Articles | Volume 22, issue 7
https://doi.org/10.5194/hess-22-4097-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-22-4097-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Testing an optimality-based model of rooting zone water storage capacity in temperate forests
Matthias J. R. Speich
CORRESPONDING AUTHOR
Dynamic Macroecology, Swiss Federal Research Institute WSL, 8903
Birmensdorf, Switzerland
Hydrological Forecasts, Swiss Federal Research Institute WSL, 8903
Birmensdorf, Switzerland
Department of Environmental Systems Science, ETH Zurich, 8092 Zurich,
Switzerland
now at: Biometry and Environmental Systems Analysis, University of
Freiburg, 79106 Freiburg i. Br., Germany
Heike Lischke
Dynamic Macroecology, Swiss Federal Research Institute WSL, 8903
Birmensdorf, Switzerland
Massimiliano Zappa
Hydrological Forecasts, Swiss Federal Research Institute WSL, 8903
Birmensdorf, Switzerland
Related authors
Matthias J. R. Speich, Massimiliano Zappa, Marc Scherstjanoi, and Heike Lischke
Geosci. Model Dev., 13, 537–564, https://doi.org/10.5194/gmd-13-537-2020, https://doi.org/10.5194/gmd-13-537-2020, 2020
Short summary
Short summary
Climate change is expected to substantially affect natural processes, and simulation models are a valuable tool to anticipate these changes. In this study, we combine two existing models that each describe one aspect of the environment: forest dynamics and the terrestrial water cycle. The coupled model better described observed patterns in vegetation structure. We also found that including the effect of water availability on tree height and rooting depth improved the model.
Ryan S. Padrón, Massimiliano Zappa, Luzi Bernhard, and Konrad Bogner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2591, https://doi.org/10.5194/egusphere-2024-2591, 2024
Short summary
Short summary
We generate operational forecasts of daily maximum stream water temperature for the next month at 54 stations in Switzerland with our best performing data-driven model. The average forecast error is 0.38 °C for 1 day ahead and increases to 0.90 °C for 1 month ahead given the uncertainty in the meteorological variables influencing water temperature. Here we compare the skill of several models, how well they can forecast at new and ungauged stations, and the importance of different model inputs.
Michael Margreth, Florian Lustenberger, Dorothea Hug Peter, Fritz Schlunegger, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-78, https://doi.org/10.5194/nhess-2024-78, 2024
Preprint under review for NHESS
Short summary
Short summary
Recession models (RM) are crucial for observing the low flow behavior of a catchment. We developed two novel RM, which are designed to represent slowly draining catchment conditions. With a newly designed low flow prediction procedure we tested the prediction capability of these two models and three others from literature. One of our novel products delivered the best results, because it best represents the slowly draining catchment conditions.
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-993, https://doi.org/10.5194/egusphere-2024-993, 2024
Short summary
Short summary
This study uses deep learning to predict spatially contiguous water runoff in Switzerland from 1962–2023. It outperforms traditional models, requiring less data and computational power. Key findings include increased dry years and summer water scarcity. This method offers significant advancements in water monitoring.
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Short summary
CAMELS-CH is an open large-sample hydro-meteorological data set that covers 331 catchments in hydrologic Switzerland from 1 January 1981 to 31 December 2020. It comprises (a) daily data of river discharge and water level as well as meteorologic variables like precipitation and temperature; (b) yearly glacier and land cover data; (c) static attributes of, e.g, topography or human impact; and (d) catchment delineations. CAMELS-CH enables water and climate research and modeling at catchment level.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Deborah Zani, Veiko Lehsten, and Heike Lischke
Geosci. Model Dev., 15, 4913–4940, https://doi.org/10.5194/gmd-15-4913-2022, https://doi.org/10.5194/gmd-15-4913-2022, 2022
Short summary
Short summary
The prediction of species migration under rapid climate change remains uncertain. In this paper, we evaluate the importance of the mechanisms underlying plant migration and increase the performance in the dynamic global vegetation model LPJ-GM 1.0. The improved model will allow us to understand past vegetation dynamics and predict the future redistribution of species in a context of global change.
Elham Rouholahnejad Freund, Massimiliano Zappa, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 5015–5025, https://doi.org/10.5194/hess-24-5015-2020, https://doi.org/10.5194/hess-24-5015-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) is the largest flux from the land to the atmosphere and thus contributes to Earth's energy and water balance. Due to its impact on atmospheric dynamics, ET is a key driver of droughts and heatwaves. In this paper, we demonstrate how averaging over land surface heterogeneity contributes to substantial overestimates of ET fluxes. We also demonstrate how one can correct for the effects of small-scale heterogeneity without explicitly representing it in land surface models.
Marco Dal Molin, Mario Schirmer, Massimiliano Zappa, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 24, 1319–1345, https://doi.org/10.5194/hess-24-1319-2020, https://doi.org/10.5194/hess-24-1319-2020, 2020
Matthias J. R. Speich, Massimiliano Zappa, Marc Scherstjanoi, and Heike Lischke
Geosci. Model Dev., 13, 537–564, https://doi.org/10.5194/gmd-13-537-2020, https://doi.org/10.5194/gmd-13-537-2020, 2020
Short summary
Short summary
Climate change is expected to substantially affect natural processes, and simulation models are a valuable tool to anticipate these changes. In this study, we combine two existing models that each describe one aspect of the environment: forest dynamics and the terrestrial water cycle. The coupled model better described observed patterns in vegetation structure. We also found that including the effect of water availability on tree height and rooting depth improved the model.
Manuela I. Brunner, Daniel Farinotti, Harry Zekollari, Matthias Huss, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019, https://doi.org/10.5194/hess-23-4471-2019, 2019
Short summary
Short summary
River flow regimes are expected to change and so are extreme flow regimes. We propose two methods for estimating extreme flow regimes and show on a data set from Switzerland how these extreme regimes are expected to change. Our results show that changes in low- and high-flow regimes are distinct for rainfall- and melt-dominated regions. Our findings provide guidance in water resource planning and management.
Manuela I. Brunner, Katharina Liechti, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci., 19, 2311–2323, https://doi.org/10.5194/nhess-19-2311-2019, https://doi.org/10.5194/nhess-19-2311-2019, 2019
Short summary
Short summary
The 2018 drought event had severe ecological, economic, and social impacts. How extreme was it in Switzerland? We addressed this question by looking at different types of drought, including meteorological, hydrological, agricultural, and groundwater drought, and at the two characteristics deficit and deficit duration. The return period estimates depended on the region, variable, and return period considered.
