenv.2014.06.009, 2014. a, b, c, d
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube
basin under an ensemble of climate change scenarios, J. Hydrol., 424–425, 264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012. a
Lam, S. K., Pitrou, A., and Seibert, S.: Numba: A LLVM-Based Python
JIT Compiler, in: Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC (LLVM'15), Austin, Texas, USA, 15–20 November 2015, https://doi.org/10.1145/2833157.2833162, 2015. a
Ljung, G. M. and Box, G. E. P.: On a Measure of Lack of Fit in Time
Series Models, Biometrika, 65, 297–303, https://doi.org/10.2307/2335207, 1978. a
Manzione, R. L., Knotters, M., Heuvelink, G. B. M., Von Asmuth, J. R., and
Camara, G.: Transfer function-noise modeling and spatial interpolation to
evaluate the risk of extreme (shallow) water-table levels in the Brazilian
Cerrados, Hydrogeol. J., 18, 1927–1937,
https://doi.org/10.1007/s10040-010-0654-5, 2010. a
Miralles, D. G., Brutsaert, W., Dolman, A. J., and Gash, J. H.: On the Use of the Term “Evapotranspiration”, Water Resour. Res., 56,
e2020WR028055, https://doi.org/10.1029/2020WR028055, 2020. a
Newville, M., Otten, R., Nelson, A., et al.: lmfit/lmfit-py 1.0.0, Zenodo, https://doi.org/10.5281/zenodo.3588521, 2019. a
O'Reilly, A. M.: A method for simulating transient ground-water recharge in
deep water-table settings in central Florida by using a simple
water-balance/transfer-function model, US Geological Survey, 49 pp., Reston, Virginia, USA, available at: https://pubs.usgs.gov/sir/2004/5195/pdf/sir20045195.pdf (last access: 27 May 2021), 2004. a
Perrin, C., Michel, C., and Andréassian, V.: Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments, J. Hydrol., 242, 275–301, 2001. a
Peterson, T. J. and Fulton, S.: Joint Estimation of Gross Recharge,
Groundwater Usage, and Hydraulic Properties within HydroSight,
Groundwater, 57, 860–876, https://doi.org/10.1111/gwat.12946, 2019. a, b, c
Reszler, C. and Fank, J.: Unsaturated zone flow and solute transport modelling with MIKE SHE: model test and parameter sensitivity analysis using lysimeter data, Environ. Earth Sci., 75, 253, https://doi.org/10.1007/s12665-015-4881-x, 2016. a, b
Savenije, H. H. G.: The importance of interception and why we should delete the term evapotranspiration from our vocabulary, Hydrol. Process., 18,
1507–1511, https://doi.org/10.1002/hyp.5563, 2004. a, b
Savenije, H. H. G.: HESS Opinions “Topography driven conceptual modelling (FLEX-Topo)”, Hydrol. Earth Syst. Sci., 14, 2681–2692, https://doi.org/10.5194/hess-14-2681-2010, 2010. a, b
Schrader, F., Durner, W., Fank, J., Gebler, S., Pütz, T., Hannes, M., and
Wollschläger, U.: Estimating Precipitation and Actual
Evapotranspiration from Precision Lysimeter Measurements, Procedia Environ. Sci., 19, 543–552, https://doi.org/10.1016/j.proenv.2013.06.061, 2013. a
Shapoori, V., Peterson, T. J., Western, A. W., and Costelloe, J. F.: Top-down
groundwater hydrograph time-series modeling for climate-pumping
decomposition, Hydrogeol. J., 23, 819–836,
https://doi.org/10.1007/s10040-014-1223-0, 2015. a
Smith, T., Marshall, L., and Sharma, A.: Modeling residual hydrologic errors
with Bayesian inference, J. Hydrol., 528, 29–37,
https://doi.org/10.1016/j.jhydrol.2015.05.051, 2015. a
Stumpp, C., Maloszewski, P., Stichler, W., and Fank, J.: Environmental isotope (δ18O) and hydrological data to assess water flow in unsaturated soils planted with different crops: Case study lysimeter station “Wagna” (Austria), J. Hydrol., 369, 198–208,
https://doi.org/10.1016/j.jhydrol.2009.02.047, 2009. a, b
Van der Spek, J. E. and Bakker, M.: The influence of the length of the
calibration period and observation frequency on predictive uncertainty in
