Articles | Volume 24, issue 3
Hydrol. Earth Syst. Sci., 24, 1101–1107, 2020
https://doi.org/10.5194/hess-24-1101-2020
Hydrol. Earth Syst. Sci., 24, 1101–1107, 2020
https://doi.org/10.5194/hess-24-1101-2020
Technical note
06 Mar 2020
Technical note | 06 Mar 2020

Technical note: An improved discharge sensitivity metric for young water fractions

Francesc Gallart et al.

Related authors

Precipitation fate and transport in a Mediterranean catchment through models calibrated on plant and stream water isotope data
Matthias Sprenger, Pilar Llorens, Francesc Gallart, Paolo Benettin, Scott T. Allen, and Jérôme Latron
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-93,https://doi.org/10.5194/hess-2022-93, 2022
Revised manuscript under review for HESS
Short summary
Structural and functional control of surface-patch to hillslope runoff and sediment connectivity in Mediterranean dry reclaimed slope systems
Mariano Moreno-de-las-Heras, Luis Merino-Martín, Patricia M. Saco, Tíscar Espigares, Francesc Gallart, and José M. Nicolau
Hydrol. Earth Syst. Sci., 24, 2855–2872, https://doi.org/10.5194/hess-24-2855-2020,https://doi.org/10.5194/hess-24-2855-2020, 2020
Short summary
Mechanisms of consistently disjunct soil water pools over (pore) space and time
Matthias Sprenger, Pilar Llorens, Carles Cayuela, Francesc Gallart, and Jérôme Latron
Hydrol. Earth Syst. Sci., 23, 2751–2762, https://doi.org/10.5194/hess-23-2751-2019,https://doi.org/10.5194/hess-23-2751-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Event controls on intermittent streamflow in a temperate climate
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 2671–2696, https://doi.org/10.5194/hess-26-2671-2022,https://doi.org/10.5194/hess-26-2671-2022, 2022
Short summary
Inclusion of flood diversion canal operation in the H08 hydrological model with a case study from the Chao Phraya River basin: model development and validation
Saritha Padiyedath Gopalan, Adisorn Champathong, Thada Sukhapunnaphan, Shinichiro Nakamura, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 26, 2541–2560, https://doi.org/10.5194/hess-26-2541-2022,https://doi.org/10.5194/hess-26-2541-2022, 2022
Short summary
Flood generation: process patterns from the raindrop to the ocean
Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 2469–2480, https://doi.org/10.5194/hess-26-2469-2022,https://doi.org/10.5194/hess-26-2469-2022, 2022
Short summary
Use of streamflow indices to identify the catchment drivers of hydrographs
Jeenu Mathai and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 26, 2019–2033, https://doi.org/10.5194/hess-26-2019-2022,https://doi.org/10.5194/hess-26-2019-2022, 2022
Short summary
Theoretical and empirical evidence against the Budyko catchment trajectory conjecture
Nathan G. F. Reaver, David A. Kaplan, Harald Klammler, and James W. Jawitz
Hydrol. Earth Syst. Sci., 26, 1507–1525, https://doi.org/10.5194/hess-26-1507-2022,https://doi.org/10.5194/hess-26-1507-2022, 2022
Short summary

Cited articles

DeWalle, D. R., Edwards, P. J., Swistock, B. R., Aravena, R., and Drimmie, R. J.: Seasonal isotope hydrology of three Appalachian forest catchments, Hydrol. Process., 11, 1895–1906, https://doi.org/10.1002/(SICI)1099-1085(199712)11:15%3C1895::AID-HYP538%3E3.0.CO;2-%23, 1997. 
Gallart, F., Roig-Planasdemunt, M., Stewart, M. K., Llorens, P., Morgenstern, U., Stichler, W., Pfister, L., and Latron, J.: A GLUE-based uncertainty assessment framework for tritium-inferred transit time estimations under baseflow conditions, Hydrol. Process., 30, 4741–4760, https://doi.org/10.1002/hyp.10991, 2016. 
Gallart, F., Valiente, M., Llorens, P., Cayuela, C., Sprenger, M., and Latron, J.: Investigating young water fractions in different hydrological compartments of a small Mediterranean mountain catchment: Sampling frequency and precipitation forcing matter, Hydrol. Process., in review, https://doi.org/10.22541/au.157979613.39458719, 2020. 
Kirchner, J. W.: Aggregation in environmental systems – Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments, Hydrol. Earth Syst. Sci., 20, 279–297, https://doi.org/10.5194/hess-20-279-2016, 2016a. 
Kirchner, J. W.: Aggregation in environmental systems – Part 2: Catchment mean transit times and young water fractions under hydrologic nonstationarity, Hydrol. Earth Syst. Sci., 20, 299–328, https://doi.org/10.5194/hess-20-299-2016, 2016b. 
Download
Short summary
How catchments store and release rain or melting water is still not well known. Now, it is broadly accepted that most of the water in streams is older than several months, and a relevant part may be many years old. But the age of water depends on the stream regime, being usually younger during high flows. This paper tries to provide tools for better analysing how the age of waters varies with flow in a catchment and for comparing the behaviour of catchments diverging in climate, size and regime.