Veiko Lehsten, Michael Mischurow, Erik Lindström, Dörte Lehsten, and Heike Lischke
Geosci. Model Dev., 12, 893–908, https://doi.org/10.5194/gmd-12-893-2019, https://doi.org/10.5194/gmd-12-893-2019, 2019
Short summary
Short summary
To assess the effect of climate on vegetation, dynamic vegetation models simulate their response e.g. to climate change. Most currently used dynamic vegetation models ignore the fact that for colonization of a new area not only do the climatic conditions have to be suitable, but seeds also need to arrive at the site to allow the species to migrate there. In this paper we are developing a novel method which allows us to simulate migration within dynamic vegetation models even at large scale.
Samuel Monhart, Massimiliano Zappa, Christoph Spirig, Christoph Schär, and Konrad Bogner
Hydrol. Earth Syst. Sci., 23, 493–513, https://doi.org/10.5194/hess-23-493-2019, https://doi.org/10.5194/hess-23-493-2019, 2019
Short summary
Short summary
Subseasonal streamflow forecasts have received increasing attention during the past decade, but their performance in alpine catchments is still largely unknown. We analyse the effect of a statistical correction technique applied to the driving meteorological forecasts on the performance of the resulting streamflow forecasts. The study shows the benefits of such hydrometeorological ensemble prediction systems and highlights the importance of snow-related processes for subseasonal predictions.
Manuel Antonetti, Christoph Horat, Ioannis V. Sideris, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci., 19, 19–40, https://doi.org/10.5194/nhess-19-19-2019, https://doi.org/10.5194/nhess-19-19-2019, 2019
Short summary
Short summary
To predict timing and magnitude peak run-off, meteorological and calibrated hydrological models are commonly coupled. A flash-flood forecasting chain is presented based on a process-based run-off generation module with no need for calibration. This chain has been evaluated using data for the Emme catchment (Switzerland). The outcomes of this study show that operational flash predictions in ungauged basins can benefit from the use of information on run-off processes.
Peter Stucki, Moritz Bandhauer, Ulla Heikkilä, Ole Rössler, Massimiliano Zappa, Lucas Pfister, Melanie Salvisberg, Paul Froidevaux, Olivia Martius, Luca Panziera, and Stefan Brönnimann
Nat. Hazards Earth Syst. Sci., 18, 2717–2739, https://doi.org/10.5194/nhess-18-2717-2018, https://doi.org/10.5194/nhess-18-2717-2018, 2018
Short summary
Short summary
A catastrophic flood south of the Alps in 1868 is assessed using documents and the earliest example of high-resolution weather simulation. Simulated weather dynamics agree well with observations and damage reports. Simulated peak water levels are biased. Low forest cover did not cause the flood, but such a paradigm was used to justify afforestation. Supported by historical methods, such numerical simulations allow weather events from past centuries to be used for modern hazard and risk analyses.
Manuel Antonetti and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 22, 4425–4447, https://doi.org/10.5194/hess-22-4425-2018, https://doi.org/10.5194/hess-22-4425-2018, 2018
Short summary
Short summary
We developed 60 modelling chain combinations based on either experimentalists' (bottom-up) or modellers' (top-down) thinking and forced them with data of increasing accuracy. Results showed that the differences in performance arising from the forcing data were due to compensation effects. We also found that modellers' and experimentalists' concept of
model realismdiffers, and the level of detail a model should have to reproduce the processes expected must be agreed in advance.
Christoph Horat, Manuel Antonetti, Katharina Liechti, Pirmin Kaufmann, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-119, https://doi.org/10.5194/nhess-2018-119, 2018
Publication in NHESS not foreseen
Short summary
Short summary
Two forecasting chains are forced by information from numerical weather predictions. The framework presented in the companion paper by Antonetti et al. has been set up for the Swiss Verzasca basin. The forecasts obtained with the uncalibrated RGM-PRO model are compared to forecasts yielded by the calibrated PREVAH-HRU model. Results shows that the uncalibrated model is able to compete with the calibrated operational prediction system and was consistently superior for
high-flow situations.
Love Råman Vinnå, Alfred Wüest, Massimiliano Zappa, Gabriel Fink, and Damien Bouffard
Hydrol. Earth Syst. Sci., 22, 31–51, https://doi.org/10.5194/hess-22-31-2018, https://doi.org/10.5194/hess-22-31-2018, 2018
Short summary
Short summary
Responses of inland waters to climate change vary on global and regional scales. Shifts in river discharge regimes act as positive and negative feedbacks in influencing water temperature. The extent of this effect on warming is controlled by the change in river discharge and lake hydraulic residence time. A shift of deep penetrating river intrusions from summer towards winter can potentially counteract the otherwise negative climate effects on deep-water oxygen content.
Konrad Bogner, Katharina Liechti, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 21, 5493–5502, https://doi.org/10.5194/hess-21-5493-2017, https://doi.org/10.5194/hess-21-5493-2017, 2017
Short summary
Short summary
The enhanced availability of many different weather prediction systems nowadays makes it very difficult for flood and water resource managers to choose the most reliable and accurate forecast. In order to circumvent this problem of choice, different approaches for combining this information have been applied at the Sihl River (CH) and the results have been verified. The outcome of this study highlights the importance of forecast combination in order to improve the quality of forecast systems.
Manuel Antonetti, Rahel Buss, Simon Scherrer, Michael Margreth, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 20, 2929–2945, https://doi.org/10.5194/hess-20-2929-2016, https://doi.org/10.5194/hess-20-2929-2016, 2016
Short summary
Short summary
We evaluated three automatic mapping approaches of dominant runoff processes (DRPs) with different complexity using similarity measures and synthetic runoff simulations. The most complex DRP maps were the most similar to the reference maps. Runoff simulations derived from the simpler DRP maps were more uncertain due to inaccuracies in the input data and rather coarse simplifications in the mapping criteria. It would thus be worthwhile trying to obtain DRP maps that are as realistic as possible.
Lieke Melsen, Adriaan Teuling, Paul Torfs, Massimiliano Zappa, Naoki Mizukami, Martyn Clark, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 20, 2207–2226, https://doi.org/10.5194/hess-20-2207-2016, https://doi.org/10.5194/hess-20-2207-2016, 2016
Short summary
Short summary
In this study we investigated the sensitivity of a large-domain hydrological model for spatial and temporal resolution. We evaluated the results on a mesoscale catchment in Switzerland. Our results show that the model was hardly sensitive for the spatial resolution, which implies that spatial variability is likely underestimated. Our results provide a motivation to improve the representation of spatial variability in hydrological models in order to increase their credibility on a smaller scale.
