Articles | Volume 25, issue 5
https://doi.org/10.5194/hess-25-2399-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-2399-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion
Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
Nataniel M. Holtzman
Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
Alexandra G. Konings
Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
Related authors
No articles found.
Erica L. McCormick, Lillian E. Sanders, Kaighin A. McColl, and Alexandra G. Konings
EGUsphere, https://doi.org/10.5194/egusphere-2025-4225, https://doi.org/10.5194/egusphere-2025-4225, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We estimate daily evapotranspiration (ET) across the United States using the ‘surface flux equilibrium’ approach, which assumes that the balance of temperature and humidity in the atmosphere reflects recent ET on land. Using triple collocation, we compare our estimates to three other ET datasets and find that the surface flux equilibrium ET method performs well. Surface flux equilibrium ET may therefore be useful for hydrologic studies where simple, parameter-free ET estimates are advantageous.
Meng Zhao, Erica L. McCormick, Geruo A, Alexandra G. Konings, and Bailing Li
Hydrol. Earth Syst. Sci., 29, 2293–2307, https://doi.org/10.5194/hess-29-2293-2025, https://doi.org/10.5194/hess-29-2293-2025, 2025
Short summary
Short summary
Root-zone water storage capacity (Sr) helps plants survive droughts and influences water and climate systems. Using GRACE (Gravity Recovery and Climate Experiment) satellite data, we estimated Sr globally and found that it exceeds 2 m soil storage in nearly half of the vegetated areas, far more than previously thought. Incorporating our Sr estimates into a global hydrological model improves evapotranspiration simulations, particularly during droughts, highlighting the value of our approach for advancing water resource and ecosystem modeling.
Caroline A. Famiglietti, T. Luke Smallman, Paul A. Levine, Sophie Flack-Prain, Gregory R. Quetin, Victoria Meyer, Nicholas C. Parazoo, Stephanie G. Stettz, Yan Yang, Damien Bonal, A. Anthony Bloom, Mathew Williams, and Alexandra G. Konings
Biogeosciences, 18, 2727–2754, https://doi.org/10.5194/bg-18-2727-2021, https://doi.org/10.5194/bg-18-2727-2021, 2021
Short summary
Short summary
Model uncertainty dominates the spread in terrestrial carbon cycle predictions. Efforts to reduce it typically involve adding processes, thereby increasing model complexity. However, if and how model performance scales with complexity is unclear. Using a suite of 16 structurally distinct carbon cycle models, we find that increased complexity only improves skill if parameters are adequately informed. Otherwise, it can degrade skill, and an intermediate-complexity model is optimal.
Andrew F. Feldman, Daniel J. Short Gianotti, Alexandra G. Konings, Pierre Gentine, and Dara Entekhabi
Biogeosciences, 18, 831–847, https://doi.org/10.5194/bg-18-831-2021, https://doi.org/10.5194/bg-18-831-2021, 2021
Short summary
Short summary
We quantify global plant water uptake durations after rainfall using satellite-based plant water content measurements. In wetter regions, plant water uptake occurs within a day due to rapid coupling between soil and plant water content. Drylands show multi-day plant water uptake after rain pulses, providing widespread evidence for slow rehydration responses and pulse-driven growth responses. Our results suggest that drylands are sensitive to projected shifts in rainfall intensity and frequency.
Nataniel M. Holtzman, Leander D. L. Anderegg, Simon Kraatz, Alex Mavrovic, Oliver Sonnentag, Christoforos Pappas, Michael H. Cosh, Alexandre Langlois, Tarendra Lakhankar, Derek Tesser, Nicholas Steiner, Andreas Colliander, Alexandre Roy, and Alexandra G. Konings
Biogeosciences, 18, 739–753, https://doi.org/10.5194/bg-18-739-2021, https://doi.org/10.5194/bg-18-739-2021, 2021
Short summary
Short summary
Microwave radiation coming from Earth's land surface is affected by both soil moisture and the water in plants that cover the soil. We measured such radiation with a sensor elevated above a forest canopy while repeatedly measuring the amount of water stored in trees at the same location. Changes in the microwave signal over time were closely related to tree water storage changes. Satellites with similar sensors could thus be used to monitor how trees in an entire region respond to drought.
A. Anthony Bloom, Kevin W. Bowman, Junjie Liu, Alexandra G. Konings, John R. Worden, Nicholas C. Parazoo, Victoria Meyer, John T. Reager, Helen M. Worden, Zhe Jiang, Gregory R. Quetin, T. Luke Smallman, Jean-François Exbrayat, Yi Yin, Sassan S. Saatchi, Mathew Williams, and David S. Schimel
Biogeosciences, 17, 6393–6422, https://doi.org/10.5194/bg-17-6393-2020, https://doi.org/10.5194/bg-17-6393-2020, 2020
Short summary
Short summary
We use a model of the 2001–2015 tropical land carbon cycle, with satellite measurements of land and atmospheric carbon, to disentangle lagged and concurrent effects (due to past and concurrent meteorological events, respectively) on annual land–atmosphere carbon exchanges. The variability of lagged effects explains most 2001–2015 inter-annual carbon flux variations. We conclude that concurrent and lagged effects need to be accurately resolved to better predict the world's land carbon sink.
