Articles | Volume 25, issue 2
https://doi.org/10.5194/hess-25-1053-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-1053-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Groundwater and baseflow drought responses to synthetic recharge stress tests
Jost Hellwig
CORRESPONDING AUTHOR
Environmental Hydrological Systems, University of Freiburg, 79085 Freiburg, Germany
Michael Stoelzle
Environmental Hydrological Systems, University of Freiburg, 79085 Freiburg, Germany
Kerstin Stahl
Environmental Hydrological Systems, University of Freiburg, 79085 Freiburg, Germany
Freiburg Institute of Advanced Studies (FRIAS), University
of Freiburg, 79085 Freiburg, Germany
Related authors
Amelie Herzog, Jost Hellwig, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 28, 4065–4083, https://doi.org/10.5194/hess-28-4065-2024, https://doi.org/10.5194/hess-28-4065-2024, 2024
Short summary
Short summary
Surface water–groundwater interaction can vary along a river. This study used a groundwater model that reproduced relative observed longitudinal and vertical connectivity patterns in the river network to assess the system's response to imposed stress tests. For the case study, imposed groundwater abstraction appears to influence connectivity relatively more than altered recharge, but a quantification of absolute exchange flows will require further model improvements.
Kerstin Stahl, Kathrin Szillat, Veit Blauhut, Monika Hlavsova, Lauro Rossi, Dario Masante, and Andrea Toreti
EGUsphere, https://doi.org/10.5194/egusphere-2025-4806, https://doi.org/10.5194/egusphere-2025-4806, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Drought impact information is important for risk assessment. But, there is little consensus on impact datamonitoring. The European Drought Impacts Database (EDID) combines several existing datasets with the results from new searches for impact information in a structured database with spatial and temporal attributes. Allowing research as well as operational use, its contents show where and when in Europe drought has affected agriculture, water supply, ecosystems, and other sectors.
Amelie Herzog, Jost Hellwig, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 28, 4065–4083, https://doi.org/10.5194/hess-28-4065-2024, https://doi.org/10.5194/hess-28-4065-2024, 2024
Short summary
Short summary
Surface water–groundwater interaction can vary along a river. This study used a groundwater model that reproduced relative observed longitudinal and vertical connectivity patterns in the river network to assess the system's response to imposed stress tests. For the case study, imposed groundwater abstraction appears to influence connectivity relatively more than altered recharge, but a quantification of absolute exchange flows will require further model improvements.
Yonca Cavus, Kerstin Stahl, and Hafzullah Aksoy
Hydrol. Earth Syst. Sci., 27, 3427–3445, https://doi.org/10.5194/hess-27-3427-2023, https://doi.org/10.5194/hess-27-3427-2023, 2023
Short summary
Short summary
With intensified extremes under climate change, water demand increases. Every drop of water is more valuable than before when drought is experienced particularly. We developed drought intensity–duration–frequency curves using physical indicators, the deficit in precipitation and streamflow, for a more straightforward interpretation. Tests with the observed major droughts in two climatologically different catchments confirmed the practical applicability of the curves under drought conditions.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023, https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary
Short summary
This study maps agriculture's vulnerability to drought in the European pre-Alpine regions of Thurgau (CH) and Podravska (SI). We combine region-specific knowledge with quantitative data mapping; experts of the study regions, far apart, identified a few common but more region-specific factors that we integrated in two vulnerability scenarios. We highlight the benefits of the participatory approach in improving the quantitative results and closing the gap between science and practitioners.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Erik Tijdeman, Veit Blauhut, Michael Stoelzle, Lucas Menzel, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 22, 2099–2116, https://doi.org/10.5194/nhess-22-2099-2022, https://doi.org/10.5194/nhess-22-2099-2022, 2022
Short summary
Short summary
We identified different drought types with typical hazard and impact characteristics. The summer drought type with compounding heat was most impactful. Regional drought propagation of this drought type exhibited typical characteristics that can guide drought management. However, we also found a large spatial variability that caused distinct differences among propagating drought signals. Accordingly, local multivariate drought information was needed to explain the full range of drought impacts.