Michal Jenicek, Jan Seibert, Massimiliano Zappa, Maria Staudinger, and Tobias Jonas
Hydrol. Earth Syst. Sci., 20, 859–874, https://doi.org/10.5194/hess-20-859-2016, https://doi.org/10.5194/hess-20-859-2016, 2016
Short summary
Short summary
We quantified how long snowmelt affects runoff, and we estimated the sensitivity of catchments to changes in snowpack. This is relevant as the increase of air temperature might cause decreased snow storage. We used time series from 14 catchments in Switzerland. On average, a decrease of maximum snow storage by 10 % caused a decrease of minimum discharge in July by 2 to 9 %. The results showed a higher sensitivity of summer low flow to snow in alpine catchments compared to pre-alpine catchments.
M. Zappa, N. Andres, P. Kienzler, D. Näf-Huber, C. Marti, and M. Oplatka
Proc. IAHS, 370, 235–242, https://doi.org/10.5194/piahs-370-235-2015, https://doi.org/10.5194/piahs-370-235-2015, 2015
Short summary
Short summary
The most severe threat for the city of Zürich (Switzerland) are flash-floods from the small Sihl river. An assessment using a rainfall-runoff model evaluated more than 40000 extreme flood scenarios. These scenarios identified deficits for the safety of Zürich. The combination of different structural and flood management measures can lead to an optimal safety also in case of unfavorable initial conditions. Pending questions concern the costs, political decisions and the environmental matters.
M. Zappa, T. Vitvar, A. Rücker, G. Melikadze, L. Bernhard, V. David, M. Jans-Singh, N. Zhukova, and M. Sanda
Proc. IAHS, 369, 25–30, https://doi.org/10.5194/piahs-369-25-2015, https://doi.org/10.5194/piahs-369-25-2015, 2015
Short summary
Short summary
A research effort involving Switzerland, Georgia and the Czech Republic has been launched to evaluate the relation between snowpack and summer low flows. Two rainfall-runoff models will simulate over 10 years of snow hydrology and runoff in nested streams. Processes involved will be also evaluated by mean by means of high frequency sampling of the environmental isotopes 18O and 2H. The paper presents first analysis of available datasets of 18O, 2H, discharge, snowpack and modelling experiments.
P. Ronco, M. Bullo, S. Torresan, A. Critto, R. Olschewski, M. Zappa, and A. Marcomini
Hydrol. Earth Syst. Sci., 19, 1561–1576, https://doi.org/10.5194/hess-19-1561-2015, https://doi.org/10.5194/hess-19-1561-2015, 2015
Short summary
Short summary
The aim of the paper is the application of the KULTURisk regional risk assessment (KR-RRA) methodology, presented in the companion paper (Part 1), to the Sihl River basin, in northern Switzerland. Flood-related risks have been assessed for different receptors lying in the Sihl river valley including the city of Zurich, which represents a typical case of river flooding in an urban area, by means of a calibration process of the methodology to the site-specific context and features.
S. Jörg-Hess, F. Fundel, T. Jonas, and M. Zappa
The Cryosphere, 8, 471–485, https://doi.org/10.5194/tc-8-471-2014, https://doi.org/10.5194/tc-8-471-2014, 2014
K. Liechti, L. Panziera, U. Germann, and M. Zappa
Hydrol. Earth Syst. Sci., 17, 3853–3869, https://doi.org/10.5194/hess-17-3853-2013, https://doi.org/10.5194/hess-17-3853-2013, 2013
F. Fundel, S. Jörg-Hess, and M. Zappa
Hydrol. Earth Syst. Sci., 17, 395–407, https://doi.org/10.5194/hess-17-395-2013, https://doi.org/10.5194/hess-17-395-2013, 2013
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Technical assessment combined with an extended cost–benefit analysis for the restoration of groundwater and forest ecosystem services – an application for Grand Bahama
Regional patterns and drivers of modelled water flows along environmental, functional, and stand structure gradients in Spanish forests
Machine learning and global vegetation: random forests for downscaling and gap filling
Unraveling phenological and stomatal responses to flash drought and implications for water and carbon budgets
Ecohydrological responses to solar radiation changes
Green water availability and water-limited crop yields under a changing climate in Ethiopia
Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
Technical note: Seamless extraction and analysis of river networks in R
Advancing stream classification and hydrologic modeling of ungaged basins for environmental flow management in coastal southern California
Improving regional climate simulations based on a hybrid data assimilation and machine learning method
A comprehensive assessment of in situ and remote sensing soil moisture data assimilation in the APSIM model for improving agricultural forecasting across the US Midwest
Does non-stationarity induced by multiyear drought invalidate the paired-catchment method?
Is the reputation of Eucalyptus plantations for using more water than Pinus plantations justified?
Attributing trend in naturalized streamflow to temporally explicit vegetation change and climate variation in the Yellow River basin of China
Impacts of different types of El Niño events on water quality over the Corn Belt, United States
Leveraging sap flow data in a catchment-scale hybrid model to improve soil moisture and transpiration estimates
Coupled modelling of hydrological processes and grassland production in two contrasting climates
Does maximization of net carbon profit enable the prediction of vegetation behaviour in savanna sites along a precipitation gradient?
Modelling the artificial forest (Robinia pseudoacacia L.) root–soil water interactions in the Loess Plateau, China
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
Vegetation greening weakened the capacity of water supply to China's South-to-North Water Diversion Project
Structural changes to forests during regeneration affect water flux partitioning, water ages and hydrological connectivity: Insights from tracer-aided ecohydrological modelling
How does water yield respond to mountain pine beetle infestation in a semiarid forest?
Daily soil temperature modeling improved by integrating observed snow cover and estimated soil moisture in the USA Great Plains
Plant hydraulic transport controls transpiration sensitivity to soil water stress
Drought onset and propagation into soil moisture and grassland vegetation responses during the 2012–2019 major drought in Southern California
Quantifying the effects of urban green space on water partitioning and ages using an isotope-based ecohydrological model
Low and contrasting impacts of vegetation CO2 fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO2 effects
Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion
Quantifying the effects of land use and model scale on water partitioning and water ages using tracer-aided ecohydrological models
Quantification of ecohydrological sensitivities and their influencing factors at the seasonal scale
Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation – a modeling analysis
Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks
Testing water fluxes and storage from two hydrology configurations within the ORCHIDEE land surface model across US semi-arid sites
Novel Keeling-plot-based methods to estimate the isotopic composition of ambient water vapor
Disentangling temporal and population variability in plant root water uptake from stable isotopic analysis: when rooting depth matters in labeling studies
Calibration of hydrological models for ecologically relevant streamflow predictions: a trade-off between fitting well to data and estimating consistent parameter sets?
