Articles | Volume 25, issue 2
https://doi.org/10.5194/hess-25-1053-2021
https://doi.org/10.5194/hess-25-1053-2021
Research article
 | 
25 Feb 2021
Research article |  | 25 Feb 2021

Groundwater and baseflow drought responses to synthetic recharge stress tests

Jost Hellwig, Michael Stoelzle, and Kerstin Stahl

Related authors

An investigation of anthropogenic influences on hydrologic connectivity using stress tests
Amelie Herzog, Jost Hellwig, and Kerstin Stahl
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-243,https://doi.org/10.5194/hess-2023-243, 2023
Revised manuscript accepted for HESS
Short summary
An assessment of trends and potential future changes in groundwater-baseflow drought based on catchment response times
Jost Hellwig and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 6209–6224, https://doi.org/10.5194/hess-22-6209-2018,https://doi.org/10.5194/hess-22-6209-2018, 2018
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation
Anna Pazola, Mohammad Shamsudduha, Jon French, Alan M. MacDonald, Tamiru Abiye, Ibrahim Baba Goni, and Richard G. Taylor
Hydrol. Earth Syst. Sci., 28, 2949–2967, https://doi.org/10.5194/hess-28-2949-2024,https://doi.org/10.5194/hess-28-2949-2024, 2024
Short summary
Towards understanding the influence of seasons on low-groundwater periods based on explainable machine learning
Andreas Wunsch, Tanja Liesch, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 28, 2167–2178, https://doi.org/10.5194/hess-28-2167-2024,https://doi.org/10.5194/hess-28-2167-2024, 2024
Short summary
Shannon entropy of transport self-organization due to dissolution–precipitation reaction at varying Peclet numbers in initially homogeneous porous media
Evgeny Shavelzon and Yaniv Edery
Hydrol. Earth Syst. Sci., 28, 1803–1826, https://doi.org/10.5194/hess-28-1803-2024,https://doi.org/10.5194/hess-28-1803-2024, 2024
Short summary
A high-resolution map of diffuse groundwater recharge rates for Australia
Stephen Lee, Dylan J. Irvine, Clément Duvert, Gabriel C. Rau, and Ian Cartwright
Hydrol. Earth Syst. Sci., 28, 1771–1790, https://doi.org/10.5194/hess-28-1771-2024,https://doi.org/10.5194/hess-28-1771-2024, 2024
Short summary
Influence of bank slope on sinuosity-driven hyporheic exchange flow and residence time distribution during a dynamic flood event
Yiming Li, Uwe Schneidewind, Zhang Wen, Stefan Krause, and Hui Liu
Hydrol. Earth Syst. Sci., 28, 1751–1769, https://doi.org/10.5194/hess-28-1751-2024,https://doi.org/10.5194/hess-28-1751-2024, 2024
Short summary

Cited articles

BGR and SGD: Bundesanstalt für Geowissenschaften und Rohstoffe and Staatliche Geologische Dienste: Hydrogeologische Übersichtskarte von Deutschland, 1:200.000, Oberer Grundwasserleiter (HÜK200 OGWL), Version 3.0., Hannover, Germany, 2016. 
Bloomfield, J. P., Marchant, B. P., Bricker, S. H., and Morgan, R. B.: Regional analysis of groundwater droughts using hydrograph classification, Hydrol. Earth Syst. Sci., 19, 4327–4344, https://doi.org/10.5194/hess-19-4327-2015, 2015. 
Bloomfield, J. P., Marchant, B. P., and McKenzie, A. A.: Changes in groundwater drought associated with anthropogenic warming, Hydrol. Earth Syst. Sci., 23, 1393–1408, https://doi.org/10.5194/hess-23-1393-2019, 2019. 
BMU: Nature Conservation and Nuclear Safety, Hydrologischer Atlas von Deutschland, Federal Ministry for the Environment, Bonn and Berlin, Germany, 2003. 
Chen, Z., Hartmann, A., Wagener, T., and Goldscheider, N.: Dynamics of water fluxes and storages in an Alpine karst catchment under current and potential future climate conditions, Hydrol. Earth Syst. Sci., 22, 3807–3823, https://doi.org/10.5194/hess-22-3807-2018, 2018. 
Download
Short summary
Potential future groundwater and baseflow drought hazards depend on systems' sensitivity to altered recharge conditions. With three generic scenarios, we found different sensitivities across Germany driven by hydrogeology. While changes in drought hazard due to seasonal recharge shifts will be rather low, a lengthening of dry spells could cause stronger responses in regions with slow groundwater response to precipitation, urging local water management to prepare for more severe droughts.