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Abstract. The estimation of groundwater recharge is of
paramount importance to assess the sustainability of ground-
water use in aquifers around the world. Estimation of the
recharge flux, however, remains notoriously difficult. In
this study the application of nonlinear transfer function
noise (TFN) models using impulse response functions is ex-
plored to simulate groundwater levels and estimate ground-
water recharge. A nonlinear root zone model that simulates
recharge is developed and implemented in a TFN model and
is compared to a more commonly used linear recharge model.
An additional novel aspect of this study is the use of an
autoregressive–moving-average noise model so that the re-
maining noise fulfills the statistical conditions to reliably es-
timate parameter uncertainties and compute the confidence
intervals of the recharge estimates. The models are calibrated
on groundwater-level data observed at the Wagna hydro-
logical research station in the southeastern part of Austria.
The nonlinear model improves the simulation of groundwa-
ter levels compared to the linear model. The annual recharge
rates estimated with the nonlinear model are comparable
to the average seepage rates observed with two lysimeters.
The recharges estimates from the nonlinear model are also
in reasonably good agreement with the lysimeter data at
the smaller timescale of recharge per 10 d. This is an im-
provement over previous studies that used comparable meth-
ods but only reported annual recharge rates. The presented
framework requires limited input data (precipitation, poten-
tial evaporation, and groundwater levels) and can easily be

extended to support applications in different hydrogeologi-
cal settings than those presented here.

1 Introduction

Despite ongoing scientific efforts, the estimation of ground-
water recharge remains a notoriously difficult task for hy-
drologists (e.g., Bakker et al., 2013). From the many tech-
niques available (see, e.g., Healy and Scanlon, 2010, for
an overview), methods using groundwater-level observations
as the primary source of information are among the most
popular. This is likely due to the abundance of available
groundwater-level data and the simplicity of the methods
(Healy and Cook, 2002). A well-known example is the wa-
ter table fluctuation (WTF) method, which only requires an
estimate of the specific yield and groundwater-level data as
model input. An additional advantage of the WTF method
is that no assumptions are made about the actual recharge
processes, for example, the existence of preferential flow
paths. This can also be considered a disadvantage, as no re-
lationship between precipitation and recharge is established.
This makes the method unsuitable for future projections of
groundwater recharge when precipitation patterns change,
for example, in climate change impact studies.

In a review paper on the topic, Healy and Cook (2002)
suggested that “approaches based on transfer function noise
(TFN) models should be further explored” for the estima-
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tion of recharge. TFN models can be used to translate one
or more input series (e.g., precipitation and potential evap-
oration) into an output series (e.g., groundwater levels) and
have been adopted in many branches of hydrology (Hipel and
McLeod, 1994). An early example of the use of these models
for recharge estimation is given in Besbes and De Marsily
(1984), through the deconvolution of groundwater levels
with an aquifer unit hydrograph obtained from a groundwa-
ter model. The study showed how the recharge flux can be
related to rainfall by using an additional unit hydrograph for
the unsaturated zone. Their proposed method required a cali-
brated groundwater model and a good estimate of the infiltra-
tion, making the method relatively laborious and less applica-
ble in practice. O’Reilly (2004) developed a water balance–
transfer function model to simulate recharge, using the WTF
method to obtain recharge estimates to calibrate the model
parameters.

In recent decades, the use of a specific type of TFN models
using predefined impulse response functions (von Asmuth
et al., 2002) has gained popularity for the analysis of ground-
water levels. In this data-driven method, impulse response
functions are used to describe how groundwater levels re-
act to different drivers such as precipitation, evaporation, and
pumping. The method has been successfully applied to char-
acterize and analyze groundwater systems around the world,
for example in Brazil (Manzione et al., 2010), Italy (Fab-
bri et al., 2011), the United Kingdom (Ascott et al., 2017),
and India (van Dijk et al., 2019). The advantages of data-
driven models compared to numerical groundwater models
are faster model development and a lower number of cali-
bration parameters (e.g., Bakker and Schaars, 2019). A large
number of time series may be analyzed in a timely manner,
for example, to improve the understanding of a groundwater
system. Results are often also useful for the development of
numerical groundwater models.

An important goal for these models has traditionally been
to accurately describe observed groundwater-level fluctua-
tions. For shallow water tables (up to a few meters’ depth),
this can often be achieved using a linear model between pre-
cipitation and evaporation on the one hand and groundwa-
ter levels on the other hand; i.e., when the rainfall doubles,
so does the increase in the groundwater levels (e.g., Beren-
drecht et al., 2003; von Asmuth et al., 2008). In a large-scale
case study for the Netherlands, Zaadnoordijk et al. (2019) ob-
tained good results with this method for areas with shallow
groundwater depths. For the simulation of deeper groundwa-
ter levels, the linear model was shown to be less appropriate,
and nonlinear models may be used to accurately simulate the
groundwater levels (e.g., Berendrecht et al., 2006; Peterson
and Western, 2014; Shapoori et al., 2015). Such nonlinear
models improve the simulation of groundwater levels by tak-
ing the nonlinear processes that occur in the root zone into
account, for example, through the limitation of evaporation
due to low soil moisture levels and the temporal storage of
water within the root zone.

More recently, efforts have been made to explore the
use of TFN models to estimate groundwater recharge, as
suggested by Healy and Cook (2002). Hocking and Kelly
(2016) constructed TFN models that included rainfall, evap-
oration, river levels, pumping, and a linear trend as ex-
planatory variables, to isolate the contribution of rainfall
to the groundwater-level fluctuations. This contribution was
then converted to recharge using the hydrograph fluctuation
method (Viswanathan, 1984). Obergfell et al. (2019) used a
linear model to estimate average diffuse recharge and ob-
tained good annual recharge estimates when compared to re-
sults from a chloride mass balance. Recognizing the impor-
tance of evaporation in their model setup, they constrained
the parameter estimation by including the correct simulation
of the seasonal behavior in the objective function. Peterson
and Fulton (2019) used a nonlinear TFN model that includes
a soil moisture module to estimate recharge (Peterson and
Western, 2014). To obtain reasonable estimates of recharge,
the model was constrained by comparing the modeled evap-
oration to the expected actual evaporation obtained using the
Budyko curve. All of these studies reported annual recharge
rates, but at least the latter method could in principle also be
used to obtain estimates at smaller timescales.

In this study, exploration of the use of nonlinear TFN mod-
els using impulse response functions is continued to estimate
groundwater recharge and improve the simulation of ground-
water levels. A nonlinear recharge model is developed based
on a soil-water storage approach and implemented in a TFN
model to simulate the (nonlinear) effect of precipitation and
evaporation on the groundwater levels. This study focuses on
the estimation of recharge for relatively shallow groundwa-
ter systems without capillary rise of groundwater to the un-
saturated zone. The estimated recharge fluxes are compared
to long-term recharge rates measured with two lysimeters
located at the hydrological research site Wagna in Austria,
providing a unique opportunity to evaluate the recharge es-
timates at smaller timescales. Additionally, this study doc-
uments the extension of the commonly used autoregressive
model with a moving-average part to model the residuals and
obtain an approximately white noise series used for model
calibration. The purpose of this study is to provide a proof-
of-concept of the proposed methods through a detailed case
study for a single location. The data from the lysimeters are
only used to evaluate the model results and are not used to
improve the results during model setup and calibration.