Cited articles
Adams, H. D., Zeppel, M. J. B., Anderegg, W. R. L., Hartmann, H.,
Landhäusser, S. M., Tissue, D. T., Huxman, T. E., Hudson, P. J., Franz,
T. E., Allen, C. D., Anderegg, L. D. L., Barron-Gafford, G. A., Beerling,
D. J., Breshears, D. D., Brodribb, T. J., Bugmann, H., Cobb, R. C., Collins,
A. D., Dickman, L. T., Duan, H., Ewers, B. E., Galiano, L., Galvez, D. A.,
Garcia-Forner, N., Gaylord, M. L., Germino, M. J., Gessler, A., Hacke, U. G.,
Hakamada, R., Hector, A., Jenkins, M. W., Kane, J. M., Kolb, T. E., Law,
D. J., Lewis, J. D., Limousin, J.-M., Love, D. M., Macalady, A. K.,
Martínez-Vilalta, J., Mencuccini, M., Mitchell, P. J., Muss, J. D.,
O'Brien, M. J., O'Grady, A. P., Pangle, R. E., Pinkard, E. A., Piper, F. I.,
Plaut, J. A., Pockman, W. T., Quirk, J., Reinhardt, K., Ripullone, F., Ryan,
M. G., Sala, A., Sevanto, S., Sperry, J. S., Vargas, R., Vennetier, M., Way,
D. A., Xu, C., Yepez, E. A., and McDowell, N. G.: A multi-species synthesis
of physiological mechanisms in drought-induced tree mortality, Nat. Ecol. Evol.,
1, 1285–1291, 2017. a
Anderegg, W. R. L., Klein, T., Bartlett, M., Sack, L., Pellegrini, A. F. A.,
Choat, B., and Jansen, S.: Meta-analysis reveals that hydraulic traits
explain cross-species patterns of drought-induced tree mortality across the
globe, P. Natl. Acad. Sci. USA, 113, 5024–5029, 2016. a
Anderegg, W. R. L., Wolf, A., Arango-Velez, A., Choat, B., Chmura, D. J.,
Jansen, S., Kolb, T., Li, S., Meinzer, F., Pita, P., Resco de Dios, V.,
Sperry, J. S., Wolfe, B. T., and Pacala, S.: Plant water potential improves
prediction of empirical stomatal models, PLoS One, 12, e0185481, https://doi.org/10.1371/journal.pone.0185481, 2017. a, b, c
Anderson, M. C., Norman, J. M., Diak, G. R., Kustas, W. P., and Mecikalski,
J. R.: A two-source time-integrated model for estimating surface fluxes using
thermal infrared remote sensing, Remote Sens. Environ., 60, 195–216, 1997. a
Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A., and Kustas,
W. P.: A climatological study of evapotranspiration and moisture stress
across the continental United States based on thermal remote sensing: 1.
Model formulation, J. Geophys. Res., 112, D10117, https://doi.org/10.1029/2006JD007506, 2007. a, b
Arnold, C. P. and Dey, C. H.: Observing-Systems Simulation Experiments: Past,
Present, and Future, B. Am. Meteorol. Soc., 67, 687–695, 1986. a
Barros, F. d. V., Bittencourt, P. R. L., Brum, M., Restrepo‐Coupe, N.,
Pereira, L., Teodoro, G. S., Saleska, S. R., Borma, L. S., Christoffersen,
B. O., Penha, D., Alves, L. F., Lima, A. J. N., Carneiro, V. M. C., Gentine,
P., Lee, J., Aragão, L. E. O. C., Ivanov, V., Leal, L. S. M., Araujo,
A. C., and Oliveira, R. S.: Hydraulic traits explain differential responses
of Amazonian forests to the 2015 El Niño‐induced drought, New Phytol.,
223, 1253–1266, 2019. a
Bartlett, M. K., Klein, T., Jansen, S., Choat, B., and Sack, L.: The
correlations and sequence of plant stomatal, hydraulic, and wilting responses
to drought, P. Natl. Acad. Sci. USA, 113, 13098–13103, 2016. a
Beaudoing, H. and Rodell, M.: GLDAS Noah Land Surface Model L4 3 hourly 0.25 × 0.25 degree V2.1, nASA/GSFC/HSL, Greenbelt, Maryland, USA, Goddard Earth
Sciences Data and Information Services Center (GES DISC),
https://doi.org/10.5067/E7TYRXPJKWOQ, 2020. a
Blackman, C. J., Creek, D., Maier, C., Aspinwall, M. J., Drake, J. E.,
Pfautsch, S., O'Grady, A., Delzon, S., Medlyn, B. E., Tissue, D. T., and
Choat, B.: Drought response strategies and hydraulic traits contribute to
mechanistic understanding of plant dry-down to hydraulic failure, Tree
Physiol., 39, 910–924, 2019. a
Brandt, M., Wigneron, J.-P., Chave, J., Tagesson, T., Penuelas, J., Ciais, P.,
Rasmussen, K., Tian, F., Mbow, C., Al-Yaari, A., Rodriguez-Fernandez, N.,
Schurgers, G., Zhang, W., Chang, J., Kerr, Y., Verger, A., Tucker, C.,
Mialon, A., Rasmussen, L. V., Fan, L., and Fensholt, R.: Satellite passive
microwaves reveal recent climate-induced carbon losses in African drylands,
Nat. Ecol. Evol., 2, 827–835, 2018. a
Brooks, S. P. and Gelman, A.: General Methods for Monitoring Convergence of
Iterative Simulations, J. Comput. Graph. Stat., 7, 434–455, 1998. a
Butler, E. E., Datta, A., Flores-Moreno, H., Chen, M., Wythers, K. R.,
Fazayeli, F., Banerjee, A., Atkin, O. K., Kattge, J., Amiaud, B., Blonder,
B., Boenisch, G., Bond-Lamberty, B., Brown, K. A., Byun, C., Campetella, G.,
Cerabolini, B. E. L., Cornelissen, J. H. C., Craine, J. M., Craven, D.,
de Vries, F. T., Díaz, S., Domingues, T. F., Forey, E.,
