Articles | Volume 23, issue 8
Hydrol. Earth Syst. Sci., 23, 3457–3480, 2019
Hydrol. Earth Syst. Sci., 23, 3457–3480, 2019
Research article
26 Aug 2019
Research article | 26 Aug 2019

Modeling boreal forest evapotranspiration and water balance at stand and catchment scales: a spatial approach

Samuli Launiainen et al.

Related authors

Carbon balance of a Finnish bog: temporal variability and limiting factors based on 6 years of eddy-covariance data
Pavel Alekseychik, Aino Korrensalo, Ivan Mammarella, Samuli Launiainen, Eeva-Stiina Tuittila, Ilkka Korpela, and Timo Vesala
Biogeosciences, 18, 4681–4704,,, 2021
Short summary
Eddies in motion: visualizing boundary-layer turbulence above an open boreal peatland using UAS thermal videos
Pavel Alekseychik, Gabriel Katul, Ilkka Korpela, and Samuli Launiainen
Atmos. Meas. Tech., 14, 3501–3521,,, 2021
Short summary
Partitioning growing season water balance within a forested boreal catchment using sap flux, eddy covariance, and a process-based model
Nataliia Kozii, Kersti Haahti, Pantana Tor-ngern, Jinshu Chi, Eliza Maher Hasselquist, Hjalmar Laudon, Samuli Launiainen, Ram Oren, Matthias Peichl, Jörgen Wallerman, and Niles J. Hasselquist
Hydrol. Earth Syst. Sci., 24, 2999–3014,,, 2020
Short summary
Soil concentrations and soil–atmosphere exchange of alkylamines in a boreal Scots pine forest
Antti-Jussi Kieloaho, Mari Pihlatie, Samuli Launiainen, Markku Kulmala, Marja-Liisa Riekkola, Jevgeni Parshintsev, Ivan Mammarella, Timo Vesala, and Jussi Heinonsalo
Biogeosciences, 14, 1075–1091,,, 2017
Short summary
A simplified gross primary production and evapotranspiration model for boreal coniferous forests – is a generic calibration sufficient?
F. Minunno, M. Peltoniemi, S. Launiainen, M. Aurela, A. Lindroth, A. Lohila, I. Mammarella, K. Minkkinen, and A. Mäkelä
Geosci. Model Dev. Discuss.,,, 2015
Revised manuscript not accepted

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Does non-stationarity induced by multiyear drought invalidate the paired-catchment method?
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, and Yanghe Liu
Hydrol. Earth Syst. Sci., 26, 6379–6397,,, 2022
Short summary
Is the reputation of Eucalyptus plantations for using more water than Pinus plantations justified?
Don A. White, Shiqi Ren, Daniel S. Mendham, Francisco Balocchi-Contreras, Richard P. Silberstein, Dean Meason, Andrés Iroumé, and Pablo Ramirez de Arellano
Hydrol. Earth Syst. Sci., 26, 5357–5371,,, 2022
Short summary
Attributing trend in naturalized streamflow to temporally explicit vegetation change and climate variation in the Yellow River basin of China
Zhihui Wang, Qiuhong Tang, Daoxi Wang, Peiqing Xiao, Runliang Xia, Pengcheng Sun, and Feng Feng
Hydrol. Earth Syst. Sci., 26, 5291–5314,,, 2022
Short summary
Impacts of different types of El Niño events on water quality over the Corn Belt, United States
Pan Chen, Wenhong Li, and Keqi He
Hydrol. Earth Syst. Sci., 26, 4875–4892,,, 2022
Short summary
Leveraging sap flow data in a catchment-scale hybrid model to improve soil moisture and transpiration estimates
Ralf Loritz, Maoya Bassiouni, Anke Hildebrandt, Sibylle K. Hassler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 4757–4771,,, 2022
Short summary

Cited articles

Ågren, A. M., Lidberg, W., and Ring, E.: Mapping temporal dynamics in a forest stream network–implications for riparian forest management, Forests, 6, 2982–3001, 2015. a
Ala-aho, P., Tetzlaff, D., McNamara, J. P., Laudon, H., and Soulsby, C.: Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall–Runoff) model, Hydrol. Earth Syst. Sci., 21, 5089–5110,, 2017. a
Albertson, J. D. and Montaldo, N.: Temporal dynamics of soil moisture variability: 1. Theoretical basis, Water Resour. Res., 39, 10,, 2003. a
Alekseychik, P., Korrensalo, A., Mammarella, I., Vesala, T., and Tuittila, E.-S.: Relationship between aerodynamic roughness length and bulk sedge leaf area index in a mixed-species boreal mire complex, Geophys. Res. Lett., 44, 5836–5843, 2017. a, b
Allen, R. G., Pereira, L. S., Raes, D., Smith, M., et al.: Crop evapotranspiration-Guidelines for computing crop water requirements – FAO Irrigation and drainage paper 56, 300, D05109, available at: (last access: 5 May 2018), Fao, Rome, 1998. a
Short summary
Boreal forest evapotranspiration and water cycle is modeled at stand and catchment scale using physiological and physical principles, open GIS data and daily weather data. The approach can predict daily evapotranspiration well across Nordic coniferous-dominated stands and successfully reproduces daily streamflow and annual evapotranspiration across boreal headwater catchments in Finland. The model is modular and simple and designed for practical applications over large areas using open data.