The next section provides an overview of the study site
and the data used for model input and evaluation. In the third
section, the methodological approach is described, starting
with a brief overview of TFN modeling, followed by a de-
scription of the recharge models, and ending with a descrip-
tion of the model calibration. The results are presented and
discussed in the fourth section, followed by a general discus-
sion of the methodology in the fifth section. The conclusions
of this study are summarized, and recommendations for fu-
ture research are provided in the sixth and final section.
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Figure 1. Map of the case study area with the locations of the
lysimeters, the meteorological station, and the groundwater mon-
itoring well used in this study.

2 Study site and field data

The study site is the hydrological research station near the
town of Wagna in Styria, Austria (see Fig. 1). The site is
located in an agricultural field surrounded by residential ar-
eas. Groundwater levels have been observed with a daily time
step since 1992 (see Fig. 2d; only data from 2006 onwards
are shown here). The depth to water table is approximately
4 m, and no capillary rise of moisture from the water ta-
ble into the root zone is expected due to the existence of a
coarse gravel layer at a depth of 0.50–120 cm (Klammler and
Fank, 2014). The land surface is at 267 m above mean Adri-
atic sea level (a.m.s.l.) with little elevation differences and
small hydraulic head gradients (±2.5 m km−1). The nearest
drainage features are the Sulm River 1 km to the west and
the larger Mur River 1.5 km to the east. Groundwater pump-
ing for drinking water purposes occurs 500 m north of the
observation well at a rate of 240 m3d−1. Due to the low dis-
charge and high conductivity of the aquifer, the effect of this
pumping is assumed to be negligible at the study site. Given
these conditions, the groundwater-level fluctuations are as-
sumed to be the exclusive result of changes in the groundwa-
ter recharge from infiltrating precipitation water.

The climate at the study area is influenced by the Mediter-
ranean Sea in the south, the land masses of Hungary in the
east, and the Alps in the west. The average air temperature
is 18.6 ◦C in summer (June–August) and −0.9 ◦C in win-
ter (December–February) (Prettenthaler et al., 2010). In the
summer months there are approximately 8 to 9 h sunshine
per day, while during the winter months the number of hours
with sun averages only 2 to 3 h. Precipitation primarily oc-
curs as short-duration convective rainfall events during the
warm summer months. In winter, most of the precipitation
also takes place as rainfall; the number of days with snow-

Figure 2. Time series of the precipitation (P ), potential evaporation
(Ep), recharge (R), and observed groundwater levels (h) for the pe-
riod 2006 to 2020. The recharge shown here is the average seepage
measured with the two lysimeters.

fall averages only 10 d yr−1 (Prettenthaler et al., 2010). As
the number of days when snowfall occurs is rather limited,
the effect of snow on groundwater recharge is not taken into
account in this study.

All the required input time series are measured directly at
the site. This includes the precipitation and the meteorolog-
ical variables required to calculate potential evaporation. It
is noted here that the term “evaporation” rather than “evapo-
transpiration” is used throughout this paper (e.g., Savenije,
2004; Miralles et al., 2020). The FAO Penman–Monteith
method is used to compute the daily grass reference evap-
oration (Allen et al., 1998). Klammler and Fank (2014) and
Schrader et al. (2013) showed that the estimates from this
method are in good agreement with estimates obtained from
a grass lysimeter that is present at the site. The average an-
nual precipitation (P ) and grass reference evaporation (Ep)
in the period 2007–2019 were 956 and 765 mm yr−1, respec-
tively. The time series of both fluxes are shown in Fig. 2a and
b.

The study site is equipped with two weighable scientific
field lysimeters, operated by JR-AquaConSol since 2005
(von Unold and Fank, 2008). The first lysimeter is operated
under conventional farming practices (Sciencelys 1), while
the second lysimeter (Sciencelys 2) was organically farmed
until 2014, when it was also converted to conventional farm-
ing. A crop-rotation scheme is used for the lysimeters, with
crops changing every growing season. The soils in the area
are rather heterogeneous, with the thickness of the sandy
loamy top layer varying greatly over short distances. The un-
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derlying sand and gravel deposits start at a depth between
50–120 cm. Both lysimeters have an area of 1 m2 and are 2 m
deep. Seepage to the groundwater is measured near the bot-
tom of the lysimeters at 1.8 m depth, where suction cups are
installed that apply a water potential that is similar to the po-
tential measured with tensiometers just outside the lysime-
ters. Both lysimeters are identical in their technical setup,
and a detailed description of the lysimeters is provided in
von Unold and Fank (2008) and Klammler and Fank (2014).

As the recharge is not measured at the water table itself,
a certain time lag between the recharge measured with the
lysimeters and the corresponding groundwater-level rise ex-
ists. Only a limited time lag is expected as the ±2 m thick
percolation zone consists mostly of highly conductive gravel
layers. It is noted that the recharge measurements are local
measurements for the area of the lysimeter and are influ-
enced by prevailing soil conditions, vegetation, and the de-
gree of soil sealing. The groundwater levels, measured at ap-
proximately 12 m distance from the lysimeters at the Wagna
test site, may also be influenced by different recharge rates
from other land-use types in the surrounding area (e.g., grass-
land or residential areas). As such, the measured recharge
rates from the lysimeters are – for the purpose of this pa-
per – used as an indicative rather than an exact estimate of
recharge. Considering the above, the average recharge from
the two lysimeters (shown in Fig. 2c) is used in this study for
the comparison with model estimates. The average recharge
measured with the lysimeters is 322 mm yr−1 over the period
2007–2019.

A number of studies have used the hydrological research
site Wagna. Only the literature with a focus on recharge es-
timation and unsaturated flow modeling is discussed here.
Fank (1999) used the water table fluctuation method to esti-
mate groundwater recharge from observed groundwater lev-
els and computed an average recharge of 393 mm yr−1 over
the period 1992–1996. This estimate is comparable to the
296 and 396 mmyr−1 reported by Stumpp et al. (2009) for
the two lysimeters that were operated at the site in the period
1992–2001. Stumpp et al. (2009) also applied a HYDRUS-
1D model to simulate unsaturated zone flow. Using stable
isotope δ18O measurements, it was shown that lysimeter
recharge could be adequately simulated with this physically
based model, although recharge peaks were generally un-
derestimated. Groenendijk et al. (2014) documented a large
comparative study of six different unsaturated zone models,
where measured water content and fluxes were used to cal-
ibrate and evaluate the models. Although this study focused
on nitrate leaching, the study also showed how all models
had difficulties in accurately simulating the water content and
fluxes observed in the current lysimeters. This was attributed
to the lack of processes such as hysteresis, preferential flow
and multiple phase flow in the models. A later study using
the MIKE SHE model yielded similar results (Reszler and
Fank, 2016). The study concluded that the seepage and water
content dynamics in the lower gravel zone inside the lysime-

ters could not be matched using the Richards equation and a
Van Genuchten–Mualem approach, suggesting the existence
of preferential flow paths below the root zone.