González-Melo, A., Gross, N., Han, W., Hattingh, W. N., Hickler, T.,
Jansen, S., Kramer, K., Kraft, N. J. B., Kurokawa, H., Laughlin, D. C., Meir,
P., Minden, V., Niinemets, Ü., Onoda, Y., Peñuelas, J., Read, Q.,
Sack, L., Schamp, B., Soudzilovskaia, N. A., Spasojevic, M. J., Sosinski, E.,
Thornton, P. E., Valladares, F., van Bodegom, P. M., Williams, M., Wirth, C.,
and Reich, P. B.: Mapping local and global variability in plant trait
distributions, P. Natl. Acad. Sci. USA, 114, E10937–E10946,
2017. a
Campbell, G. S. and Norman, J.: An Introduction to Environmental Biophysics,
Springer Science & Business Media, Springer, New York, NY, 1998. a
Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R.,
Bucci, S. J., Feild, T. S., Gleason, S. M., Hacke, U. G., Jacobsen, A. L.,
Lens, F., Maherali, H., Martínez-Vilalta, J., Mayr, S., Mencuccini, M.,
Mitchell, P. J., Nardini, A., Pittermann, J., Pratt, R. B., Sperry, J. S.,
Westoby, M., Wright, I. J., and Zanne, A. E.: Global convergence in the
vulnerability of forests to drought, Nature, 491, 752–755, 2012. a
Christoffersen, B. O., Gloor, M., Fauset, S., Fyllas, N. M., Galbraith, D. R., Baker, T. R., Kruijt, B., Rowland, L., Fisher, R. A., Binks, O. J., Sevanto, S., Xu, C., Jansen, S., Choat, B., Mencuccini, M., McDowell, N. G., and Meir, P.: Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro), Geosci. Model Dev., 9, 4227–4255, https://doi.org/10.5194/gmd-9-4227-2016, 2016. a
De Kauwe, M. G., Medlyn, B. E., Ukkola, A. M., Mu, M., Sabot, M. E. B., Pitman,
A. J., Meir, P., Cernusak, L. A., Rifai, S. W., Choat, B., Tissue, D. T.,
Blackman, C. J., Li, X., Roderick, M., and Briggs, P. R.: Identifying areas
at risk of drought-induced tree mortality across South-Eastern Australia,
Glob. Change Biol., 26, 5716–5733, https://doi.org/10.1111/gcb.15215, 2020. a, b
Dietze, M. C., Lebauer, D. S., and Kooper, R.: On improving the communication
between models and data, Plant Cell Environ., 36, 1575–1585, 2013. a
Eller, C. B., Rowland, L., Mencuccini, M., Rosas, T., Williams, K., Harper, A.,
Medlyn, B. E., Wagner, Y., Klein, T., Teodoro, G. S., Oliveira, R. S., Matos,
I. S., Rosado, B. H. P., Fuchs, K., Wohlfahrt, G., Montagnani, L., Meir, P.,
Sitch, S., and Cox, P. M.: Stomatal optimization based on xylem hydraulics
(SOX) improves land surface model simulation of vegetation responses to
climate, New Phytol., 226, 1622–1637, 2020. a
Errico, R. M., Yang, R., Privé, N. C., Tai, K.-S., Todling, R.,
Sienkiewicz, M. E., and Guo, J.: Development and validation of
observing-system simulation experiments at NASA's Global Modeling and
Assimilation Office, Q. J. Roy. Meteorol. Soc., 139, 1162–1178, 2013. a
Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B., and Otero-Casal,
C.: Hydrologic regulation of plant rooting depth, P. Natl. Acad. Sci. USA, 114, 10572–10577, 2017. a
FAO: Understanding the drought impact of El Niño on the global agricultural
areas: An assessment using FAO’s Agricultural Stress Index (ASI), available at:
http://www.fao.org/resilience/resources/resources-detail/en/c/1114447/ (last access: 8 October 2020), 2014. a
FAO/IIASA/ISRIC/ISSCAS/JRC: Harmonized World Soil Database (version 1.2),
fAO, Rome, Italy and IIASA, Laxenburg, Austria, available at: http://www.fao.org/soils-portal/data-hub/en/ (last access: 22 June 2016), 2012. a
Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of
photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149,
78–90, 1980. a
Feldman, A. F., Short Gianotti, D. J., Konings, A. G., McColl, K. A., Akbar,
R., Salvucci, G. D., and Entekhabi, D.: Moisture pulse-reserve in the
soil-plant continuum observed across biomes, Nat. Plants, 4, 1026–1033, 2018. a
Feldman, A. F., Short Gianotti, D. J., Trigo, I. F., Salvucci, G. D., and
Entekhabi, D.: Land‐Atmosphere Drivers of Landscape‐Scale Plant Water
Content Loss, Geophys. Res. Lett., 47, e2020GL090331, https://doi.org/10.1029/2020GL090331, 2020. a
Feng, X., Dawson, T. E., Ackerly, D. D., Santiago, L. S., and Thompson, S. E.:
Reconciling seasonal hydraulic risk and plant water use through probabilistic
soil-plant dynamics, Glob. Change Biol., 23, 3758–3769, 2017. a
Feng, X., Ackerly, D. D., Dawson, T. E., Manzoni, S., McLaughlin, B., Skelton,
R. P., Vico, G., Weitz, A. P., and Thompson, S. E.: Beyond isohydricity: The
role of environmental variability in determining plant drought responses,
Plant Cell Environ., 42, 1104–1111, 2019. a