Spatial variability of mean daily estimates of actual evaporation from remotely sensed imagery and surface reference data
Quantification of soil water balance components based on continuous soil moisture measurement and the Richards equation in an irrigated agricultural field of a desert oasis
Mapping the suitability of groundwater-dependent vegetation in a semi-arid Mediterranean area
Modeling boreal forest evapotranspiration and water balance at stand and catchment scales: a spatial approach
The 18O ecohydrology of a grassland ecosystem – predictions and observations
A comprehensive sensitivity and uncertainty analysis for discharge and nitrate-nitrogen loads involving multiple discrete model inputs under future changing conditions
Dynamic responses of DOC and DIC transport to different flow regimes in a subtropical small mountainous river
Evaluation of ORCHIDEE-MICT-simulated soil moisture over China and impacts of different atmospheric forcing data
A regional-scale ecological risk framework for environmental flow evaluations
Climate-driven disturbances in the San Juan River sub-basin of the Colorado River
Dominant effect of increasing forest biomass on evapotranspiration: interpretations of movement in Budyko space
Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States
Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI
Anne Imig, Francesca Perosa, Carolina Iwane Hotta, Sophia Klausner, Kristen Welsh, Yan Zheng, and Arno Rein
Hydrol. Earth Syst. Sci., 28, 5459–5478, https://doi.org/10.5194/hess-28-5459-2024, https://doi.org/10.5194/hess-28-5459-2024, 2024
Short summary
Short summary
In 2019, Hurricane Dorian led to salinization of groundwater resources on the island of Grand Bahama. We assessed the feasibility of managed aquifer recharge (MAR) for restoring fresh groundwater. Furthermore, we applied a financial and an extended cost–benefit analysis for assessing ecosystem services supported by MAR and reforestation. As a first estimate, MAR could only provide a small contribution to the water demand. Reforestation measures were assessed to be financially profitable.
Jesús Sánchez-Dávila, Miquel De Cáceres, Jordi Vayreda, and Javier Retana
Hydrol. Earth Syst. Sci., 28, 3037–3050, https://doi.org/10.5194/hess-28-3037-2024, https://doi.org/10.5194/hess-28-3037-2024, 2024
Short summary
Short summary
Forest blue water is determined by the climate, functional traits, and stand structure variables. The leaf area index (LAI) is the main driver of the trade-off between the blue and green water. Blue water is concentrated in the autumn–winter season, and deciduous trees can increase the relative blue water. The leaf phenology and seasonal distribution are determinants for the relative blue water.
Barry van Jaarsveld, Sandra M. Hauswirth, and Niko Wanders
Hydrol. Earth Syst. Sci., 28, 2357–2374, https://doi.org/10.5194/hess-28-2357-2024, https://doi.org/10.5194/hess-28-2357-2024, 2024
Short summary
Short summary
Drought often manifests itself in vegetation; however, obtaining high-resolution remote-sensing products that are spatially and temporally consistent is difficult. In this study, we show that machine learning (ML) can fill data gaps in existing products. We also demonstrate that ML can be used as a downscaling tool. By relying on ML for gap filling and downscaling, we can obtain a more holistic view of the impacts of drought on vegetation.
Nicholas K. Corak, Jason A. Otkin, Trent W. Ford, and Lauren E. L. Lowman
Hydrol. Earth Syst. Sci., 28, 1827–1851, https://doi.org/10.5194/hess-28-1827-2024, https://doi.org/10.5194/hess-28-1827-2024, 2024
Short summary
Short summary
We simulate how dynamic vegetation interacts with the atmosphere during extreme drought events known as flash droughts. We find that plants nearly halt water and carbon exchanges and limit their growth during flash drought. This work has implications for how to account for changes in vegetation state during extreme drought events when making predictions under future climate scenarios.
Yiran Wang, Naika Meili, and Simone Fatichi
EGUsphere, https://doi.org/10.5194/egusphere-2024-768, https://doi.org/10.5194/egusphere-2024-768, 2024
Short summary
Short summary
Our study uses climate model simulations and process-based ecohydrological modeling to assess the direct and climate feedback induced effects of solar radiation changes on hydrological variables. Results show that solar radiation without climate feedback primarily affects sensible heat with limited effects on hydrology and vegetation. However, climate feedback exacerbates the effects of radiation changes on evapotranspiration and affects vegetation productivity.
Mosisa Tujuba Wakjira, Nadav Peleg, Johan Six, and Peter Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-37, https://doi.org/10.5194/hess-2024-37, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
While rainwater is a key resource in crop production, its productivity faces challenges from climate change. Using a simple model of climate, water, and crop yield interactions, we found that rain-scarce croplands in Ethiopia are likely to experience decreases in crop yield during the main growing season, primarily due to future temperature increases. These insights are crucial for shaping future water management plans, policies, and informed decision-making for climate adaptation.
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023, https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Short summary
We explored different options for data assimilation (DA) of the remotely sensed leaf area index (LAI). We found strong biases between LAI predicted by Noah-MP and observations. LAI DA that does not take these biases into account can induce unphysical patterns in the resulting LAI and flux estimates and leads to large changes in the climatology of root zone soil moisture. We tested two bias-correction approaches and explored alternative solutions to treating bias in LAI DA.
Luca Carraro
Hydrol. Earth Syst. Sci., 27, 3733–3742, https://doi.org/10.5194/hess-27-3733-2023, https://doi.org/10.5194/hess-27-3733-2023, 2023
Short summary
Short summary
Mathematical models are key to the study of environmental processes in rivers. Such models often require information on river morphology from geographic information system (GIS) software, which hinders the use of replicable workflows. Here I present rivnet, an R package for simple, robust, GIS-free extraction and analysis of river networks. The package is designed so as to require minimal user input and is oriented towards ecohydrological, ecological and biogeochemical modeling.
Stephen K. Adams, Brian P. Bledsoe, and Eric D. Stein
Hydrol. Earth Syst. Sci., 27, 3021–3039, https://doi.org/10.5194/hess-27-3021-2023, https://doi.org/10.5194/hess-27-3021-2023, 2023
Short summary
Short summary
Managing streams for environmental flows involves prioritizing healthy stream ecosystems while distributing water resources. Classifying streams of similar types is a useful step in developing environmental flows. Environmental flows are often developed on data-poor streams that must be modeled. This paper has developed a new method of classification that prioritizes model accuracy. The new method advances environmental streamflow management and modeling of data-poor watersheds.