Michael Stoelzle and Lina Stein
Hydrol. Earth Syst. Sci., 25, 4549–4565, https://doi.org/10.5194/hess-25-4549-2021, https://doi.org/10.5194/hess-25-4549-2021, 2021
Short summary
Short summary
We found with a scientific paper survey (~ 1000 papers) that 45 % of the papers used rainbow color maps or red–green visualizations. Those rainbow visualizations, although attracting the media's attention, will not be accessible for up to 10 % of people due to color vision deficiency. The rainbow color map distorts and misleads scientific communication. The study gives guidance on how to avoid, improve and trust color and how the flaws of the rainbow color map should be communicated in science.
Ruth Stephan, Mathilde Erfurt, Stefano Terzi, Maja Žun, Boštjan Kristan, Klaus Haslinger, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 21, 2485–2501, https://doi.org/10.5194/nhess-21-2485-2021, https://doi.org/10.5194/nhess-21-2485-2021, 2021
Short summary
Short summary
The Alpine Drought Impact report Inventory (EDIIALPS) archives drought impact reports across the European Alpine region with an increasing number of impacts over time. The most affected sectors are agriculture and livestock farming and public water supply, for which management strategies are essential for future climate regimes. We show spatial heterogeneity and seasonal differences between the impacted sectors and between impacts triggered by soil moisture drought and hydrological drought.
Marit Van Tiel, Anne F. Van Loon, Jan Seibert, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 3245–3265, https://doi.org/10.5194/hess-25-3245-2021, https://doi.org/10.5194/hess-25-3245-2021, 2021
Short summary
Short summary
Glaciers can buffer streamflow during dry and warm periods, but under which circumstances can melt compensate precipitation deficits? Streamflow responses to warm and dry events were analyzed using
long-term observations of 50 glacierized catchments in Norway, Canada, and the European Alps. Region, timing of the event, relative glacier cover, and antecedent event conditions all affect the level of compensation during these events. This implies that glaciers do not compensate straightforwardly.
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020, https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Short summary
The data set CH-IRP provides isotope composition in precipitation and streamflow from 23 Swiss catchments, being unique regarding its long-term multi-catchment coverage along an alpine–pre-alpine gradient. CH-IRP contains fortnightly time series of stable water isotopes from streamflow grab samples complemented by time series in precipitation. Sampling conditions, catchment and climate information, lab standards and errors are provided together with areal precipitation and catchment boundaries.
Cited articles
BGR and SGD: Bundesanstalt für Geowissenschaften und Rohstoffe and
Staatliche Geologische Dienste: Hydrogeologische Übersichtskarte von
Deutschland, 1:200.000, Oberer Grundwasserleiter (HÜK200 OGWL), Version 3.0., Hannover, Germany, 2016.
Bloomfield, J. P., Marchant, B. P., Bricker, S. H., and Morgan, R. B.: Regional analysis of groundwater droughts using hydrograph classification, Hydrol. Earth Syst. Sci., 19, 4327–4344, https://doi.org/10.5194/hess-19-4327-2015, 2015.
Bloomfield, J. P., Marchant, B. P., and McKenzie, A. A.: Changes in groundwater drought associated with anthropogenic warming, Hydrol. Earth Syst. Sci., 23, 1393–1408, https://doi.org/10.5194/hess-23-1393-2019, 2019.
BMU: Nature Conservation and Nuclear
Safety, Hydrologischer Atlas von Deutschland,
Federal Ministry for the Environment, Bonn and Berlin, Germany, 2003.
Chen, Z., Hartmann, A., Wagener, T., and Goldscheider, N.: Dynamics of water fluxes and storages in an Alpine karst catchment under current and potential future climate conditions, Hydrol. Earth Syst. Sci., 22, 3807–3823, https://doi.org/10.5194/hess-22-3807-2018, 2018.
