Articles | Volume 25, issue 2
https://doi.org/10.5194/hess-25-1103-2021
https://doi.org/10.5194/hess-25-1103-2021
Technical note
 | 
03 Mar 2021
Technical note |  | 03 Mar 2021

Technical note: “Bit by bit”: a practical and general approach for evaluating model computational complexity vs. model performance

Elnaz Azmi, Uwe Ehret, Steven V. Weijs, Benjamin L. Ruddell, and Rui A. P. Perdigão

Related authors

Adaptive clustering: reducing the computational costs of distributed (hydrological) modelling by exploiting time-variable similarity among model elements
Uwe Ehret, Rik van Pruijssen, Marina Bortoli, Ralf Loritz, Elnaz Azmi, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 4389–4411, https://doi.org/10.5194/hess-24-4389-2020,https://doi.org/10.5194/hess-24-4389-2020, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Increased nonstationarity of stormflow threshold behaviors in a forested watershed due to abrupt earthquake disturbance
Guotao Zhang, Peng Cui, Carlo Gualtieri, Nazir Ahmed Bazai, Xueqin Zhang, and Zhengtao Zhang
Hydrol. Earth Syst. Sci., 27, 3005–3020, https://doi.org/10.5194/hess-27-3005-2023,https://doi.org/10.5194/hess-27-3005-2023, 2023
Short summary
HESS Opinions: Are soils overrated in hydrology?
Hongkai Gao, Fabrizio Fenicia, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2607–2620, https://doi.org/10.5194/hess-27-2607-2023,https://doi.org/10.5194/hess-27-2607-2023, 2023
Short summary
Hydrologic implications of projected changes in rain-on-snow melt for Great Lakes Basin watersheds
Daniel T. Myers, Darren L. Ficklin, and Scott M. Robeson
Hydrol. Earth Syst. Sci., 27, 1755–1770, https://doi.org/10.5194/hess-27-1755-2023,https://doi.org/10.5194/hess-27-1755-2023, 2023
Short summary
A hydrological framework for persistent pools along non-perennial rivers
Sarah A. Bourke, Margaret Shanafield, Paul Hedley, Sarah Chapman, and Shawan Dogramaci
Hydrol. Earth Syst. Sci., 27, 809–836, https://doi.org/10.5194/hess-27-809-2023,https://doi.org/10.5194/hess-27-809-2023, 2023
Short summary
Evidence-based requirements for perceptualising intercatchment groundwater flow in hydrological models
Louisa D. Oldham, Jim Freer, Gemma Coxon, Nicholas Howden, John P. Bloomfield, and Christopher Jackson
Hydrol. Earth Syst. Sci., 27, 761–781, https://doi.org/10.5194/hess-27-761-2023,https://doi.org/10.5194/hess-27-761-2023, 2023
Short summary

Cited articles

Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Control, 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. 
Arkesteijn, L. and Pande, S.: On hydrological model complexity, its geometrical interpretations and prediction uncertainty, Water Resour. Res., 49, 7048–7063, https://doi.org/10.1002/wrcr.20529, 2013. 
Atkinson, S. E., Woods, R. A., and Sivapalan, M.: Climate and landscape controls on water balance model complexity over changing timescales, Water Resour. Res., 38, 50-51–50-17, https://doi.org/10.1029/2002wr001487, 2002. 
Azmi, E.: KIT-HYD/model-evaluation: Release 1 (Version v1.0), Zenodo, https://doi.org/10.5281/zenodo.4485876, 2021. 
Download
Short summary
Computer models should be as simple as possible but not simpler. Simplicity refers to the length of the model and the effort it takes the model to generate its output. Here we present a practical technique for measuring the latter by the number of memory visits during model execution by Strace, a troubleshooting and monitoring program. The advantage of this approach is that it can be applied to any computer-based model, which facilitates model intercomparison.