Xinlei He, Yanping Li, Shaomin Liu, Tongren Xu, Fei Chen, Zhenhua Li, Zhe Zhang, Rui Liu, Lisheng Song, Ziwei Xu, Zhixing Peng, and Chen Zheng
Hydrol. Earth Syst. Sci., 27, 1583–1606, https://doi.org/10.5194/hess-27-1583-2023, https://doi.org/10.5194/hess-27-1583-2023, 2023
Short summary
Short summary
This study highlights the role of integrating vegetation and multi-source soil moisture observations in regional climate models via a hybrid data assimilation and machine learning method. In particular, we show that this approach can improve land surface fluxes, near-surface atmospheric conditions, and land–atmosphere interactions by implementing detailed land characterization information in basins with complex underlying surfaces.
Marissa Kivi, Noemi Vergopolan, and Hamze Dokoohaki
Hydrol. Earth Syst. Sci., 27, 1173–1199, https://doi.org/10.5194/hess-27-1173-2023, https://doi.org/10.5194/hess-27-1173-2023, 2023
Short summary
Short summary
This study attempts to provide a framework for direct integration of soil moisture observations collected from soil sensors and satellite imagery into process-based crop models for improving the representation of agricultural systems. The performance of this framework was evaluated across 19 sites times years for crop yield, normalized difference vegetation index (NDVI), soil moisture, tile flow drainage, and nitrate leaching.
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, and Yanghe Liu
Hydrol. Earth Syst. Sci., 26, 6379–6397, https://doi.org/10.5194/hess-26-6379-2022, https://doi.org/10.5194/hess-26-6379-2022, 2022
Short summary
Short summary
Multiyear drought has been demonstrated to cause non-stationary rainfall–runoff relationship. But whether changes can invalidate the most fundamental method (i.e., paired-catchment method (PCM)) for separating vegetation change impacts is still unknown. Using paired-catchment data with 10-year drought, PCM is shown to still be reliable even in catchments with non-stationarity. A new framework is further proposed to separate impacts of two non-stationary drivers, using paired-catchment data.
Don A. White, Shiqi Ren, Daniel S. Mendham, Francisco Balocchi-Contreras, Richard P. Silberstein, Dean Meason, Andrés Iroumé, and Pablo Ramirez de Arellano
Hydrol. Earth Syst. Sci., 26, 5357–5371, https://doi.org/10.5194/hess-26-5357-2022, https://doi.org/10.5194/hess-26-5357-2022, 2022
Short summary
Short summary
Of all the planting options for wood production and carbon storage, Eucalyptus species provoke the greatest concern about their effect on water resources. We compared Eucalyptus and Pinus species (the two most widely planted genera) by fitting a simple model to the published estimates of their annual water use. There was no significant difference between the two genera. This has important implications for the global debate around Eucalyptus and is an option for carbon forests.
Zhihui Wang, Qiuhong Tang, Daoxi Wang, Peiqing Xiao, Runliang Xia, Pengcheng Sun, and Feng Feng
Hydrol. Earth Syst. Sci., 26, 5291–5314, https://doi.org/10.5194/hess-26-5291-2022, https://doi.org/10.5194/hess-26-5291-2022, 2022
Short summary
Short summary
Variable infiltration capacity simulation considering dynamic vegetation types and structural parameters is able to better capture the effect of temporally explicit vegetation change and climate variation in hydrological regimes. Vegetation greening including interannual LAI and intra-annual LAI temporal pattern change induced by large-scale ecological restoration and non-vegetation underlying surface change played dominant roles in the natural streamflow reduction of the Yellow River basin.
Pan Chen, Wenhong Li, and Keqi He
Hydrol. Earth Syst. Sci., 26, 4875–4892, https://doi.org/10.5194/hess-26-4875-2022, https://doi.org/10.5194/hess-26-4875-2022, 2022
Short summary
Short summary
The study assessed changes in total nitrogen (TN) and total phosphorus (TP) loads in response to eastern Pacific (EP) and central Pacific (CP) El Niño events over the Corn Belt, USA, using the SWAT model. Results showed that EP (CP) El Niño events improved (exacerbated) water quality in the region. Furthermore, EP El Niño had a much broader and longer impact on water quality at the outlets, but CP El Niño could lead to similar increases in TN/TP loads as EP El Niño at the specific watersheds.
Ralf Loritz, Maoya Bassiouni, Anke Hildebrandt, Sibylle K. Hassler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 4757–4771, https://doi.org/10.5194/hess-26-4757-2022, https://doi.org/10.5194/hess-26-4757-2022, 2022
Short summary
Short summary
In this study, we combine a deep-learning approach that predicts sap flow with a hydrological model to improve soil moisture and transpiration estimates at the catchment scale. Our results highlight that hybrid-model approaches, combining machine learning with physically based models, are a promising way to improve our ability to make hydrological predictions.
Nicholas Jarvis, Jannis Groh, Elisabet Lewan, Katharina H. E. Meurer, Walter Durka, Cornelia Baessler, Thomas Pütz, Elvin Rufullayev, and Harry Vereecken
Hydrol. Earth Syst. Sci., 26, 2277–2299, https://doi.org/10.5194/hess-26-2277-2022, https://doi.org/10.5194/hess-26-2277-2022, 2022
Short summary
Short summary
We apply an eco-hydrological model to data on soil water balance and grassland growth obtained at two sites with contrasting climates. Our results show that the grassland in the drier climate had adapted by developing deeper roots, which maintained water supply to the plants in the face of severe drought. Our study emphasizes the importance of considering such plastic responses of plant traits to environmental stress in the modelling of soil water balance and plant growth under climate change.
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 525–550, https://doi.org/10.5194/hess-26-525-2022, https://doi.org/10.5194/hess-26-525-2022, 2022
Short summary
Short summary
Most models that simulate water and carbon exchanges with the atmosphere rely on information about vegetation, but optimality models predict vegetation properties based on general principles. Here, we use the Vegetation Optimality Model (VOM) to predict vegetation behaviour at five savanna sites. The VOM overpredicted vegetation cover and carbon uptake during the wet seasons but also performed similarly to conventional models, showing that vegetation optimality is a promising approach.