3 Methodology

3.1 The basic model setup

Transfer function noise (TFN) models are used here to trans-
late recharge into groundwater levels. The basic model struc-
ture is

h(t)= hr(t)+ d + r(t), (1)

where h(t) [L] are the observed groundwater levels, d [L] is
the base level of the model, hr(t) [L] is the contribution of
the recharge to groundwater-level fluctuations, and r(t) [L]
are the model residuals. The contribution hr(t) [L] is com-
puted by convoluting a recharge fluxR(t) [LT−1] with a pre-
defined impulse response function θ (t) (von Asmuth et al.,
2002):

hr(t)=

t∫
−∞

R(τ)θ(t − τ)dτ. (2)

Following Bakker et al. (2008), a four-parameter impulse
response function is used to translate the recharge flux into
groundwater-level fluctuations:

θf (t)= At
n−1e−t/a−ab/t t ≥ 0, (3)

where A [T−n+1] is a scaling parameter, and a [T], b [–], and
n [–] are shape parameters. For n > 1, the four-parameter
function simulates a delayed response of the groundwater
levels to recharge, while for n≤ 1 and b = 0, the ground-
water levels respond instantaneously to a recharge pulse. If
n= 1 and b = 0, Eq. (3) reduces to an exponential response
function with only two parameters:

θe(t)= Ae−t/a t ≥ 0. (4)

The parameters A, a, n, b, and d are estimated by fitting
Eq. (1) to observed data. Depending on the hydrogeological
setting and the model used to compute the recharge, either
a four-parameter or an exponential response function is used
here to translate the recharge flux R into groundwater-level
fluctuations. The main question that remains is how to esti-
mate the recharge R(t) from observed hydrometeorological
data. The following two sections introduce the two models
used in this study to compute the recharge flux R(t).
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3.2 The linear model

A common approach to approximate the recharge flux R in
Eq. (2) is a simple linear function of precipitation P [LT−1]
and potential evaporationEp [LT−1] (e.g., Berendrecht et al.,
2003; von Asmuth et al., 2008):

R = P − fEp, (5)

where f [–] is a parameter that is calibrated. The grass ref-
erence evaporation computed using the Penman–Monteith
equation (Allen et al., 1998) is used as potential evapora-
tion Ep here. A clear interpretation of the parameter f is not
available. While Berendrecht et al. (2003) referred to f as
a crop factor, von Asmuth et al. (2008) noted that the value
of f “depends on the soil and land cover” instead of a sin-
gle crop and also incorporates the “average reduction of the
evaporation due to actual soil water shortages”. Here, f is re-
ferred to as the evaporation factor, following the terminology
suggested by Obergfell et al. (2019).

From Eq. (5), it is clear that the flux R can be negative
for periods when evaporation (fEp) exceeds precipitation.
As Eq. (5) does not include a storage term, the temporal dis-
tribution of recharge that may result from storage in the un-
saturated zone has to be captured by the impulse response
function. The four-parameter response function is therefore
used to translate the computed recharge into groundwater-
level fluctuations for the linear model. As such, the response
function simulates the behavior of the entire system: the root
zone, the unsaturated zone, and the saturated zone. In total,
the linear model has six parameters to be estimated: A, n, a,
and b of the response function (Eq. 3), the evaporation factor
f , and the base level of the model d (Eq. 1).

3.3 The nonlinear model

While the linear model depends on the response function
to simulate the effects of the root zone on the groundwa-
ter recharge, the nonlinear model uses a soil-water storage
concept to account for the temporal storage of water in the
root zone. The nonlinear recharge model developed here is
loosely based on the FLEX conceptual modeling framework
used in rainfall-runoff modeling (Fenicia et al., 2006). The
model is conceptualized as two connecting reservoirs: the
first for interception and the second representing the root
zone, as shown in Fig. 3. Inputs to the nonlinear model
are precipitation (P [LT−1]) and potential evaporation (Ep
[LT−1]).

The general functioning of the model is as follows. Pre-
cipitation water is intercepted in the first reservoir until the
interception capacity Si,max [L] is exceeded. The intercepted
water can evaporate from the first reservoir as interception
evaporation (Ei [L T−1]). This process forms the first barrier
for precipitation to become groundwater recharge (Savenije,
2004) and creates a threshold nonlinearity in the model. Pre-

Figure 3. Conceptual model for the nonlinear recharge model.
Si,max and Sr,max are the maximum capacities of the interception
and root zone reservoirs, respectively. Ei is the interception evapo-
ration, and Et, s is a combined flux consisting of transpiration and
soil evaporation.

cipitation exceeding the interception capacity continues as
effective precipitation (Pe [LT−1]) to the root zone reservoir.
From the root zone, water is evaporated through transpiration
by vegetation and soil evaporation (Et,s [LT−1]) or is drained
to become groundwater recharge (R [LT−1]). The model is
described in more detail below.

To allow the model to adjust the input potential evapo-
ration (Ep) to an evaporation flux that better represents the
vegetation-dependent actual evaporation, a maximum poten-
tial evaporation flux Emax [LT−1] is computed first:

Emax = kvEp, (6)

where kv [–] is a vegetation coefficient that needs to be cal-
ibrated. This approach is similar to, for example, the eco-
hydrological streamflow model developed by Viola et al.
(2014). The parameter kv is interpreted as a vegetation co-
efficient, highlighting the idea that the groundwater recharge
may be affected by different types of vegetation instead of a
single type of crop.

The water balance for the interception reservoir is

1Si

1t
= P −Ei−Pe, (7)

where

Ei1t =min(Emax1t,Si), (8)

where Si [L] is the amount of water stored in the intercep-
tion reservoir. The maximum storage capacity of the inter-
ception reservoir is determined by the parameter Si,max [L].
Intercepted water is evaporated from the interception reser-
voir, limited by the amount of maximum potential evapora-
tion Emax (energy-limited) or the amount of water available
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for evaporation Si (water-limited). Any precipitation water
exceeding the interception capacity Si,max will continue to
the root zone reservoir as effective precipitation Pe.

The water balance for the root zone reservoir is

dSr

dt
= Pe−Et, s−R, (9)

where Sr [L] is the amount of water in the root zone reser-
voir, Et, s [LT−1] is a combined evaporation flux constitut-
ing both soil evaporation and transpiration by vegetation,
and R is the recharge to the groundwater. The maximum
storage capacity of the root zone reservoir is determined by
the parameter Sr,max [L]. The saturation at t = 0 is set to
Sr(t = 0)= 0.5Sr,max. The evaporation flux Et, s is limited
by the amount of water available in the root zone as follows:

Et, s = (Emax−Ei)min(1,
Sr

lpSr,max
), (10)

where the parameter lp [–] determines at what fraction of
Sr,max the evaporation flux is limited by the availability of
soil water. The relationship between the saturation of the root
zone (Sr/Sr,max) and the fraction of the potential evaporation
that is evaporated through the root zone (Et, s/Emax) is shown
in Fig. 4a. It is noted that the maximum potential evapora-
tion is decreased by the amount of evaporation that already
took place as interception evaporation. The actual evapora-
tion as simulated by the nonlinear model is calculated as
Ea = Et, s+Ei.