Liu, Y., Holtzman, N. M., and Konings, A. G.: Global ecosystem-scale plant hydraulic traits retrieved using model-data fusion, Figshare [dataset], https://doi.org/10.6084/m9.figshare.13350713.v2, 2020. a
Fisher, R. A., Wieder, W. R., Sanderson, B. M., Koven, C. D., Oleson, K. W.,
Xu, C., Fisher, J. B., Shi, M., Walker, A. P., and Lawrence, D. M.:
Parametric Controls on Vegetation Responses to Biogeochemical Forcing in the
CLM5, J. Adv. Model. Earth Sy., 11, 2879–2895, 2019. a
Frappart, F., Wigneron, J.-P., Li, X., Liu, X., Al-Yaari, A., Fan, L., Wang,
M., Moisy, C., Le Masson, E., Lafkih, Z. A., et al.: Global monitoring of the
vegetation dynamics from the Vegetation Optical Depth (VOD): A review, Remote
Sensing, 12, 2915, https://doi.org/10.3390/rs12182915, 2020. a
Giardina, F., Konings, A. G., Kennedy, D., Alemohammad, S. H., Oliveira, R. S.,
Uriarte, M., and Gentine, P.: Tall Amazonian forests are less sensitive to
precipitation variability, Nat. Geosci., 11, 405–409, 2018. a
Gleason, S. M., Westoby, M., Jansen, S., Choat, B., Hacke, U. G., Pratt, R. B.,
Bhaskar, R., Brodribb, T. J., Bucci, S. J., Cao, K.-F., Cochard, H., Delzon,
S., Domec, J.-C., Fan, Z.-X., Feild, T. S., Jacobsen, A. L., Johnson, D. M.,
Lens, F., Maherali, H., Martínez-Vilalta, J., Mayr, S., McCulloh, K. A.,
Mencuccini, M., Mitchell, P. J., Morris, H., Nardini, A., Pittermann, J.,
Plavcová, L., Schreiber, S. G., Sperry, J. S., Wright, I. J., and Zanne,
A. E.: Weak tradeoff between xylem safety and xylem-specific hydraulic
efficiency across the world's woody plant species, New Phytol., 209,
123–136, 2016. a
Goulden, M. L. and Bales, R. C.: Mountain runoff vulnerability to increased
evapotranspiration with vegetation expansion, P. Natl. Acad. Sci. USA, 111, 14071–14075, 2014. a
Hartley, A. J., MacBean, N., Georgievski, G., and Bontemps, S.: Uncertainty in
plant functional type distributions and its impact on land surface models,
Remote Sens. Environ., 203, 71–89, 2017. a
Hartmann, H., Moura, C. F., Anderegg, W. R. L., Ruehr, N. K., Salmon, Y.,
Allen, C. D., Arndt, S. K., Breshears, D. D., Davi, H., Galbraith, D.,
Ruthrof, K. X., Wunder, J., Adams, H. D., Bloemen, J., Cailleret, M., Cobb,
R., Gessler, A., Grams, T. E. E., Jansen, S., Kautz, M., Lloret, F., and
O'Brien, M.: Research frontiers for improving our understanding of
drought-induced tree and forest mortality, New Phytol., 218, 15–28, 2018. a, b
Hochberg, U., Rockwell, F. E., Holbrook, N. M., and Cochard, H.:
Iso/Anisohydry: A Plant-Environment Interaction Rather Than a Simple
Hydraulic Trait, Trends Plant Sci., 23, 112–120, 2018. a
Holmes, T. R. H., Hain, C. R., Crow, W. T., Anderson, M. C., and Kustas, W. P.: Microwave implementation of two-source energy balance approach for estimating evapotranspiration, Hydrol. Earth Syst. Sci., 22, 1351–1369, https://doi.org/10.5194/hess-22-1351-2018, 2018. a, b, c
Holtzman, N. M., Anderegg, L. D. L., Kraatz, S., Mavrovic, A., Sonnentag, O., Pappas, C., Cosh, M. H., Langlois, A., Lakhankar, T., Tesser, D., Steiner, N., Colliander, A., Roy, A., and Konings, A. G.: L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand, Biogeosciences, 18, 739–753, https://doi.org/10.5194/bg-18-739-2021, 2021. a
Huang, C.-W., Domec, J.-C., Ward, E. J., Duman, T., Manoli, G., Parolari,
A. J., and Katul, G. G.: The effect of plant water storage on water fluxes
within the coupled soil-plant system, New Phytol., 213, 1093–1106, 2017. a
Ji, C. and Schmidler, S. C.: Adaptive Markov Chain Monte Carlo for Bayesian
Variable Selection, J. Comput. Graph. Stat., 22, 708–728, 2013. a
Kalma, J. D., McVicar, T. R., and McCabe, M. F.: Estimating Land Surface
Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature
Data, Surv. Geophys., 29, 421–469, 2008. a
Kattge, J., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P.,
Bönisch, G., Garnier, E., Westoby, M., Reich, P. B., Wright, I. J.,
Cornelissen, J. H. C., Violle, C., Harrison, S. P., Van BODEGOM, P. M.,
Reichstein, M., Enquist, B. J., Soudzilovskaia, N. A., Ackerly, D. D., Anand,
M., Atkin, O., Bahn, M., Baker, T. R., Baldocchi, D., Bekker, R., Blanco,
C. C., Blonder, B., Bond, W. J., Bradstock, R., Bunker, D. E., Casanoves, F.,
Cavender-Bares, J., Chambers, J. Q., Chapin, Iii, F. S., Chave, J., Coomes,
D., Cornwell, W. K., Craine, J. M., Dobrin, B. H., Duarte, L., Durka, W.,
Elser, J., Esser, G., Estiarte, M., Fagan, W. F., Fang, J.,
Fernández-Méndez, F., Fidelis, A., Finegan, B., Flores, O., Ford, H.,
Frank, D., Freschet, G. T., Fyllas, N. M., Gallagher, R. V., Green, W. A.,