Hongyu Li, Yi Luo, Lin Sun, Xiangdong Li, Changkun Ma, Xiaolei Wang, Ting Jiang, and Haoyang Zhu
Hydrol. Earth Syst. Sci., 26, 17–34, https://doi.org/10.5194/hess-26-17-2022, https://doi.org/10.5194/hess-26-17-2022, 2022
Short summary
Short summary
Drying soil layers (DSLs) have been extensively reported in artificial forestland in the Loess Plateau, China, which has limited water resources and deep loess. To address this issue relating to plant root–soil water interactions, this study developed a root growth model that simulates both the dynamic rooting depth and fine-root distribution. Evaluation vs. field data proved a positive performance. Long-term simulation reproduced the evolution process of the DSLs and revealed their mechanisms.
Jiancong Chen, Baptiste Dafflon, Anh Phuong Tran, Nicola Falco, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 25, 6041–6066, https://doi.org/10.5194/hess-25-6041-2021, https://doi.org/10.5194/hess-25-6041-2021, 2021
Short summary
Short summary
The novel hybrid predictive modeling (HPM) approach uses a long short-term memory recurrent neural network to estimate evapotranspiration (ET) and ecosystem respiration (Reco) with only meteorological and remote-sensing inputs. We developed four use cases to demonstrate the applicability of HPM. The results indicate HPM is capable of providing ET and Reco estimations in challenging mountainous systems and enhances our understanding of watershed dynamics at sparsely monitored watersheds.
Jiehao Zhang, Yulong Zhang, Ge Sun, Conghe Song, Matthew P. Dannenberg, Jiangfeng Li, Ning Liu, Kerong Zhang, Quanfa Zhang, and Lu Hao
Hydrol. Earth Syst. Sci., 25, 5623–5640, https://doi.org/10.5194/hess-25-5623-2021, https://doi.org/10.5194/hess-25-5623-2021, 2021
Short summary
Short summary
To quantify how vegetation greening impacts the capacity of water supply, we built a hybrid model and conducted a case study using the upper Han River basin (UHRB) that serves as the water source area to the world’s largest water diversion project. Vegetation greening in the UHRB during 2001–2018 induced annual water yield (WY) greatly decreased. Vegetation greening also increased the possibility of drought and reduced a quarter of WY on average during drought periods.
Aaron J. Neill, Christian Birkel, Marco P. Maneta, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 4861–4886, https://doi.org/10.5194/hess-25-4861-2021, https://doi.org/10.5194/hess-25-4861-2021, 2021
Short summary
Short summary
Structural changes (cover and height of vegetation plus tree canopy characteristics) to forests during regeneration on degraded land affect how water is partitioned between streamflow, groundwater recharge and evapotranspiration. Partitioning most strongly deviates from baseline conditions during earlier stages of regeneration with dense forest, while recovery may be possible as the forest matures and opens out. This has consequences for informing sustainable landscape restoration strategies.
Jianning Ren, Jennifer C. Adam, Jeffrey A. Hicke, Erin J. Hanan, Christina L. Tague, Mingliang Liu, Crystal A. Kolden, and John T. Abatzoglou
Hydrol. Earth Syst. Sci., 25, 4681–4699, https://doi.org/10.5194/hess-25-4681-2021, https://doi.org/10.5194/hess-25-4681-2021, 2021
Short summary
Short summary
Mountain pine beetle outbreaks have caused widespread tree mortality. While some research shows that water yield increases after trees are killed, many others document no change or a decrease. The climatic and environmental mechanisms driving hydrologic response to tree mortality are not well understood. We demonstrated that the direction of hydrologic response is a function of multiple factors, so previous studies do not necessarily conflict with each other; they represent different conditions.
Haidong Zhao, Gretchen F. Sassenrath, Mary Beth Kirkham, Nenghan Wan, and Xiaomao Lin
Hydrol. Earth Syst. Sci., 25, 4357–4372, https://doi.org/10.5194/hess-25-4357-2021, https://doi.org/10.5194/hess-25-4357-2021, 2021
Short summary
Short summary
This study was done to develop an improved soil temperature model for the USA Great Plains by using common weather station variables as inputs. After incorporating knowledge of estimated soil moisture and observed daily snow depth, the improved model showed a near 50 % gain in performance compared to the original model. We conclude that our improved model can better estimate soil temperature at the surface soil layer where most hydrological and biological processes occur.
Brandon P. Sloan, Sally E. Thompson, and Xue Feng
Hydrol. Earth Syst. Sci., 25, 4259–4274, https://doi.org/10.5194/hess-25-4259-2021, https://doi.org/10.5194/hess-25-4259-2021, 2021
Short summary
Short summary
Plants affect the global water and carbon cycles by modifying their water use and carbon intake in response to soil moisture. Global climate models represent this response with either simple empirical models or complex physical models. We reveal that the latter improves predictions in plants with large flow resistance; however, adding dependence on atmospheric moisture demand to the former matches performance of the latter, leading to a new tool for improving carbon and water cycle predictions.
Maria Magdalena Warter, Michael Bliss Singer, Mark O. Cuthbert, Dar Roberts, Kelly K. Caylor, Romy Sabathier, and John Stella
Hydrol. Earth Syst. Sci., 25, 3713–3729, https://doi.org/10.5194/hess-25-3713-2021, https://doi.org/10.5194/hess-25-3713-2021, 2021
Short summary
Short summary
Intensified drying of soil and grassland vegetation is raising the impact of fire severity and extent in Southern California. While browned grassland is a common sight during the dry season, this study has shown that there is a pronounced shift in the timing of senescence, due to changing climate conditions favoring milder winter temperatures and increased precipitation variability. Vegetation may be limited in its ability to adapt to these shifts, as drought periods become more frequent.
Mikael Gillefalk, Dörthe Tetzlaff, Reinhard Hinkelmann, Lena-Marie Kuhlemann, Aaron Smith, Fred Meier, Marco P. Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021, https://doi.org/10.5194/hess-25-3635-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model to quantify water flux–storage–age interactions for three urban vegetation types: trees, shrub and grass. The model results showed that evapotranspiration increased in the order shrub < grass < trees during one growing season. Additionally, we could show how
infiltration hotspotscreated by runoff from sealed onto vegetated surfaces can enhance both evapotranspiration and groundwater recharge.