Recharge to the groundwater R is computed using Camp-
bell’s approximation for unsaturated hydraulic conductivity
(Campbell, 1974).

R = ks

(
Sr

Sr,max

)γ
, (11)

where ks [LT−1] is the saturated hydraulic conductivity, and
γ [–] is a parameter that determines how nonlinear this flux is
with respect to the saturation of the unsaturated zone. Equa-
tion (11) reduces to the equation used in the FLEX models
(Eq. 4 in Fenicia et al., 2006) when γ = 1 and is similar to
that used by Peterson and Western (2014). The relationship
between the saturation of the root zone and the recharge flux
for different values of γ is shown in Fig. 4b.

In the preliminary phase of this study, it was found that
the use of an exponential response function yields similar
results to the four-parameter response function for the non-
linear model. For reasons of model parsimony, the exponen-
tial response function (Eq. 4) was adopted for the nonlinear
model to translate the recharge R into groundwater levels.

In total, the nonlinear recharge model has six parameters
that need to be estimated: kv, Si,max, Sr,max, ks, γ , and lp.
Some of these parameters may be fixed to sensible values

Figure 4. Relationships between the saturation of the root zone
(Sr/Sr,max) and the fraction of the potential evaporation that is
evaporated through the root zone (Et, s/Emax) (a), and the drainage
(R) from the root zone reservoir (b). The saturated hydraulic con-
ductivity is set to ks = 1 mm d−1.

based on experience and literature values (Savenije, 2010),
decreasing the number of parameters that need to be cal-
ibrated. Here, the interception capacity Si,max was set to
2 mm, and lp was fixed to 0.25 [–]. The parameter Sr,max was
fixed to 250 mm (e.g., Gao et al., 2014), as it was found to
have a strong correlation with ks in the preliminary phase of
this study and thus hard to calibrate. This leaves a total of
six parameters to be calibrated: kv, ks, and γ of the nonlinear
recharge model, A and a of the response function (Eq. 4),
and the base level of the model d (Eq. 1).

3.4 The Lysimeter model

For comparison, a third model is constructed where the
recharge measured with the lysimeters is used as the flux R
in Eq. (2). Similar to the nonlinear model, an exponential re-
sponse function is used to translate this recharge into ground-
water levels. Assuming that the recharge measured with the
lysimeters is a good estimate of the (unknown) real recharge,
the groundwater levels simulated with this model provide an
indication of the fit that may potentially be obtained with the
other models.

3.5 Noise modeling

The residuals r(t) of TFN models applied to groundwater-
level data (see Eq. 1) often show considerable autocorre-
lation. To allow for statistical inferences with the model
(e.g., the estimation of confidence intervals of the simulated
recharge), it is necessary to transform the residuals series into
a noise series that is approximately white noise. For ground-
water levels time series, this generally means that the auto-
correlation needs to be removed from the residuals. An au-
toregressive model of order 1 (AR(1)) is commonly used for
this purpose (e.g., von Asmuth et al., 2002):

υ(ti)= r(ti)− r(ti−1)e−1ti/α, (12)
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where υ is called the noise series here, 1ti is the time step
between two residuals r(ti) and r(ti−1), and α [T] is the AR
parameter.

In the preliminary phase of this study, the models were
calibrated using daily groundwater-level observations. It was
found that the noise series from these models still exhib-
ited significant autocorrelation, despite the use of the AR(1)
noise model. This result may in fact not be that surprising,
considering the slow processes governing groundwater flow
systems and the model structure used to simulate these. The
former can for example be quantified by calculating the auto-
correlations of the observed groundwater levels, which in this
study are higher than 0.95 for measurements up to 13 d apart
and only drop below 0.5 for measurements 100 d apart. The
latter is more general, where autocorrelated errors are a result
from the model structure. Errors in the input data propagate
through the TFN model and are likely to result in autocor-
related errors, due to the use of a reservoir model (Kavetski
et al., 2003) and the convolution with an impulse response
function.

As a practical solution, the time step between
groundwater-level observations was systematically in-
creased through removal of observations from the time
series. For each increase in the interval between two mea-
surements, the models were recalibrated and diagnosed
for autocorrelation using the Durbin–Watson (DW) test
(Durbin and Watson, 1950) for the first time lag and the
Ljung–Box test (Ljung and Box, 1978) for lags of up to 1
year. The results for the DW test for different time intervals
are shown in Fig. 5a. A value of DW= 2 indicates that there
is no autocorrelation in the noise, while DW< 2 indicates a
positive autocorrelation at lag one and DW> 2 a negative
autocorrelation. While it is clearly visible in Fig. 5a that
removing observations from the groundwater-level time
series reduces the autocorrelation, application of the AR(1)
model did not suffice for the data used in this study.

In a further attempt to remove the autocorrelation from
the residuals, the AR(1) model was extended with a moving-
average part of order 1 (MA(1)) to form an ARMA(1,1) noise
model as follows:

υ(ti)=

r(ti)− r(ti−1)e−1ti/α −
β

|β|
υ(ti−1)e−1ti/|β| i ≥ 1, (13)

where β is the parameter of the moving-average part of the
noise model. The parameter β can have both positive and
negative values in this formulation. The parameters α and β
are estimated during model calibration. The first value of the
noise series at t = 0 is set to the first value of the residu-
als, υ(t0)= r(t0)), as it is not possible to compute υ(t = 0)
from the previous residual. The MA(1) process can correct
for individual shocks in the system, quickly reducing the er-
ror over one time step, whereas the AR(1) part deals with
an error whose effect exponentially decreases over multiple

Figure 5. Durbin–Watson (DW) statistics for models calibrated on
groundwater levels with an increasing interval (1t) up to 15 d, using
an AR(1) noise model (a) or an ARMA(1,1) noise model (b).

time steps. Note that the time step 1t in Eq. (13) may be ir-
regular, but in this study only time series with a regular time
step are used. Additional research is necessary to make this
noise model fully applicable to irregular time steps, as was
done for the AR(1) model (von Asmuth and Bierkens, 2005).

Rerunning the previous analysis of the Durbin–Watson
statistic for an increasing time interval between observations
using the ARMA(1,1) noise model shows that this noise
model is more capable of removing the autocorrelation at the
first time lag (Fig. 5b). The autocorrelation decreases with in-
creasing time interval, and the DW value stabilizes for time
intervals of around 6 d and larger. A lack of autocorrelation
in the noise series at larger time lags was also confirmed us-
ing the Ljung–Box test, although the autocorrelation at lags
of around 1 year become significant for time intervals below
10 d. Based on this analysis, groundwater-level time series
with a 10 d time interval were used for model calibration.
The final autocorrelation plots are shown in Fig. A1 in the
Appendix.