Gutierrez, A. G., Hickler, T., Higgins, S. I., Hodgson, J. G., Jalili, A.,
Jansen, S., Joly, C. A., Kerkhoff, A. J., Kirkup, D., Kitajima, K., Kleyer,
M., Klotz, S., Knops, J. M. H., Kramer, K., Kühn, I., Kurokawa, H.,
Laughlin, D., Lee, T. D., Leishman, M., Lens, F., Lenz, T., Lewis, S. L.,
Lloyd, J., Llusià, J., Louault, F., Ma, S., Mahecha, M. D., Manning, P.,
Massad, T., Medlyn, B. E., Messier, J., Moles, A. T., Müller, S. C.,
Nadrowski, K., Naeem, S., Niinemets, Ü., Nöllert, S., Nüske, A.,
Ogaya, R., Oleksyn, J., Onipchenko, V. G., Onoda, Y., Ordoñez, J.,
Overbeck, G., Ozinga, W. A., Patiño, S., Paula, S., Pausas, J. G.,
Peñuelas, J., Phillips, O. L., Pillar, V., Poorter, H., Poorter, L.,
Poschlod, P., Prinzing, A., Proulx, R., Rammig, A., Reinsch, S., Reu, B.,
Sack, L., Salgado-Negret, B., Sardans, J., Shiodera, S., Shipley, B.,
Siefert, A., Sosinski, E., Soussana, J.-F., Swaine, E., Swenson, N.,
Thompson, K., Thornton, P., Waldram, M., Weiher, E., White, M., White, S.,
Wright, S. J., Yguel, B., Zaehle, S., Zanne, A. E., and Wirth, C.: TRY – a
global database of plant traits, Glob. Change Biol., 17, 2905–2935, 2011. a, b, c, d
Kirdiashev, K. P., Chukhlantsev, A. A., and Shutko, A. M.: Microwave radiation
of the earth's surface in the presence of vegetation cover, Radiotekh.
Elektron.+, 24, 256–264, 1979. a
Kodinariya, T. M. and Makwana, P. R.: Review on determining number of Cluster
in K-Means Clustering, Int. J., 1, 90–95, 2013. a
Konings, A. G., McColl, K. A., Piles, M., and Entekhabi, D.: How Many
Parameters Can Be Maximally Estimated From a Set of Measurements?, IEEE
Geosci. Remote S., 12, 1081–1085, 2015. a
Konings, A. G., Piles, M., Rötzer, K., McColl, K. A., Chan, S. K., and
Entekhabi, D.: Vegetation optical depth and scattering albedo retrieval using
time series of dual-polarized L-band radiometer observations, Remote Sens.
Environ., 172, 178–189, 2016. a
Kumar, S. V., Holmes, T. R., Bindlish, R., de Jeu, R., and Peters-Lidard, C.: Assimilation of vegetation optical depth retrievals from passive microwave radiometry, Hydrol. Earth Syst. Sci., 24, 3431–3450, https://doi.org/10.5194/hess-24-3431-2020, 2020. a, b
Li, X., Piao, S., Wang, K., Wang, X., Wang, T., Ciais, P., Chen, A., Lian, X.,
Peng, S., and Peñuelas, J.: Temporal trade-off between gymnosperm
resistance and resilience increases forest sensitivity to extreme drought,
Nat. Ecol. Evol., 4, 1075–1083, 2020. a
Li, X., Wigneron, J.-P., Frappart, F., Fan, L., Ciais, P., Fensholt, R.,
Entekhabi, D., Brandt, M., Konings, A. G., Liu, X., Wang, M., Al-Yaari, A.,
and Moisy, C.: Global-scale assessment and inter-comparison of recently
developed/reprocessed microwave satellite vegetation optical depth products,
Remote Sens. Environ., 253, 112208, https://doi.org/10.1016/j.rse.2020.112208, 2021. a
Li, Y., Guan, K., Gentine, P., Konings, A. G., Meinzer, F. C., Kimball, J. S.,
Xu, X., Anderegg, W. R. L., McDowell, N. G., Martinez-Vilalta, J., Long,
D. G., and Good, S. P.: Estimating Global Ecosystem Isohydry/Anisohydry
Using Active and Passive Microwave Satellite Data, J. Geophys. Res.-Biogeo., 122, 3306–3321, 2017. a
Lin, Y.-S., Medlyn, B. E., Duursma, R. A., Prentice, I. C., Wang, H., Baig, S.,
Eamus, D., de Dios, V. R., Mitchell, P., Ellsworth, D. S., de Beeck, M. O.,
Wallin, G., Uddling, J., Tarvainen, L., Linderson, M.-L., Cernusak, L. A.,
Nippert, J. B., Ocheltree, T. W., Tissue, D. T., Martin-StPaul, N. K.,
Rogers, A., Warren, J. M., De Angelis, P., Hikosaka, K., Han, Q., Onoda, Y.,
Gimeno, T. E., Barton, C. V. M., Bennie, J., Bonal, D., Bosc, A., Löw,
M., Macinins-Ng, C., Rey, A., Rowland, L., Setterfield, S. A., Tausz-Posch,
S., Zaragoza-Castells, J., Broadmeadow, M. S. J., Drake, J. E., Freeman, M.,
Ghannoum, O., Hutley, L. B., Kelly, J. W., Kikuzawa, K., Kolari, P., Koyama,
K., Limousin, J.-M., Meir, P., Lola da Costa, A. C., Mikkelsen, T. N.,
Salinas, N., Sun, W., and Wingate, L.: Optimal stomatal behaviour around the
world, Nat. Clim. Change, 5, 459–464, 2015. a, b, c, d, e, f, g
Liu, Y., Parolari, A. J., Kumar, M., Huang, C.-W., Katul, G. G., and Porporato,
A.: Increasing atmospheric humidity and CO2 concentration alleviate forest
mortality risk, P. Natl. Acad. Sci. USA, 114, 9918–9923, 2017. a
Liu, Y., Holtzman, N. M., Konings, A. G., Model-data fusion to retrieve global ecosystem-scale plant hydraulic traits, GitHub [code], available at: https://github.com/YanlanLiu/VOD_hydraulics, last access: 8 December 2020b. a
Liu, Y. Y., de Jeu, R. A. M., McCabe, M. F., Evans, J. P., and van Dijk, A. I.
