Articles | Volume 24, issue 3
https://doi.org/10.5194/hess-24-1447-2020
https://doi.org/10.5194/hess-24-1447-2020
Research article
 | 
30 Mar 2020
Research article |  | 30 Mar 2020

Quantification of drainable water storage volumes on landmasses and in river networks based on GRACE and river runoff using a cascaded storage approach – first application on the Amazon

Johannes Riegger

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Poor correlation between large-scale environmental flow violations and freshwater biodiversity: implications for water resource management and the freshwater planetary boundary
Chinchu Mohan, Tom Gleeson, James S. Famiglietti, Vili Virkki, Matti Kummu, Miina Porkka, Lan Wang-Erlandsson, Xander Huggins, Dieter Gerten, and Sonja C. Jähnig
Hydrol. Earth Syst. Sci., 26, 6247–6262, https://doi.org/10.5194/hess-26-6247-2022,https://doi.org/10.5194/hess-26-6247-2022, 2022
Short summary
Accuracy of five ground heat flux empirical simulation methods in the surface-energy-balance-based remote-sensing evapotranspiration models
Zhaofei Liu
Hydrol. Earth Syst. Sci., 26, 6207–6226, https://doi.org/10.5194/hess-26-6207-2022,https://doi.org/10.5194/hess-26-6207-2022, 2022
Short summary
Coupling a global glacier model to a global hydrological model prevents underestimation of glacier runoff
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022,https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Revisiting large-scale interception patterns constrained by a synthesis of global experimental data
Feng Zhong, Shanhu Jiang, Albert I. J. M. van Dijk, Liliang Ren, Jaap Schellekens, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 26, 5647–5667, https://doi.org/10.5194/hess-26-5647-2022,https://doi.org/10.5194/hess-26-5647-2022, 2022
Short summary
Investigating coastal backwater effects and flooding in the coastal zone using a global river transport model on an unstructured mesh
Dongyu Feng, Zeli Tan, Darren Engwirda, Chang Liao, Donghui Xu, Gautam Bisht, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 5473–5491, https://doi.org/10.5194/hess-26-5473-2022,https://doi.org/10.5194/hess-26-5473-2022, 2022
Short summary

Cited articles

Bredehoeft, J.: Safe yield and the water budget myth, Ground Water, 35, 929–929, https://doi.org/10.1111/j.1745-6584.1997.tb00162.x, 1997. 
Chen, J. L., Wilson, C. R., Famiglietti, J. S., and Rodell, M.: Attenuation effect on seasonal basin-scale water storage changes from GRACE time-variable gravity, J. Geodesy, 81, 237–245, 2007. 
Getrirana, A., Kumar, S., Girotto, M., and Rodell, M.: River and Floodplains as Key Components of Global Terrestrial Water Storage Variability, Geophys. Res. Lett., 44, 44–50, https://doi.org/10.1002/2017GL074684, 2017a. 
Getirana, A., Peters-Lidard, C., Rodell, M., and Bates, P. D.: Tradoff between cost and accuracy in large-scale surface water dynamic modeling, Water Resour. Res., 53, 4942–4955, https://doi.org/10.1002/2017WR020519, 2017b. 
Download
Short summary
The combined use of GRACE mass anomalies and observed river discharge for the first time allows us to quantify the water storage volumes drainable by gravity on global scales. Modelling of catchment and river network storages in a cascade with different dynamics reveals the time lag between total mass and runoff is caused by a non-zero river network storage. This allows catchment and river network storage volumes to be distinguished and is thus of great importance for water resources management.