Articles | Volume 22, issue 12
Hydrol. Earth Syst. Sci., 22, 6323–6333, 2018
https://doi.org/10.5194/hess-22-6323-2018
Hydrol. Earth Syst. Sci., 22, 6323–6333, 2018
https://doi.org/10.5194/hess-22-6323-2018
Research article
06 Dec 2018
Research article | 06 Dec 2018

Managed aquifer recharge with reverse-osmosis desalinated seawater: modeling the spreading in groundwater using stable water isotopes

Yonatan Ganot et al.

Related authors

Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater
Yonatan Ganot, Ran Holtzman, Noam Weisbrod, Ido Nitzan, Yoram Katz, and Daniel Kurtzman
Hydrol. Earth Syst. Sci., 21, 4479–4493, https://doi.org/10.5194/hess-21-4479-2017,https://doi.org/10.5194/hess-21-4479-2017, 2017
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Reactive transport modeling for supporting climate resilience at groundwater contamination sites
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022,https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary
Improved understanding of regional groundwater drought development through time series modelling: the 2018–2019 drought in the Netherlands
Esther Brakkee, Marjolein H. J. van Huijgevoort, and Ruud P. Bartholomeus
Hydrol. Earth Syst. Sci., 26, 551–569, https://doi.org/10.5194/hess-26-551-2022,https://doi.org/10.5194/hess-26-551-2022, 2022
Short summary
Simulation of long-term spatiotemporal variations in regional-scale groundwater recharge: contributions of a water budget approach in cold and humid climates
Emmanuel Dubois, Marie Larocque, Sylvain Gagné, and Guillaume Meyzonnat
Hydrol. Earth Syst. Sci., 25, 6567–6589, https://doi.org/10.5194/hess-25-6567-2021,https://doi.org/10.5194/hess-25-6567-2021, 2021
Short summary
Delineation of discrete conduit networks in karst aquifers via combined analysis of tracer tests and geophysical data
Jacques Bodin, Gilles Porel, Benoît Nauleau, and Denis Paquet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-584,https://doi.org/10.5194/hess-2021-584, 2021
Revised manuscript accepted for HESS
Short summary
Feedback mechanisms between precipitation and dissolution reactions across randomly heterogeneous conductivity fields
Yaniv Edery, Martin Stolar, Giovanni Porta, and Alberto Guadagnini
Hydrol. Earth Syst. Sci., 25, 5905–5915, https://doi.org/10.5194/hess-25-5905-2021,https://doi.org/10.5194/hess-25-5905-2021, 2021
Short summary

Cited articles

Al-Basheer, W., Al-Jalal, A., and Gasmi, K.: Variations in isotopic composition of desalinated water, Water Environ. J., 31, 209–214, https://doi.org/10.1111/wej.12232, 2017. 
Birnhack, L., Voutchkov, N., and Lahav, O.: Fundamental chemistry and engineering aspects of post-treatment processes for desalinated water – A review, Desalination, 273, 6–22, https://doi.org/10.1016/j.desal.2010.11.011, 2011. 
Boronina, A., Balderer, W., Renard, P., and Stichler, W.: Study of stable isotopes in the Kouris catchment (Cyprus) for the description of the regional groundwater flow, J. Hydrol., 308, 214–226, https://doi.org/10.1016/j.jhydrol.2004.11.001, 2005. 
Burnett R. D. and Frind E. O.: Simulation of contaminant transport in three dimensions: 2. Dimensionality effects, Water Resour. Res., 23, 695–705, https://doi.org/10.1029/WR023i004p00695, 1987. 
Carle, S. F.: T-PROGS: Transition probability geostatistical software, University of California, Davis, CA, 84, available at: http://gmsdocs.aquaveo.com/t-progs.pdf (last access: 15 August 2017), 1999. 
Download
Short summary
In recent years, surpluses of desalinated seawater (DSW) are stored in the Israeli coastal aquifer. We monitor DSW spread in the aquifer using the difference between isotope composition of reverse-osmosis DSW and natural fresh water, which simplifies the system to two distinct end-members. A hydrogeological flow and transport model is used to demonstrate the robustness of this simplification, predict the future spread of DSW in the aquifer and mixing in wells, and estimate DSW recovery efficacy.