J. M.: Global long-term passive microwave satellite-based retrievals of
vegetation optical depth, Geophys. Res. Lett., 38, L18402, https://doi.org/10.1029/2011GL048684, 2011. a
Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M., Canadell, J. G., McCabe,
M. F., Evans, J. P., and Wang, G.: Recent reversal in loss of global
terrestrial biomass, Nat. Clim. Change, 5, 470–474, 2015. a
Ma, Z., Peng, C., Zhu, Q., Chen, H., Yu, G., Li, W., Zhou, X., Wang, W., and
Zhang, W.: Regional drought-induced reduction in the biomass carbon sink of
Canada's boreal forests, P. Natl. Acad. Sci. USA, 109, 2423–2427,
2012. a
MacQueen, J.: Some methods for classification and analysis of multivariate
observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics, The Regents of the
University of California, Oakland, CA, USA, 1967. a
Manoli, G., Domec, J.-C., Novick, K., Oishi, A. C., Noormets, A., Marani, M.,
and Katul, G.: Soil–plant–atmosphere conditions regulating convective cloud
formation above southeastern US pine plantations, Glob. Change Biol., 22,
2238–2254, 2016. a
Manzoni, S., Vico, G., Katul, G., Fay, P. A., Polley, W., Palmroth, S., and
Porporato, A.: Optimizing stomatal conductance for maximum carbon gain under
water stress: a meta-analysis across plant functional types and climates,
Funct. Ecol., 25, 456–467, 2011. a
Manzoni, S., Vico, G., Porporato, A., and Katul, G.: Biological constraints on
water transport in the soil–plant–atmosphere system, Adv. Water Resour.,
51, 292–304, 2013. a
Manzoni, S., Katul, G., and Porporato, A.: A dynamical system perspective on
plant hydraulic failure, Water Resour. Res., 50, 5170–5183, 2014. a
Martínez-Vilalta, J. and Garcia-Forner, N.: Water potential regulation,
stomatal behaviour and hydraulic transport under drought: deconstructing the
iso/anisohydric concept, Plant Cell Environ., 40, 962–976, 2017. a
Matheny, A. M., Fiorella, R. P., Bohrer, G., Poulsen, C. J., Morin, T. H.,
Wunderlich, A., Vogel, C. S., and Curtis, P. S.: Contrasting strategies of
hydraulic control in two codominant temperate tree species, Ecohydrol., 10,
e1815, https://doi.org/10.1002/eco.1815, 2017. a
McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb,
T., Plaut, J., Sperry, J., West, A., Williams, D. G., and Yepez, E. A.:
Mechanisms of plant survival and mortality during drought: why do some plants
survive while others succumb to drought?, New Phytol., 178, 719–739, 2008. a
McDowell, N. G., Williams, A. P., Xu, C., Pockman, W. T., Dickman, L. T.,
Sevanto, S., Pangle, R., Limousin, J., Plaut, J., Mackay, D. S., Ogee, J.,
Domec, J. C., Allen, C. D., Fisher, R. A., Jiang, X., Muss, J. D., Breshears,
D. D., Rauscher, S. A., and Koven, C.: Addendum: Multi-scale predictions of
massive conifer mortality due to chronic temperature rise, Nat. Clim.
Change, 6, 1048–1048, 2016. a
Medlyn, B. E., Dreyer, E., Ellsworth, D., Forstreuter, M., Harley, P. C.,
Kirschbaum, M. U. F., Le Roux, X., Montpied, P., Strassemeyer, J., Walcroft,
A., Wang, K., and Loustau, D.: Temperature response of parameters of a
biochemically based model of photosynthesis. II. A review of experimental
data, Plant Cell Environ., 25, 1167–1179, 2002. a
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., Crous, K. Y., de Angelis, P., Freeman, M., and Wingate, L.: Reconciling the optimal and empirical approaches to modelling stomatal conductance, Glob. Change Biol., 17, 2134–2144, https://doi.org/10.1111/j.1365-2486.2010.02375.x, 2011. a, b
Meinzer, F. C., Smith, D. D., Woodruff, D. R., Marias, D. E., McCulloh, K. A.,
Howard, A. R., and Magedman, A. L.: Stomatal kinetics and photosynthetic gas
exchange along a continuum of isohydric to anisohydric regulation of plant
water status, Plant Cell Environ., 40, 1618–1628, 2017. a
Mrad, A., Sevanto, S., Domec, J.-C., Liu, Y., Nakad, M., and Katul, G.: A
Dynamic Optimality Principle for Water Use Strategies Explains Isohydric to
Anisohydric Plant Responses to Drought, Frontiers in Forests and Global
Change, 2, 49, https://doi.org/10.3389/ffgc.2019.00049, 2019. a
Myneni, R., Knyazikhin, Y., and Park, T.: MCD15A3H MODIS/Terra+Aqua Leaf Area
Index/FPAR 4-day L4 Global 500m SIN Grid V006, nASA EOSDIS Land Processes
DAAC, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD15A3H.006, 2015. a
Nearing, G. S., Crow, W. T., Thorp, K. R., Moran, M. S., Reichle, R. H., and
Gupta, H. V.: Assimilating remote sensing observations of leaf area index and
soil moisture for wheat yield estimates: An observing system simulation
experiment, Water Resour. Res., 48, 687, https://doi.org/10.1029/2011WR011420, 2012. a
Novick, K. A., Konings, A. G., and Gentine, P.: Beyond soil water potential: An
expanded view on isohydricity including land–atmosphere interactions and
phenology, Plant Cell Environ., 42, 1802–1815, 2019. a
Owe, M., de Jeu, R., and Holmes, T.: Multisensor historical climatology of
satellite-derived global land surface moisture, J. Geophys.