Dams, J., Salvadore, E., Van Daele, T., Ntegeka, V., Willems, P., and Batelaan, O.: Spatio-temporal impact of climate change on the groundwater system, Hydrol. Earth Syst. Sci., 16, 1517–1531, https://doi.org/10.5194/hess-16-1517-2012, 2012.
de Graaf, I. E. M., Sutanudjaja, E. H., van Beek, L. P. H., and Bierkens, M. F. P.: A high-resolution global-scale groundwater model, Hydrol. Earth Syst. Sci., 19, 823–837, https://doi.org/10.5194/hess-19-823-2015, 2015.
EC: Communication from the Commission to the European Parliament and the
Council addressing the challenge of water scarcity and droughts in the
European Union, Commission of the European Communities, Brussels, Belgium, 2007.
Eckhardt, K. and Ulbrich, U.: Potential impacts of climate change on
groundwater recharge and streamflow in a central European low mountain
range, J. Hydrol., 284, 244–252, https://doi.org/10.1016/j.jhydrol.2003.08.005,
2003.
Eltahir, E. A. B. and Yeh, P.: On the asymmetric response of aquifer water
level to floods and droughts in Illinois, Water Resour. Res., 35,
1199–1217, https://doi.org/10.1029/1998wr900071, 1999.
Famiglietti, J. S.: The global groundwater crisis, Nat. Clim. Change, 4,
945, https://doi.org/10.1038/nclimate2425, 2014.
Fan, Y., Miguez-Macho, G., Weaver, C. P., Walko, R., and Robock, A.:
Incorporating water table dynamics in climate odelling: 1. Water table
observations and equilibrium water table simulations, J. Geophys.
Res.-Atmos., 112, D10125, https://doi.org/10.1029/2006jd008111, 2007.
Gleeson, T., Moosdorf, N., Hartmann, J., and Beek, L. P. H.: A glimpse
beneath earth's surface: Global Hydrogeology MaPS (GLHYMPS) of permeability
and porosity, Geophys. Res. Lett., 41, 3891–3898, https://doi.org/10.1002/2014GL059856, 2014.
Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E., and Cardenas, M.
B.: The global volume and distribution of modern groundwater, Nat. Geosci.,
9, 161, https://doi.org/10.1038/ngeo2590, 2016.
Gleeson, T., Wagener, T., Döll, P., Zipper, S. C., West, C., Wada, Y., Taylor, R., Scanlon, B., Rosolem, R., Rahman, S., Oshinlaja, N., Maxwell, R., Lo, M.-H., Kim, H., Hill, M., Hartmann, A., Fogg, G., Famiglietti, J. S., Ducharne, A., de Graaf, I., Cuthbert, M., Condon, L., Bresciani, E., and Bierkens, M. F. P.: HESS Opinions: Improving the evaluation of groundwater representation in continental to global scale models, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2020-378, in review, 2020.
Godsey, S. E. and Kirchner, J. W.: Dynamic, discontinuous stream networks:
hydrologically driven variations in active drainage density, flowing
channels and stream order, Hydrol. Process., 28, 5791–5803, https://doi.org/10.1002/hyp.10310, 2014.
Haas, J. C. and Birk, S.: Characterizing the spatiotemporal variability of groundwater levels of alluvial aquifers in different settings using drought indices, Hydrol. Earth Syst. Sci., 21, 2421–2448, https://doi.org/10.5194/hess-21-2421-2017, 2017.
Hall, J. W. and Leng, G.: Can we calculate drought risk and do we need
to?, WIREs Water, 6, e1349, https://doi.org/10.1002/wat2.1349,
2019.
Harbaugh, A. W., Banta, E. R., Hill, M. C., and McDonald, M. G.:
MODFLOW-2000, The US Geological Survey Modular Ground-Water Model-User
Guide to Modularization Concepts and the Ground-Water Flow Process,
Open-file Report, US Geological Survey, Reston, Virgina,
121 pp., 2000.
