Articles | Volume 24, issue 3
Hydrol. Earth Syst. Sci., 24, 1447–1465, 2020
https://doi.org/10.5194/hess-24-1447-2020

Special issue: Integration of Earth observations and models for global water...

Hydrol. Earth Syst. Sci., 24, 1447–1465, 2020
https://doi.org/10.5194/hess-24-1447-2020

Research article 30 Mar 2020

Research article | 30 Mar 2020

Quantification of drainable water storage volumes on landmasses and in river networks based on GRACE and river runoff using a cascaded storage approach – first application on the Amazon

Johannes Riegger

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Ubiquitous increases in flood magnitude in the Columbia River basin under climate change
Laura E. Queen, Philip W. Mote, David E. Rupp, Oriana Chegwidden, and Bart Nijssen
Hydrol. Earth Syst. Sci., 25, 257–272, https://doi.org/10.5194/hess-25-257-2021,https://doi.org/10.5194/hess-25-257-2021, 2021
Short summary
Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021,https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
The role of household adaptation measures in reducing vulnerability to flooding: a coupled agent-based and flood modelling approach
Yared Abayneh Abebe, Amineh Ghorbani, Igor Nikolic, Natasa Manojlovic, Angelika Gruhn, and Zoran Vojinovic
Hydrol. Earth Syst. Sci., 24, 5329–5354, https://doi.org/10.5194/hess-24-5329-2020,https://doi.org/10.5194/hess-24-5329-2020, 2020
Short summary
Assessing global water mass transfers from continents to oceans over the period 1948–2016
Denise Cáceres, Ben Marzeion, Jan Hendrik Malles, Benjamin Daniel Gutknecht, Hannes Müller Schmied, and Petra Döll
Hydrol. Earth Syst. Sci., 24, 4831–4851, https://doi.org/10.5194/hess-24-4831-2020,https://doi.org/10.5194/hess-24-4831-2020, 2020
Short summary
Weak sensitivity of the terrestrial water budget to global soil texture maps in the ORCHIDEE land surface model
Salma Tafasca, Agnès Ducharne, and Christian Valentin
Hydrol. Earth Syst. Sci., 24, 3753–3774, https://doi.org/10.5194/hess-24-3753-2020,https://doi.org/10.5194/hess-24-3753-2020, 2020
Short summary

Cited articles

Bredehoeft, J.: Safe yield and the water budget myth, Ground Water, 35, 929–929, https://doi.org/10.1111/j.1745-6584.1997.tb00162.x, 1997. 
Chen, J. L., Wilson, C. R., Famiglietti, J. S., and Rodell, M.: Attenuation effect on seasonal basin-scale water storage changes from GRACE time-variable gravity, J. Geodesy, 81, 237–245, 2007. 
Getrirana, A., Kumar, S., Girotto, M., and Rodell, M.: River and Floodplains as Key Components of Global Terrestrial Water Storage Variability, Geophys. Res. Lett., 44, 44–50, https://doi.org/10.1002/2017GL074684, 2017a. 
Getirana, A., Peters-Lidard, C., Rodell, M., and Bates, P. D.: Tradoff between cost and accuracy in large-scale surface water dynamic modeling, Water Resour. Res., 53, 4942–4955, https://doi.org/10.1002/2017WR020519, 2017b. 
Download
Short summary
The combined use of GRACE mass anomalies and observed river discharge for the first time allows us to quantify the water storage volumes drainable by gravity on global scales. Modelling of catchment and river network storages in a cascade with different dynamics reveals the time lag between total mass and runoff is caused by a non-zero river network storage. This allows catchment and river network storage volumes to be distinguished and is thus of great importance for water resources management.