Res.-Earth, 113, F01002, https://doi.org/10.1029/2007jf000769, 2008. a
Parinussa, R. M., Holmes, T. R. H., Wanders, N., Dorigo, W. A., and de Jeu, R.
A. M.: A Preliminary Study toward Consistent Soil Moisture from AMSR2, J.
Hydrometeorol., 16, 932–947, 2015. a
Parinussa, R. M., De Jeu, R. A. M., Van der Schalie, R., Crow, W. T., Lei, F.,
and Holmes, T. R. H.: A Quasi-Global Approach to Improve Day-Time Satellite
Surface Soil Moisture Anomalies through the Land Surface Temperature Input,
Climate, 4, 50, https://doi.org/10.3390/cli4040050, 2016. a
Parr, C. S., Wilson, N., Leary, P., Schulz, K. S., Lans, K., Walley, L.,
Hammock, J. A., Goddard, A., Rice, J., Studer, M., Holmes, J. T. G., and
Corrigan Jr., R. J.: The Encyclopedia of Life v2: Providing Global Access to
Knowledge About Life on Earth, Biodivers Data J., 2, e1079, https://doi.org/10.3897/BDJ.2.e1079, 2014. a
Parrens, M., Mahfouf, J.-F., Barbu, A. L., and Calvet, J.-C.: Assimilation of surface soil moisture into a multilayer soil model: design and evaluation at local scale, Hydrol. Earth Syst. Sci., 18, 673–689, https://doi.org/10.5194/hess-18-673-2014, 2014. a
Poulter, B., Ciais, P., Hodson, E., Lischke, H., Maignan, F., Plummer, S., and Zimmermann, N. E.: Plant functional type mapping for earth system models, Geosci. Model Dev., 4, 993–1010, https://doi.org/10.5194/gmd-4-993-2011, 2011. a
Powell, T. L., Wheeler, J. K., de Oliveira, A. A. R., da Costa, A. C. L.,
Saleska, S. R., Meir, P., and Moorcroft, P. R.: Differences in xylem and leaf
hydraulic traits explain differences in drought tolerance among mature Amazon
rainforest trees, Glob. Change Biol., 23, 4280–4293, 2017. a
Quetin, G. R., Bloom, A. A., Bowman, K. W., and Konings, A. G.: Carbon Flux
Variability From a Relatively Simple Ecosystem Model With Assimilated Data Is
Consistent With Terrestrial Biosphere Model Estimates, J. Adv. Model. Earth
Sy., 12, e2019MS001889, https://doi.org/10.1029/2019MS001889, 2020. a
Reichle, R. H. and Koster, R. D.: Bias reduction in short records of satellite
soil moisture, Geophys. Res. Lett., 31, L1590, https://doi.org/10.1029/2004gl020938, 2004. a
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85, 381–394, 2004. a
Roman, D. T., Novick, K. A., Brzostek, E. R., Dragoni, D., Rahman, F., and
Phillips, R. P.: The role of isohydric and anisohydric species in determining
ecosystem-scale response to severe drought, Oecologia, 179, 641–654, 2015. a
Sack, L., Ball, M. C., Brodersen, C., Davis, S. D., Des Marais, D. L., Donovan,
L. A., Givnish, T. J., Hacke, U. G., Huxman, T., Jansen, S., Jacobsen, A. L.,
Johnson, D. M., Koch, G. W., Maurel, C., McCulloh, K. A., McDowell, N. G.,
McElrone, A., Meinzer, F. C., Melcher, P. J., North, G., Pellegrini, M.,
Pockman, W. T., Brandon Pratt, R., Sala, A., Santiago, L. S., Savage, J. A.,
Scoffoni, C., Sevanto, S., Sperry, J., Tyerman, S. D., Way, D., and
Michele Holbrook, N.: Plant hydraulics as a central hub integrating plant and
ecosystem function: meeting report for “Emerging Frontiers in Plant
Hydraulics” (Washington, DC, May 2015), Plant Cell Environ., 39,
2085–2094, 2016. a, b
Savitzky, A. and Golay, M. J. E.: Smoothing and Differentiation of Data by
Simplified Least Squares Procedures, Anal. Chem., 36, 1627–1639, 1964. a
Smith, N. G., Keenan, T. F., Colin Prentice, I., Wang, H., Wright, I. J.,
Niinemets, Ü., Crous, K. Y., Domingues, T. F., Guerrieri, R.,
Yoko Ishida, F., Kattge, J., Kruger, E. L., Maire, V., Rogers, A., Serbin,
S. P., Tarvainen, L., Togashi, H. F., Townsend, P. A., Wang, M., Weerasinghe,
L. K., and Zhou, S.-X.: Global photosynthetic capacity is optimized to the
environment, Ecol. Lett., 22, 506–517, 2019. a
Sperry, J. S., Venturas, M. D., Anderegg, W. R. L., Mencuccini, M., Mackay,
D. S., Wang, Y., and Love, D. M.: Predicting stomatal responses to the
environment from the optimization of photosynthetic gain and hydraulic cost,
Plant Cell Environ., 40, 816–830, 2017. a
Su, C.-H., Ryu, D., Young, R. I., Western, A. W., and Wagner, W.:
Inter-comparison of microwave satellite soil moisture retrievals over the
Murrumbidgee Basin, southeast Australia, Remote Sens. Environ., 134, 1–11,
2013. a
Tardieu, F. and Simonneau, T.: Variability among species of stomatal control
under fluctuating soil water status and evaporative demand: modelling
isohydric and anisohydric behaviours, J. Exp. Bot., 49, 419–432, 1998. a
Teubner, I. E., Forkel, M., Camps-Valls, G., Jung, M., Miralles, D. G.,
Tramontana, G., van der Schalie, R., Vreugdenhil, M., Mösinger, L., and
Dorigo, W. A.: A carbon sink-driven approach to estimate gross primary
production from microwave satellite observations, Remote Sens. Environ., 229,
100–113, 2019. a
Tian, F., Brandt, M., Liu, Y. Y., Rasmussen, K., and Fensholt, R.: Mapping
gains and losses in woody vegetation across global tropical drylands, Glob.