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
Yanlan Liu, Nataniel M. Holtzman, and Alexandra G. Konings
Hydrol. Earth Syst. Sci., 25, 2399–2417, https://doi.org/10.5194/hess-25-2399-2021, https://doi.org/10.5194/hess-25-2399-2021, 2021
Short summary
Short summary
The flow of water through plants varies with species-specific traits. To determine how they vary across the world, we mapped the traits that best allowed a model to match microwave satellite data. We also defined average values across a few clusters of trait behavior. These form a tractable solution for use in large-scale models. Transpiration estimates using these clusters were more accurate than if using plant functional types. We expect our maps to improve transpiration forecasts.
Aaron Smith, Doerthe Tetzlaff, Lukas Kleine, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 2239–2259, https://doi.org/10.5194/hess-25-2239-2021, https://doi.org/10.5194/hess-25-2239-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model on a mixed land use catchment in northeastern Germany to quantify water flux–storage–age interactions at four model grid resolutions. The model's ability to reproduce spatio-temporal flux–storage–age interactions decreases with increasing model grid sizes. Similarly, larger model grids showed vegetation-influenced changes in blue and green water partitioning. Simulations reveal the value of measured soil and stream isotopes for model calibration.
Yiping Hou, Mingfang Zhang, Xiaohua Wei, Shirong Liu, Qiang Li, Tijiu Cai, Wenfei Liu, Runqi Zhao, and Xiangzhuo Liu
Hydrol. Earth Syst. Sci., 25, 1447–1466, https://doi.org/10.5194/hess-25-1447-2021, https://doi.org/10.5194/hess-25-1447-2021, 2021
Short summary
Short summary
Ecohydrological sensitivity, defined as the response intensity of streamflow to vegetation change, indicates the hydrological sensitivity to vegetation change. The study revealed seasonal ecohydrological sensitivities were highly variable, depending on climate condition and watershed attributes. Dry season ecohydrological sensitivity was mostly determined by topography, soil and vegetation, while wet season ecohydrological sensitivity was mainly controlled by soil, landscape and vegetation.
Xiangyu Luan and Giulia Vico
Hydrol. Earth Syst. Sci., 25, 1411–1423, https://doi.org/10.5194/hess-25-1411-2021, https://doi.org/10.5194/hess-25-1411-2021, 2021
Short summary
Short summary
Crop yield is reduced by heat and water stress, particularly when they co-occur. We quantify the joint effects of (unpredictable) air temperature and soil water availability on crop heat stress via a mechanistic model. Larger but more infrequent precipitation increased crop canopy temperatures. Keeping crops well watered via irrigation could reduce canopy temperature but not enough to always exclude heat damage. Thus, irrigation is only a partial solution to adapt to warmer and drier climates.
Songyan Yu, Hong Xuan Do, Albert I. J. M. van Dijk, Nick R. Bond, Peirong Lin, and Mark J. Kennard
Hydrol. Earth Syst. Sci., 24, 5279–5295, https://doi.org/10.5194/hess-24-5279-2020, https://doi.org/10.5194/hess-24-5279-2020, 2020
Short summary
Short summary
There is a growing interest globally in the spatial distribution and temporal dynamics of intermittently flowing streams and rivers. We developed an approach to quantify catchment-wide flow intermittency over long time frames. Modelled patterns of flow intermittency in eastern Australia revealed highly dynamic behaviour in space and time. The developed approach is transferable to other parts of the world and can inform hydro-ecological understanding and management of intermittent streams.
Natasha MacBean, Russell L. Scott, Joel A. Biederman, Catherine Ottlé, Nicolas Vuichard, Agnès Ducharne, Thomas Kolb, Sabina Dore, Marcy Litvak, and David J. P. Moore
Hydrol. Earth Syst. Sci., 24, 5203–5230, https://doi.org/10.5194/hess-24-5203-2020, https://doi.org/10.5194/hess-24-5203-2020, 2020
Yusen Yuan, Taisheng Du, Honglang Wang, and Lixin Wang
Hydrol. Earth Syst. Sci., 24, 4491–4501, https://doi.org/10.5194/hess-24-4491-2020, https://doi.org/10.5194/hess-24-4491-2020, 2020
Short summary
Short summary
The isotopic composition of ambient water vapor is an important source of atmospheric water vapor and has not been able to be estimated to date using the Keeling plot approach. Here we proposed two new methods to estimate the isotopic composition of ambient water vapor: one using the intersection point method and another relying on the intermediate value theorem.
Valentin Couvreur, Youri Rothfuss, Félicien Meunier, Thierry Bariac, Philippe Biron, Jean-Louis Durand, Patricia Richard, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 24, 3057–3075, https://doi.org/10.5194/hess-24-3057-2020, https://doi.org/10.5194/hess-24-3057-2020, 2020
Short summary
Short summary
Isotopic labeling of soil water is a broadly used tool for tracing the origin of water extracted by plants and computing root water uptake (RWU) profiles with multisource mixing models. In this study, we show how a method such as this may misconstrue time series of xylem water isotopic composition as the temporal dynamics of RWU by simulating data collected during a tall fescue rhizotron experiment with an isotope-enabled physical soil–root model accounting for variability in root traits.
Thibault Hallouin, Michael Bruen, and Fiachra E. O'Loughlin
Hydrol. Earth Syst. Sci., 24, 1031–1054, https://doi.org/10.5194/hess-24-1031-2020, https://doi.org/10.5194/hess-24-1031-2020, 2020
Short summary
Short summary
A hydrological model was used to compare different parameterisation strategies in view of predicting ecologically relevant streamflow indices in 33 Irish catchments. Compared for 14 different periods, a strategy fitting simulated and observed streamflow indices yielded better performance than fitting simulated and observed streamflow, but it also yielded a less consistent ensemble of parameter sets, suggesting that these indices may not be hydrologically relevant for model parameterisation.
Robert N. Armstrong, John W. Pomeroy, and Lawrence W. Martz
Hydrol. Earth Syst. Sci., 23, 4891–4907, https://doi.org/10.5194/hess-23-4891-2019, https://doi.org/10.5194/hess-23-4891-2019, 2019
Short summary
Short summary
Digital and thermal images taken near midday were used to scale daily point observations of key factors driving actual-evaporation estimates across a complex Canadian Prairie landscape. Point estimates of actual evaporation agreed well with observed values via eddy covariance. Impacts of spatial variations on areal estimates were minor, and no covariance was found between model parameters driving the energy term. The methods can be applied further to improve land surface parameterisations.