Hargreaves, G. H. and Samani, Z. A.: Reference crop evapotranspiration from
temperature, Appl. Rng. Agric., 1, 96–99, 1985.
Haylock, M. R., Hofstra, N., Tank, A., Klok, E. J., Jones, P. D., and New,
M.: A European daily high-resolution gridded data set of surface temperature
and precipitation for 1950–2006, J. Geophys. Res.-Atmos., 113, D20119, https://doi.org/10.1029/2008jd010201, 2008.
Hellwig, J.: Grundwasserdürren in Deutschland von 1970 bis 2018,
Korrespondenz Wasserwirtschaft, 12, 567–572, https://doi.org/10.3243/kwe2019.10.001, 2019.
Hellwig, J. and Stahl, K.: An assessment of trends and potential future changes in groundwater-baseflow drought based on catchment response times, Hydrol. Earth Syst. Sci., 22, 6209–6224, https://doi.org/10.5194/hess-22-6209-2018, 2018.
Hellwig, J., de Graaf, I. E. M., Weiler, M., and Stahl, K.: Large scale
assessment of delayed groundwater responses to drought, Water Resour. Res.,
56, e2019WR025441, https://doi.org/10.1029/2019WR025441, 2020.
Hellwig, J., Stoelzle, M., and Stahl, K.: Model outputs: Groundwater and baseflow stress tests in Germany, FreiDok, https://doi.org/10.6094/UNIFR/167379, 2021.
Herrmann, F., Kunkel, R., Ostermann, U. Vereecken, H., and Wendland, F.:
Projected impact of climate change on irrigation needs and groundwater
resources in the metropolitan area of Hamburg (Germany), Environ. Earth Sci.,
75, 1104, https://doi.org/10.1007/s12665-016-5904-y, 2016.
Heudorfer, B. and Stahl, K.: Comparison of different threshold level
methods for drought propagation analysis in Germany, Hydrol. Res., 48,
1311–1326, https://doi.org/10.2166/nh.2016.258, 2017.
Hunkeler, D., Möck, C., Käser, D., and Brunner, P.:
Klimaeinflüsse auf Grundwassermengen, Aqua Gas, 11, 43–49, 2014.
Jacob, D., Bülow, K., Kotova, L., Moseley, C., Petersen, J., and Rechid,
D.: Regionale Klimaprojektionen für Europa und Deutschland: Ensemble
Simulationen für die Klimafolgenforschung, MPI für Meteorologie,
Climate Service Center, Hamburg, Germany,
48 pp., 2012.
Jing, M., Kumar, R., Heße, F., Thober, S., Rakovec, O., Samaniego, L., and Attinger, S.: Assessing the response of groundwater quantity and travel time distribution to 1.5, 2, and 3 ∘C global warming in a mesoscale central German basin, Hydrol. Earth Syst. Sci., 24, 1511–1526, https://doi.org/10.5194/hess-24-1511-2020, 2020.
Kløve, B., Ala-Aho, P., Bertrand, G., Gurdak, J. J., Kupfersberger, H.,
Kværner, J., and Pulido-Velazquez, M.: Climate change impacts on
groundwater and dependent ecosystems, J. Hydrol., 518, 250–266, https://doi.org/10.1016/j.jhydrol.2013.06.037, 2014.
Kopp, B., Baumeister, C., Gudera, T., Hergesell, M., Kampf, J., Morhard, A., and Neumann, J.: Entwicklung von Bodenwasserhaushalt und Grundwasserneubildung in
Baden-Württemberg, Bayern, Rheinland-Pfalz und Hessen von 1951 bis 2015,
Hydrol. Wasserbewirts., 62, 62–76, https://doi.org/10.5675/HyWa_2018,2_1, 2018.