Change Biol., 23, 1748–1760, 2017. a
Tian, F., Wigneron, J.-P., Ciais, P., Chave, J., Ogée, J., Peñuelas,
J., Ræbild, A., Domec, J.-C., Tong, X., Brandt, M., Mialon, A.,
Rodriguez-Fernandez, N., Tagesson, T., Al-Yaari, A., Kerr, Y., Chen, C.,
Myneni, R. B., Zhang, W., Ardö, J., and Fensholt, R.: Coupling of
ecosystem-scale plant water storage and leaf phenology observed by satellite,
Nat. Ecol. Evol., 2, 1428–1435, 2018. a
Tong, X., Tian, F., Brandt, M., Liu, Y., Zhang, W., and Fensholt, R.: Trends of
land surface phenology derived from passive microwave and optical remote
sensing systems and associated drivers across the dry tropics 1992–2012,
Remote Sens. Environ., 232, 111307, https://doi.org/10.1016/j.rse.2019.111307, 2019. a
USDA, NRCS: The PLANTS Database, national Plant Data Team, Greensboro, NC
27401-4901 USA, available at: http://plants.usda.gov, last access: 10 September 2020. a
Verheijen, L. M., Brovkin, V., Aerts, R., Bönisch, G., Cornelissen, J. H. C., Kattge, J., Reich, P. B., Wright, I. J., and van Bodegom, P. M.: Impacts of trait variation through observed trait–climate relationships on performance of an Earth system model: a conceptual analysis, Biogeosciences, 10, 5497–5515, https://doi.org/10.5194/bg-10-5497-2013, 2013. a
Vrije Universiteit Amsterdam and NASA GSFC: AMSR-E/Aqua surface soil
moisture (LPRM) L3 1 day 25 km × 25 km descending V002, edited by Goddard
Earth Sciences Data and Information Services Center (GES DISC), Greenbelt,
MD, USA, Goddard Earth Sciences Data and Information Services Center (GES
DISC), https://doi.org/10.5067/MXL0MFDHWP07, 2016. a
Walker, A. P., Quaife, T., van Bodegom, P. M., De Kauwe, M. G., Keenan, T. F.,
Joiner, J., Lomas, M. R., MacBean, N., Xu, C., Yang, X., and Woodward, F. I.:
The impact of alternative trait-scaling hypotheses for the maximum
photosynthetic carboxylation rate (Vcmax) on global gross primary production,
New Phytol., 215, 1370–1386, 2017. a
Wang, K. and Dickinson, R. E.: A review of global terrestrial
evapotranspiration: Observation, modeling, climatology, and climatic
variability, Rev. Geophys., 50, RG2005, https://doi.org/10.1029/2011RG000373, 2012. a
Wang, Y.-P., Trudinger, C. M., and Enting, I. G.: A review of applications of
model–data fusion to studies of terrestrial carbon fluxes at different
scales, Agr. Forest Meteorol., 149, 1829–1842, 2009. a
Wolf, S., Keenan, T. F., Fisher, J. B., Baldocchi, D. D., Desai, A. R.,
Richardson, A. D., Scott, R. L., Law, B. E., Litvak, M. E., Brunsell, N. A.,
Peters, W., and van der Laan-Luijkx, I. T.: Warm spring reduced carbon cycle
impact of the 2012 US summer drought, P. Natl. Acad. Sci. USA, 113,
5880–5885, 2016. a
Wu, G., Guan, K., Li, Y., Novick, K. A., Feng, X., McDowell, N. G., Konings,
A. G., Thompson, S. E., Kimball, J. S., De Kauwe, M. G., Ainsworth, E. A.,
and Jiang, C.: Interannual variability of ecosystem iso/anisohydry is
regulated by environmental dryness, New Phytol., 229, 2562–2575, https://doi.org/10.1111/nph.17040, 2020. a
Zhang, Y., Zhou, S., Gentine, P., and Xiao, X.: Can vegetation optical depth
reflect changes in leaf water potential during soil moisture dry-down
events?, Remote Sens. Environ., 234, 111451, https://doi.org/10.1016/j.rse.2019.111451, 2019. a
Short summary
The flow of water through plants varies with species-specific traits. To determine how they vary across the world, we mapped the traits that best allowed a model to match microwave satellite data. We also defined average values across a few clusters of trait behavior. These form a tractable solution for use in large-scale models. Transpiration estimates using these clusters were more accurate than if using plant functional types. We expect our maps to improve transpiration forecasts.
The flow of water through plants varies with species-specific traits. To determine how they vary...