time series modeling of groundwater dynamics, Water Resour. Res., 53,
2294–2311, https://doi.org/10.1002/2016WR019704, 2017. a
van Dijk, W. M., Densmore, A. L., Jackson, C. R., Mackay, J. D., Joshi, S. K., Sinha, R., Shekhar, S., and Gupta, S.: Spatial variation of groundwater response to multiple drivers in a depleting alluvial aquifer system, northwestern India, Prog. Phys. Geog., 44, 94–119, https://doi.org/10.1177/0309133319871941, 2019. a
Viola, F., Pumo, D., and Noto, L. V.: EHSM: a conceptual ecohydrological
model for daily streamflow simulation, Hydrol. Process., 28,
3361–3372, https://doi.org/10.1002/hyp.9876, 2014. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N.,
Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman,
R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A. P.,
Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A.,
Woods, C. N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C.,
Nicholson, D. A., Hagen, D. R., Pasechnik, D. V., Olivetti, E., Martin, E.,
Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G. A.,
Ingold, G.-L., Allen, G. E., Lee, G. R., Audren, H., Probst, I., Dietrich,
J. P., Silterra, J., Webber, J. T., Slavič, J., Nothman, J., Buchner, J.,
Kulick, J., Schönberger, J. L., de Miranda Cardoso, J. V., Reimer, J.,
Harrington, J., Rodríguez, J. L. C., Nunez-Iglesias, J., Kuczynski, J.,
Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre,
M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb,
P. A., Lee, P., McGibbon, R. T., Feldbauer, R., Lewis, S., Tygier, S.,
Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T.,
Pingel, T. J., Robitaille, T. P., Spura, T., Jones, T. R., Cera, T., Leslie,
T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y. O., Vázquez-Baeza, Y.,
and SciPy 1.0 Contributors: SciPy 1.0: fundamental algorithms for
scientific computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.
a
Viswanathan, M. N.: Recharge characteristics of an unconfined aquifer from the rainfall-water table relationship, J. Hydrol., 70, 233–250,
https://doi.org/10.1016/0022-1694(84)90124-0, 1984. a
von Asmuth, J. and Bierkens, M.: Modeling irregularly spaced residual series as a continuous stochastic process, Water Resour. Res., 41, W12404,
https://doi.org/10.1029/2004WR003726, 2005. a, b
von Asmuth, J., Bierkens, M., and Maas, K.: Transfer function-noise modeling in continuous time using predefined impulse response functions, Water Resour. Res., 38, 1287, https://doi.org/10.1029/2001WR001136, 2002. a, b, c
von Asmuth, J., Maas, K., Bakker, M., and Petersen, J.: Modeling Time
Series of Ground Water Head Fluctuations Subjected to Multiple
Stresses, Groundwater, 46, 30–40, https://doi.org/10.1111/j.1745-6584.2007.00382.x,
2008. a, b, c, d
von Unold, G. and Fank, J.: Modular Design of Field Lysimeters for
Specific Application Needs, Water Air Soil Poll., 8,
233–242, https://doi.org/10.1007/s11267-007-9172-4, 2008. a, b
Zaadnoordijk, W. J., Bus, S. A., Lourens, A., and Berendrecht, W. L.: Automated Time Series Modeling for Piezometers in the National Database of the Netherlands, Groundwater, 57, 834–843, https://doi.org/10.1111/gwat.12819, 2019. a
Short summary
This study explores the use of nonlinear transfer function noise (TFN) models to simulate groundwater levels and estimate groundwater recharge from observed groundwater levels. A nonlinear recharge model is implemented in a TFN model to compute the recharge. The estimated recharge rates are shown to be in good agreement with the recharge observed with a lysimeter present at the case study site in Austria. The method can be used to obtain groundwater recharge rates at
sub-yearly timescales.
This study explores the use of nonlinear transfer function noise (TFN) models to simulate...