3.6 Parameter estimation and confidence intervals

The previous three sections described the TFN models used
in this study, which include a recharge model, a response
function, and an ARMA(1,1) noise model. An overview
of the entire TFN modeling process is shown in Fig. 6.
The model parameters are estimated by fitting the simulated
groundwater levels to the observed groundwater levels. The
linear and nonlinear models both have eight parameters that
are estimated, and the lysimeter model has five parameters.
A nonlinear least-squares approach is used here to estimate
the parameters for each model simultaneously. The following
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Figure 6. Modeling strategy as applied in this study.

objective function is used, minimizing the sum of the squared
noise:

Fobj =

n∑
i=1

υ2
i . (14)

Minimization of the objective function is done using the
trust-region-reflective algorithm, as implemented in SciPy’s
least-squares method (Virtanen et al., 2020, version 1.4.0)
and Lmfit (Newville et al., 2019, version 1.0). Note that this
is not the default option in Lmfit. The standard errors of the
parameters are computed from the covariance matrix that is
estimated during optimization. An important assumption un-
derlying this approach is that the minimized noise series (υ in
Eq. 13) behaves as normally distributed white noise with no
significant autocorrelation, a constant variance (homoscedas-
tic), and a mean of zero. These assumptions were checked
through visual inspection of the results and the use of var-
ious statistical tests for autocorrelation as already shown in
the previous section.

The 95% confidence intervals of the simulated recharge
are computed through a Monte Carlo simulation (N =
100000). Parameter sets are drawn from a multivariate nor-
mal distribution computed using the estimated covariance
matrix. If one of the parameters in a parameter set is out-
side the parameter boundaries, the set is discarded from the
sample, and a new parameter set is drawn. This procedure is
repeated until N parameter sets are available for the Monte
Carlo simulation. The model is run with the N different pa-
rameters sets, and the 95 % confidence intervals are com-
puted from the ensemble of simulated recharge fluxes.

3.7 Numerical and software implementation

All models were implemented in Python code and are freely
available through the open-source package Pastas (Collen-
teur et al., 2019, version 0.17). The nonlinear model is avail-
able under the name “FlexModel” in the Pastas library. The
nonlinear recharge model is numerically solved using an ex-
plicit Euler scheme with a time step of 1 d. As TFN models
are traditionally computationally inexpensive and have short
computation times (in the order of seconds), special attention
was paid to increase the computation speed of the recharge
model. This was achieved by using Numba, a just-in-time
compiler for Python code (Lam et al., 2015, version 0.49). As
a result, the nonlinear model has similar computation times
to the linear model.

3.8 Goodness-of-fit metrics

Four metrics are used to evaluate the goodness-of-fit of the
simulated groundwater levels and the groundwater recharge:
the mean absolute error (MAE), the root mean squared er-
ror (RMSE), the Nash–Sutcliffe efficiency (NSE), and the
Kling–Gupta efficiency (KGE). The MAE and the RMSE
provide a metric for the overall model fit and error, while the
NSE is a goodness-of-fit metric commonly used in hydrolog-
ical modeling. The KGE is an aggregate metric and contains
a correlation term, a bias term, and a variability term (see
Kling et al., 2012, for a more detailed discussion). The NSE
and KGE all have a maximum of 1, denoting a perfect fit of
the model with the data. The MAE and RMSE improve when
moving towards zero.
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Table 1. Goodness-of-fit metrics for the groundwater-level simu-
lation for each model. The metrics are computed for the calibra-
tion period (2007–2016) and the validation period (2017–2019).
Groundwater-level measurements with a 10 d time interval were
used to calculate these metrics, similar to the measurements used
for calibration.

Linear Nonlinear Lysimeter

Cal. Val. Cal. Val. Cal. Val.

MAE [m] 0.17 0.14 0.13 0.13 0.18 0.18
RMSE [m] 0.20 0.19 0.15 0.18 0.23 0.24
NSE [–] 0.74 0.73 0.85 0.75 0.64 0.57
KGE [–] 0.86 0.76 0.93 0.77 0.74 0.81

4 Results

4.1 Groundwater-level simulations

The 10-year period 2007–2016 was used for calibration, and
the 3-year period 2017–2019 was used for model valida-
tion. The year 2006 was used for model warm-up. The use
of a warm-up period is especially important for the nonlin-
ear model because the recharge flux strongly depends on the
initial saturation level of the root zone. The simulated and
the observed groundwater levels are shown in Fig. 7a, along
with the estimated recharge fluxes (Fig. 7b and c) and the
measured recharge (Fig. 7d). As the models are calibrated on
groundwater-level observations with a 10 d time step, only
recharge rates summed over 10 d intervals are presented here.
The values of the calibrated parameters can be found in Ta-
ble A1 in the Appendix.

All three TFN models are able to capture the major
groundwater dynamics and simulate the observed ground-
water levels reasonably well. For the calibration period, the
nonlinear model shows the best simulation of the groundwa-
ter levels as quantified by the four goodness-of-fit metrics
used in this study (see Table 1). The linear model performs
better than the lysimeter model according to all four metrics.
For the validation period, the differences in the metrics are
not as clear, but the nonlinear model still outperforms the
other models. The lysimeter model captures the single peak
in groundwater levels during the validation period better than
the other models but shows the worst simulation of the low
groundwater levels that follow this peak. The linear model
performs better during the period with low groundwater lev-
els but overestimates the low groundwater levels observed at
the beginning of the validation period. The nonlinear model
generally shows good performance but underestimates the
low groundwater levels at the end of the validation period.

While the groundwater levels simulated by the linear
and nonlinear models are rather similar, the groundwater
recharge fluxes (R) computed by these two models are
very different (see Fig. 7b and c). The recharge fluxes are
compared to the recharge measured with the lysimeters by

Table 2. Performance metrics for the similarity between the esti-
mated recharge and the measured recharge, in millimeters per 10 d.
The metrics are shown for the calibration period (2007–2016) and
the validation period (2017–2019).

Linear Nonlinear

Cal. Val. Cal. Val.

MAE [mm] 18.76 14.83 5.81 4.92
RMSE [mm] 25.34 20.46 9.38 8.95
NSE [–] −1.64 −1.96 0.64 0.43
KGE [–] 0.27 0.22 0.67 0.60

computing the same goodness-of-fit metrics (Table 2). The
recharge flux computed by the nonlinear model shows a rea-
sonably good fit resulting in, for example, a Kling–Gupta
efficiency of KGE= 0.67 for the calibration period. The
recharge computed by the linear model, however, deviates
strongly from the lysimeter recharge and often simulates neg-
ative recharge that was not measured with the lysimeters. It
is concluded that the linear model should not be used to es-
timate groundwater recharge at this small timescale (10 d in-
tervals), as expected. For the simulation of groundwater lev-
els, the linear model may still be appropriate, as the differ-
ence in the recharge flux can be compensated for by the shape
of the response function. This is clearly the case here, as is
visible by the differences in the block and step response func-
tions calibrated for each model (shown in Fig. 8). The linear
model shows a delayed response to a groundwater recharge
impulse, whereas the nonlinear and lysimeter models simu-
late an instantaneous response of the groundwater levels.