Kumar, R., Musuuza, J. L., Van Loon, A. F., Teuling, A. J., Barthel, R., Ten Broek, J., Mai, J., Samaniego, L., and Attinger, S.: Multiscale evaluation of the Standardized Precipitation Index as a groundwater drought indicator, Hydrol. Earth Syst. Sci., 20, 1117–1131, https://doi.org/10.5194/hess-20-1117-2016, 2016.
Kundzewicz, Z. W. and Döll, P.: Will groundwater ease freshwater stress
under climate change?, Hydrolog. Sci. J., 54, 665–675, https://doi.org/10.1623/hysj.54.4.665, 2009.
Laaha, G., Gauster, T., Tallaksen, L. M., Vidal, J.-P., Stahl, K., Prudhomme, C., Heudorfer, B., Vlnas, R., Ionita, M., Van Lanen, H. A. J., Adler, M.-J., Caillouet, L., Delus, C., Fendekova, M., Gailliez, S., Hannaford, J., Kingston, D., Van Loon, A. F., Mediero, L., Osuch, M., Romanowicz, R., Sauquet, E., Stagge, J. H., and Wong, W. K.: The European 2015 drought from a hydrological perspective, Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, 2017.
Longobardi, A. and Van Loon, A. F.: Assessing baseflow index vulnerability
to variation in dry spell length for a range of catchment and climate
properties, Hydrol. Process., 32, 2496–2509, https://doi.org/10.1002/hyp.13147,
2018.
Maxwell, R. M., Condon, L. E., and Kollet, S. J.: A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3, Geosci. Model Dev., 8, 923–937, https://doi.org/10.5194/gmd-8-923-2015, 2015.
Miguez-Macho, G., Li, H., and Fan, Y.: Simulated water table and soil
moisture climatology over North America, B. Am. Meteorol. Soc., 89,
663–672, https://doi.org/10.1175/BAMS-89-5-663, 2008.
Moeck, C., Brunner, P., and Hunkeler, D.: The influence of model structure
on groundwater recharge rates in climate-change impact studies, Hydrogeol.
J., 24, 1171–1184, https://doi.org/10.1007/s10040-016-1367-1, 2016.
Ng, G.-H. C., McLaughlin, D., Entekhabi, D., and Scanlon, B. R.:
Probabilistic analysis of the effects of climate change on groundwater
recharge, Water Resour. Res., 46, W07502, https://doi.org/10.1029/2009WR007904, 2010.
Paparrizos, S., Schindler, D., Potouridis, S., and Matzarakis, A.:
Spatio-temporal analysis of present and future precipitation responses over
South Germany, J. Water Clim. Change, 9, 490–499, https://doi.org/10.2166/wcc.2017.009, 2018.
Parry, S., Wilby, R., Prudhomme, C., Wood, P., and McKenzie, A.:
Demonstrating the utility of a drought termination framework: prospects for
groundwater level recovery in England and Wales in 2018 or beyond, Environ.
Res. Lett., 13, 064040, https://doi.org/10.1088/1748-9326/aac78c, 2018.
Peters, E., Torfs, P., van Lanen, H. A. J., and Bier, G.: Propagation of
drought through groundwater – a new approach using linear reservoir theory,
Hydrol. Process., 17, 3023–3040, https://doi.org/10.1002/hyp.1274, 2003.
Prudhomme, C., Wilby, R. L., Crooks, S., Kay, A. L., and Reynard, N. S.:
Scenario-neutral approach to climate change impact studies: application to
flood risk, J. Hydrol., 390, 198–209, https://doi.org/10.1016/j.jhydrol.2010.06.043, 2010.
Prudhomme, C., Hannaford, J., Harrigan, S., Boorman, D., Knight, J., Bell,
V., and Jenkins, A.: Hydrological Outlook UK: an operational streamflow
and groundwater level forecasting system at monthly to seasonal time scales,
Hydrolog. Sci. J., 62, 2753–2768, https://doi.org/10.1080/02626667.2017.1395032,
2017.