Although the linear recharge model in combination with
the four-parameter response function works well to simu-
late most of the groundwater levels time series, the model
fails under conditions where evaporation is limited by the
availability of soil moisture. This occurs for example in the
years 2010, 2013, and 2017, when the linear model simu-
lates a stronger decline in groundwater levels than was ob-
served. These strong declines in simulated groundwater lev-
els are caused by continued (modeled) evaporation over the
summer months, resulting in negative recharge rates (as vis-
ible in Fig. 7b) and ultimately lower groundwater levels.
Measurements from the lysimeters (data not shown) show
that actual evaporation is only a fraction of the potential
evaporation during those periods. Similar behavior for the
simulation of low groundwater levels was found by Beren-
drecht et al. (2006), using the same linear recharge model.
These results confirm that the linear recharge model should
not be used to simulate groundwater levels under such soil-
moisture-limited conditions.

The nonlinear model performs much better under such
soil-moisture-limited conditions and simulates almost no
recharge during these periods. The nonlinear model resem-
bles the recharge behavior as measured with the lysime-
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Figure 7. Observed and simulated groundwater levels (a) and the estimated (b, c) and measured (d) recharge rates (R). The groundwater-
level measurements used for calibration are shown as black dots, and unused measurements are shown as gray dots. The blue shading in plots
(b) and (c) denotes the 95 % confidence intervals of the recharge estimates.

Figure 8. Calibrated block and step response functions for all three
models. The block response (a) shows how the groundwater levels
react to a 1 d recharge event of 1 mm. The step response (b) shows
the response of the groundwater level to a sudden unit increase in
recharge that extends infinitely in time.

ters reasonably well, recharge occurring primarily as indi-
vidual events, interspersed with extended periods of reduced
recharge. The behavior of event-based recharge was also
found in other studies (Groenendijk et al., 2014; Reszler and
Fank, 2016) and suggests that recharge paths are activated
when a certain threshold in the soil moisture is exceeded.
This nonlinear response of recharge to infiltrating precipita-
tion also becomes clear when examining the estimated values
for the parameter γ , which indicates a nonlinear response
with a value of γ = 2.91 [–]. The results show that the use
of a nonlinear recharge model improves the simulation of
groundwater levels at the study site while also providing a
reasonable estimate of the recharge flux R at this timescale.

It is somewhat surprising that the lysimeter model does not
outperform the other two models. Three periods with deviat-
ing groundwater levels that stand out in particular are dis-
cussed here: the low groundwater levels in 2011, the peak in
2013, and a low in 2015. As the groundwater-level fluctua-
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Table 3. Descriptive statistics of the deviation (in mm) between
measured and estimated annual groundwater recharge rates.

Linear Nonlinear

Mean 114.95 29.99
Min −51.89 −53.80
Max 238.94 123.42
SD 74.17 62.71

tions are primarily the result of individual recharge events,
and the groundwater system has a long memory, such pe-
riods with groundwater levels deviating for a longer period
of time are likely the result of errors in the quantification
of individual recharge events. In 2011, almost no recharge
was recorded in the lysimeters, coinciding with an under-
estimation of the simulated groundwater levels. From the
groundwater-level measurements, however, it is clear that
some recharge must have taken place, visible by temporarily
stagnating and even slightly increasing groundwater levels
during that period. Due to a technical issue with the lysime-
ters, no groundwater recharge was recorded by the lysime-
ters for parts of 2015, explaining the deviation in simulated
groundwater levels in that year. No explanation could be
found for the peak in 2013, but this may just as well be an
error in the measurement of a single event, causing a long-
term deviation in the groundwater-level simulation.

4.2 Annual recharge rates

Groundwater resource managers are often interested in an-
nual recharge rates. In this section the ability of the models
to estimate recharge at this timescale is investigated. The an-
nual recharge rates computed by the TFN models and the
annual recharge measured with the lysimeters are shown in
Fig. 9. The nonlinear model performs better than the linear
model, also shown by the descriptive statistics of the devia-
tion [mm] between measured and estimated annual ground-
water recharge rates shown in Table 3. This is particularly
true for wet years, for which the linear model shows large
deviations (up to 239 mmyr−1) in the annual recharge rates.
The largest deviation for the nonlinear model occurs during
the dry year of 2011 (123 mm yr−1). The recharge computed
with the linear model has much wider confidence intervals,
despite (or maybe because of) having only one calibration pa-
rameter (f in Eq. 5). This means that the practical use of the
recharge estimate from the linear model may be limited, as
any analysis that uses this estimate as input data would have
large uncertainties in its outcomes due to the uncertainty in
the input data. The nonlinear model performs much better in
this respect.

The long-term average recharge (calculated for the period
2007–2019) estimated by the nonlinear model (352 mmd−1)
is much closer to the recharge measured with the lysimeters
(322 mmd−1) than to that of the linear model (437 mmd−1).

The overestimation of recharge by the linear model can be
explained by an underestimation of evaporation that results
from a low value for the evaporation factor f in Eq. (5), f =
−0.69. From the actual evaporation flux computed from the
lysimeter data (Klammler and Fank, 2014), however, it was
calculated that the actual evaporation is approximately 88 %
of the potential evaporation (or, f = 0.88) for the period
2007–2019. These results confirm findings from Obergfell
et al. (2019) that the factor f is difficult to estimate and
hampers the accurate estimation of recharge using the linear
model.

An accurate estimate of evaporation is also important for
recharge estimates made with the nonlinear model. In Fig. 10
the annual cumulative sums of recharge and actual evapo-
ration are shown as simulated by the nonlinear model and
measured with the lysimeters (computed from 1 January
to 31 December). The actual evaporation computed by the
model is close to that measured with the lysimeters, aver-
aging 81 % of the potential evaporation. The vegetation co-
efficient kv in Eq. (6) is calibrated at kv = 1.48 [–], which
seems quite high at first. For most of the simulation period,
however, the saturation of the root zone (Sr/Sr,max) is well
below the level (lp = 0.25) where evaporation from the root
zone equals the potential evaporation that is left after inter-
ception evaporation, as visible in Fig. 10c. As a result, the
actual evaporation simulated by the nonlinear model is still
below the potential evaporation but matches the actual evap-
oration measured with the lysimeters rather well.

In Fig. 10 it is visible that for years where the actual
evaporation computed by the nonlinear model more or less
equals the actual evaporation measured with the lysimeter,
the recharge fluxes match better as well. When actual evap-
oration is underestimated by the model, the recharge is over-
estimated (see, e.g., 2008, 2011, and 2015), relative to the
lysimeter recharge. A probable cause for the underestima-
tion of evaporation is the cultivation of different crops in the
lysimeters during the observation period (shown in the ta-
ble below the plots in Fig. 10). For example, for all years
when triticale was planted, the actual evaporation was un-
derestimated and the recharge overestimated. As grass ref-
erence evaporation was used as input data, and the vegeta-
tion coefficient kv is assumed to be constant through time,
the different evaporative capacities of the individual crops
is not considered in the current model setup. Cultivation of
different crops does not only influence the total yearly evap-
oration, but also the pattern in time as a result of different
growing seasons and harvest times. Such effects can again
be observed for triticale, a crop that starts transpiring early in
the year, visible by an earlier rise of the cumulative evapora-
tion in years when triticale is planted. The use of improved
input data for evaporation, taking into account the impact of
vegetation on this flux, may further improve recharge estima-
tions and groundwater-level simulations, particularly in agri-
cultural areas with crop rotation schemes.

https://doi.org/10.5194/hess-25-2931-2021 Hydrol. Earth Syst. Sci., 25, 2931–2949, 2021



2942 R. A. Collenteur et al.: Estimating groundwater recharge from groundwater levels using TFN models

Figure 9. Annual recharge rates as computed by each TFN model and as measured with the lysimeters. The error bars denote the 95 %
confidence intervals of the recharge estimate.

Figure 10. Yearly cumulative sums of recharge (a), the actual and potential evaporation (b), and the saturation of the root zone (c). The
dashed line in plot (c) denotes the value of lp, where the evaporation from the root zone will equal the potential evaporation.

4.3 Parameter estimation and consistency of model
output

The results presented so far are based on the calibration of
the models using only 1 out of every 10 groundwater-level
measurements. The use of only a selection of the available
groundwater-level measurements during calibration allowed
for a further investigation into the consistency of the model-
ing results, by calibrating the models to 10 different selec-
tions derived of the original time series as a type of split-
sample test. This way, it is possible to assess the consis-
tency of the estimated parameters and the impact on the
simulated groundwater levels and the annual recharge esti-
mates for this particular time series. The resulting ensem-
bles of groundwater-level simulations and annual groundwa-
ter recharge estimates are shown in Fig. A2 in the Appendix.
The results show that both the simulated groundwater levels
and the estimated recharge fluxes are consistent between the
different calibrations for all models. This should in fact not
be that surprising, considering that the time series used for
calibration originate from the same groundwater-level time
series.

What may be more surprising, however, are the differences
in the estimated parameters between the 10 different calibra-

tions (see Fig. A3 in the Appendix). The parameter values
for all models are of the same order of magnitude, and model
performance measured as NSE is relatively stable, but the
optimal parameter values can differ significantly from each
other between calibrations (e.g., for the nonlinear model ks
ranges between 100 and 250 mmd−1), even though the es-
timated confidence intervals overlap for the most part. The
results of this split-sample test raise the question of param-
eter identifiability. Given the similarity in simulated ground-
water levels and annual recharge estimates, it is clear that
different combinations of parameters yield similar results. It
is noted here that this analysis does not constitute a formal
sensitivity analysis of the parameters, for example, by vary-
ing one parameter and analyzing the changes in the estimated
recharge or simulated groundwater levels. The results of this
split-sample test rather serve as a motivation for such a study
and show that caution is needed when interpreting values of
individual (optimal) parameters. Further research is neces-
sary on the identification of parameters, for example through
testing the models on large samples of groundwater time se-
ries (similar to, e.g., Perrin et al., 2001).
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5 Discussion

5.1 Choice and performance of nonlinear recharge
models

The results from this study showed that, compared to the lin-
ear model, the nonlinear recharge model is more capable of
simulating true system dynamics that are commonly not mea-
sured, such as groundwater recharge and actual evaporation.
This suggests that the improvements in the simulation of the
groundwater levels and the estimation of recharge are the re-
sult of a better representation of the hydrological processes,
rather than the result of added mathematical complexity. As
such, the use of nonlinear recharge models in TFN models is
a promising step in the effort “to get the right answers for the
right reasons”, as advocated by, e.g., Kirchner (2006). This
may be particularly important when using this type of mod-
els to forecast groundwater recharge and levels under drought
conditions.

It is noted that the nonlinear recharge model developed for
this study is only one of a set of similar soil-water storage
models that may be applied. Comparable results (not shown
here) were obtained using the nonlinear recharge model de-
veloped by Berendrecht et al. (2006), which is also available
in the Pastas software (Collenteur et al., 2019). It is expected
that other nonlinear models (e.g., the models of Peterson and
Western, 2014) perform similarly. The identification of the
most appropriate nonlinear recharge model under different
conditions is a topic for future investigation.

The application of a nonlinear recharge model does come
with additional challenges in the estimation of the model pa-
rameters. Nonlinear models have a larger number of parame-
ters that need to be estimated and a higher potential for prob-
lems related to equifinality (Beven, 2006). As was shown in
this study, however, not all model parameters have to be cal-
ibrated, and some may be fixed to sensible values (following
e.g., Savenije, 2010). The use of nonlinear models therefore
does not necessarily imply a higher number of parameters
that need to be calibrated; i.e., the same number of parame-
ters were calibrated for the linear and nonlinear models used
in this study. Nonetheless, finding the optimal parameter val-
ues may be challenging and dependent on the initial parame-
ter values. Global optimization methods may help overcome
these problems, as for example shown by Peterson and West-
ern (2014).

5.2 Transformation of the residuals to uncorrelated
noise

In this study, model parameters were estimated by fitting
simulated groundwater levels to observed groundwater lev-
els. The recharge is an intermediate model result that is not
calibrated for. It is recommended here to quantify the im-
pact of parameter uncertainties on the recharge estimates by
computing their confidence intervals using the standard er-

rors of the estimated parameters. Reliable estimates of the
standard errors of the parameters may be obtained in the cur-
rent framework when the autocorrelation of the minimized
noise series is removed by using an appropriate noise model.
Here, an AR(1) model did not suffice for this purpose, and an
ARMA(1,1) noise model was used instead. The current im-
plementation of the ARMA(1,1) model is for groundwater-
level time series with regular time steps between observa-
tions, unlike the AR(1) model that is often used (von Asmuth
and Bierkens, 2005). Additional work is needed to make
the ARMA(1,1) model suitable for time series with irregu-
lar time steps.

The ARMA(1,1) noise model performed reasonably well
in transforming the residual series into a noise time series
that is approximately white noise, but some autocorrelation
remained in the noise series. As a practical solution, the time
interval between groundwater-level measurements was in-
creased to 10 d by removing measurements from the time se-
ries. It is noted here that the optimal time interval is likely to
be site-specific and should be investigated for each individual
time series. The approach shown in Sect. 3.5 can be helpful
in determining the optimal time step size used for model cali-
bration. Alternatively, it may be appropriate to use an ARMA
model of higher order (see, e.g., Box and Jenkins, 1970). The
modeling of the residuals and the choice of an appropriate
noise model and time interval are an iterative process, as also
suggested by Smith et al. (2015). Additionally, it is impor-
tant to use an appropriate length for the calibration period.
Van der Spek and Bakker (2017) recommended a 10- to 20-
year period for simulating groundwater levels with reliable
credible intervals.