Reinecke, R., Foglia, L., Mehl, S., Trautmann, T., Cáceres, D., and Döll, P.: Challenges in developing a global gradient-based groundwater model (G3M v1.0) for the integration into a global hydrological model, Geosci. Model Dev., 12, 2401–2418, https://doi.org/10.5194/gmd-12-2401-2019, 2019.
Staudinger, M., Weiler, M., and Seibert, J.: Quantifying sensitivity to droughts – an experimental modeling approach, Hydrol. Earth Syst. Sci., 19, 1371–1384, https://doi.org/10.5194/hess-19-1371-2015, 2015.
Stoelzle, M., Stahl, K., Morhard, A., and Weiler, M.: Streamflow sensitivity
to drought scenarios in catchments with different geology, Geophys. Res.
Lett., 41, 6174–6183, https://doi.org/10.1002/2014gl061344, 2014.
Stoelzle, M., Blauhut, V., Kohn, I., Krumm, J., Weiler, M., and Stahl, K.:
Niedrigwasser in Süddeutschland. Analysen, Szenarien und
Handlungsempfehlungen, KLIWA Heft 23, Arbeitskreis KLIWA, availabe at:
https://www.kliwa.de/_download/KLIWAHeft23.pdf (last access: 24 February 2021), 2018 (in German).
Stoelzle, M., Schuetz, T., Weiler, M., Stahl, K., and Tallaksen, L. M.: Beyond binary baseflow separation: a delayed-flow index for multiple streamflow contributions, Hydrol. Earth Syst. Sci., 24, 849–867, https://doi.org/10.5194/hess-24-849-2020, 2020a.
Stoelzle, M., Staudinger, M., Stahl, K., and Weiler, M.: Stress testing as
complement to climate scenarios: recharge scenarios to quantify streamflow
drought sensitivity, P. IAHS, 383, 43–50, 2020b.
Stoll, S., Hendricks Franssen, H. J., Butts, M., and Kinzelbach, W.: Analysis of the impact of climate change on groundwater related hydrological fluxes: a multi-model approach including different downscaling methods, Hydrol. Earth Syst. Sci., 15, 21–38, https://doi.org/10.5194/hess-15-21-2011, 2011.
Tallaksen, L. M. and Stahl, K.: Spatial and temporal patterns of large‐scale droughts in Europe: Model dispersion and performance, Geophys. Res. Lett., 41, 429–434, https://doi.org/10.1002/2013GL058573, 2014.
Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M., Shamsudduha, M., Hiscock, K., Yeh, P. J.-F., Holman, I., and Treidel, H.: Ground water and climate change, Nat. Clim. Change,
3, 322, https://doi.org/10.1038/nclimate1744, 2013.
Van Loon, A. F.: Hydrological drought explained, WIRES Water, 2, 359–392,
https://doi.org/10.1002/wat2.1085, 2015.
Van Loon, A. F. and Van Lanen, H. A. J.: A process-based typology of hydrological drought, Hydrol. Earth Syst. Sci., 16, 1915–1946, https://doi.org/10.5194/hess-16-1915-2012, 2012.
Wada, Y., Wisser, D., and Bierkens, M. F. P.: Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources, Earth Syst. Dynam., 5, 15–40, https://doi.org/10.5194/esd-5-15-2014, 2014.
Weider, K. and Boutt, D. F.: Heterogeneous water table response to climate
revealed by 60 years of ground water data, Geophys. Res. Lett., 37, L24405, https://doi.org/10.1029/2010GL045561, 2010.
Short summary
Potential future groundwater and baseflow drought hazards depend on systems' sensitivity to altered recharge conditions. With three generic scenarios, we found different sensitivities across Germany driven by hydrogeology. While changes in drought hazard due to seasonal recharge shifts will be rather low, a lengthening of dry spells could cause stronger responses in regions with slow groundwater response to precipitation, urging local water management to prepare for more severe droughts.
Potential future groundwater and baseflow drought hazards depend on systems' sensitivity to...