5.3 Application to other hydrogeological settings

The presented approach was tested on relatively shallow
groundwater levels (±4 m depth to the water table), for which
no feedback between the groundwater and root zone was ex-
pected. In this setting, an exponential response function was
used in the nonlinear model, and the computed flux R could
be directly interpreted as groundwater recharge. The use of
an exponential function may not be appropriate for deeper
groundwater bodies with thicker unsaturated zones, which
require a more complicated response function that accounts
for a significant travel time through the unsaturated zone.
In that case, the estimated flux R should be interpreted as
drainage from the root zone to the groundwater and not as
recharge occurring at the water table. Alternatively, as sug-
gested by Peterson and Fulton (2019), the flux could be “av-
eraged over a period greater than the time lag” between the
drainage from the root zone and the arrival at the water table,
to provide an estimate of gross recharge at larger timescales.

It is not always possible to assume that there is no feed-
back between the root zone and the groundwater. If the roots
of the vegetation reach the groundwater, for example in shal-
low groundwater systems or deep rooting systems, evapora-
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tion of groundwater can occur. In this case, the actual evap-
oration is not limited by the availability of soil moisture and
may be close to potential evaporation. The linear model may
be applicable to simulate groundwater levels and estimate
recharge in these systems, although the model still lacks the
ability to temporarily store water. An alternative nonlinear
modeling approach that allows for the evaporation of ground-
water (Peterson and Western, 2014) may be more appropriate
under these conditions. In this approach, the part of the po-
tential evaporation that is not lost through evaporation and
transpiration from the soil reservoir is added to the TFN
model as a separate forcing.

Additional hydrological processes (e.g., snowmelt, sur-
face runoff) and forcings (e.g., pumping, river levels) may
be included in the model to make the methods applicable
in other hydrogeological settings than those presented here.
In the current framework, it is relatively easy to account for
other forcings causing groundwater-level fluctuations (e.g.,
von Asmuth et al., 2008; Collenteur et al., 2019). This al-
lows for the estimation of recharge in hydrogeological sys-
tems where the groundwater-level fluctuations are not exclu-
sively the result of recharge. Obergfell et al. (2019) already
successfully tested this approach to estimate recharge from
groundwater levels that were also influenced by groundwater
pumping. Additional processes may be implemented in the
root zone model to make the recharge models applicable in
different settings, for example precipitation entering the sys-
tem as snow or leaving as surface runoff before infiltrating
into the soil. For ideas on how to include such processes, one
can draw from the vast number of concepts already available
in conceptual rainfall-runoff modeling (e.g., Beven, 2011).

6 Conclusions and outlook

In this study, the application of linear and nonlinear trans-
fer function noise (TFN) models using predefined impulse
response functions was explored to estimate recharge and
simulate groundwater levels. The models were calibrated to
groundwater levels observed at the study site in Wagna, Aus-
tria. The recharge estimate, obtained as an intermediate flux
of the models, was compared with the average seepage mea-
sured with two lysimeters at the same site. This enabled an
evaluation even at short timescales, which goes beyond ear-
lier related work. Three models were applied. In the first,
recharge was calculated as a linear function of precipitation
and evaporation, while the second used a nonlinear recharge
model for this purpose. A third TFN model was constructed
for comparison, using the lysimeter measured seepage as in-
put data to simulate the groundwater levels.

Based on the results from this study, it is concluded that it
is possible to estimate groundwater recharge from observed
groundwater-level time series using TFN models and im-
pulse response functions. This confirms findings from pre-
vious research (Obergfell et al., 2019; Hocking and Kelly,

2016; Peterson and Fulton, 2019), for a different geographic
and climatic area. The nonlinear recharge model provided
better estimates of annual recharge rates than the linear
model and was shown to compute reasonable estimates for
recharge summed over 10 d periods. This suggests that the
nonlinear model may be used to obtain recharge estimates at
smaller timescales than reported so far. Using detailed infor-
mation from the lysimeters present at the study site, devia-
tions in the recharge estimate could be linked to errors in the
simulation of the actual evaporation, highlighting the impor-
tance of the evaporative flux in the estimation of recharge.

The use of a nonlinear recharge model also improved the
simulation of the groundwater levels compared to the lin-
ear model. For the linear model, a more complex response
function was required to obtain satisfactory results, as the re-
sponse function also had to simulate the storage effects of
the root zone. The response function used in the linear model
did not compensate for all hydrological conditions. The lack
of storage dynamics in the linear model leads to larger errors
in the simulation of the groundwater levels during periods of
droughts, when transpiration and soil evaporation are limited
by soil moisture availability. These findings confirm those
from other studies (Berendrecht et al., 2006; Peterson and
Western, 2014) and advocate a more widespread adoption of
nonlinear recharge models in TFN modeling of groundwater
levels.

The proposed method for estimating recharge combines
the advantages of data-driven TFN models with those of soil-
water storage models. Adding the latter to the TFN model
improves the representation of hydrological processes and
enables recharge estimation at subseasonal timescales and
below. As the model parameters are obtained by calibra-
tion to measured groundwater levels, knowledge of soil and
aquifer properties is not needed. This makes the methods
particularly useful for areas with little information about
the subsurface. The methods developed in this paper were
tested on a single groundwater time series and are presented
as a proof-of-concept. Additional research is needed using
larger groundwater-level data sets to investigate the general
applicability of the method under different hydrogeological
settings and to explore the suitability of different types of
recharge models.
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Appendix A

Figure A1. Autocorrelation graphs for all three models for lags of up to 1 year. The shaded area shows the 99 % confidence interval for the
autocorrelation function (ACF).

Figure A2. The first three plots show ensembles of 10 groundwater levels time series simulated by the three models. The bottom plot shows
the mean of the estimated annual recharge rates from an ensemble of 10 models. The black whiskers show 1.96 times the standard deviations
of the ensemble of annual recharge rates.
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Figure A3. Parameter values and their 95 % confidence interval for the three models calibrated on 10 time series. Note that when possible,
the y axis is shared between the different columns for comparison purposes. The bottom right subplot shows the model performance for each
calibration, measured as the NSE between the observed and simulated groundwater levels.

Table A1. Calibrated parameter values for all three model configurations. The estimated standard errors of the parameters are reported
between the brackets. The units from parameter A depend on the type of response function.

Linear Nonlinear Lysimeter

A [*] 0.58 (0.06) 0.89 (0.09) 1.01 (0.17)
a [d] 108.18 (22.69) 116.97 (12.73) 165.04 (30.11)
b [d] 0.03 (0.00) – –
n [–] 1.13 (0.10) – –
d [m] 262.41 (0.13) 262.28 (0.09) 262.28 (0.15)
α [d] 93.84 (26.29) 82.74 (20.40) 207.23 (89.82)
β [d] 9.92 (1.42) 10.08 (1.42) 7.89 (1.15)
f [–] −0.69 (0.07) – –
kv [–] – 1.48 (0.17) –
γ [–] – 2.91 (0.30) –
ks [mm d−1] – 118.81 (30.95) –
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Code and data availability. All models and methods used in
this paper are available through the Python package Pastas
(version 0.17.0; https://doi.org/10.5281/zenodo.4817408; Collen-
teur et al., 2021b). The data used for this paper are available
upon request from JR-AquaConSol. Example scripts to apply the
proposed methods in other settings are available from Zenodo
(https://doi.org/10.5281/zenodo.4548801; Collenteur et al., 2021a).
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