Zhongkai Li, Hu Liu, Wenzhi Zhao, Qiyue Yang, Rong Yang, and Jintao Liu
Hydrol. Earth Syst. Sci., 23, 4685–4706, https://doi.org/10.5194/hess-23-4685-2019, https://doi.org/10.5194/hess-23-4685-2019, 2019
Short summary
Short summary
A database of soil moisture measurements from the middle Heihe River basin of China was used to test the potential of a soil moisture database in estimating the soil water balance components (SWBCs). We determined SWBCs using a method that combined the soil water balance method and the inverse Richards equation. This work confirmed that relatively reasonable estimations of the SWBCs in coarse-textured sandy soils can be derived using soil moisture measurements.
Inês Gomes Marques, João Nascimento, Rita M. Cardoso, Filipe Miguéns, Maria Teresa Condesso de Melo, Pedro M. M. Soares, Célia M. Gouveia, and Cathy Kurz Besson
Hydrol. Earth Syst. Sci., 23, 3525–3552, https://doi.org/10.5194/hess-23-3525-2019, https://doi.org/10.5194/hess-23-3525-2019, 2019
Short summary
Short summary
Mediterranean cork woodlands are very particular agroforestry systems present in a confined area of the Mediterranean Basin. They are of great importance due to their high socioeconomic value; however, a decrease in water availability has put this system in danger. In this paper we build a model that explains this system's tree-species distribution in southern Portugal from environmental variables. This could help predict their future distribution under changing climatic conditions.
Samuli Launiainen, Mingfu Guan, Aura Salmivaara, and Antti-Jussi Kieloaho
Hydrol. Earth Syst. Sci., 23, 3457–3480, https://doi.org/10.5194/hess-23-3457-2019, https://doi.org/10.5194/hess-23-3457-2019, 2019
Short summary
Short summary
Boreal forest evapotranspiration and water cycle is modeled at stand and catchment scale using physiological and physical principles, open GIS data and daily weather data. The approach can predict daily evapotranspiration well across Nordic coniferous-dominated stands and successfully reproduces daily streamflow and annual evapotranspiration across boreal headwater catchments in Finland. The model is modular and simple and designed for practical applications over large areas using open data.
Regina T. Hirl, Hans Schnyder, Ulrike Ostler, Rudi Schäufele, Inga Schleip, Sylvia H. Vetter, Karl Auerswald, Juan C. Baca Cabrera, Lisa Wingate, Margaret M. Barbour, and Jérôme Ogée
Hydrol. Earth Syst. Sci., 23, 2581–2600, https://doi.org/10.5194/hess-23-2581-2019, https://doi.org/10.5194/hess-23-2581-2019, 2019
Short summary
Short summary
We evaluated the system-scale understanding of the propagation of the oxygen isotope signal (δ18O) of rain through soil and xylem to leaf water in a temperate drought-prone grassland. Biweekly δ18O observations of the water pools made during seven growing seasons were accurately reproduced by the 18O-enabled process-based model MuSICA. While water uptake occurred from shallow soil depths throughout dry and wet periods, leaf water 18O enrichment responded to both soil and atmospheric moisture.
Christoph Schürz, Brigitta Hollosi, Christoph Matulla, Alexander Pressl, Thomas Ertl, Karsten Schulz, and Bano Mehdi
Hydrol. Earth Syst. Sci., 23, 1211–1244, https://doi.org/10.5194/hess-23-1211-2019, https://doi.org/10.5194/hess-23-1211-2019, 2019
Short summary
Short summary
For two Austrian catchments we simulated discharge and nitrate-nitrogen (NO3-N) considering future changes of climate, land use, and point source emissions together with the impact of different setups and parametrizations of the implemented eco-hydrological model. In a comprehensive analysis we identified the dominant sources of uncertainty for the simulation of discharge and NO3-N and further examined how specific properties of the model inputs control the future simulation results.
Yu-Ting Shih, Pei-Hao Chen, Li-Chin Lee, Chien-Sen Liao, Shih-Hao Jien, Fuh-Kwo Shiah, Tsung-Yu Lee, Thomas Hein, Franz Zehetner, Chung-Te Chang, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 22, 6579–6590, https://doi.org/10.5194/hess-22-6579-2018, https://doi.org/10.5194/hess-22-6579-2018, 2018
Short summary
Short summary
DOC and DIC export in Taiwan shows that the annual DOC and DIC fluxes were 2.7–4.8 and 48.4–54.3 ton C km2 yr1, respectively, which were approximately 2 and 20 times higher than the global means of 1.4 and 2.6 ton C km2 yr1, respectively.
Zun Yin, Catherine Ottlé, Philippe Ciais, Matthieu Guimberteau, Xuhui Wang, Dan Zhu, Fabienne Maignan, Shushi Peng, Shilong Piao, Jan Polcher, Feng Zhou, Hyungjun Kim, and other China-Trend-Stream project members
Hydrol. Earth Syst. Sci., 22, 5463–5484, https://doi.org/10.5194/hess-22-5463-2018, https://doi.org/10.5194/hess-22-5463-2018, 2018
Short summary
Short summary
Simulations in China were performed in ORCHIDEE driven by different forcing datasets: GSWP3, PGF, CRU-NCEP, and WFDEI. Simulated soil moisture was compared to several datasets to evaluate the ability of ORCHIDEE in reproducing soil moisture dynamics. Results showed that ORCHIDEE soil moisture coincided well with other datasets in wet areas and in non-irrigated areas. It suggested that the ORCHIDEE-MICT was suitable for further hydrological studies in China.
Gordon C. O'Brien, Chris Dickens, Eleanor Hines, Victor Wepener, Retha Stassen, Leo Quayle, Kelly Fouchy, James MacKenzie, P. Mark Graham, and Wayne G. Landis
Hydrol. Earth Syst. Sci., 22, 957–975, https://doi.org/10.5194/hess-22-957-2018, https://doi.org/10.5194/hess-22-957-2018, 2018
Short summary
Short summary
In global water resource allocation, robust tools are required to establish environmental flows. In addition, tools should characterize past, present and future consequences of altered flows and non-flow variables to social and ecological management objectives. PROBFLO is a risk assessment method designed to meet best practice principles for regional-scale holistic E-flow assessments. The approach has been developed in Africa and applied across the continent.
Katrina E. Bennett, Theodore J. Bohn, Kurt Solander, Nathan G. McDowell, Chonggang Xu, Enrique Vivoni, and Richard S. Middleton
Hydrol. Earth Syst. Sci., 22, 709–725, https://doi.org/10.5194/hess-22-709-2018, https://doi.org/10.5194/hess-22-709-2018, 2018
Short summary
Short summary
We applied the Variable Infiltration Capacity hydrologic model to examine scenarios of change under climate and landscape disturbances in the San Juan River basin, a major sub-watershed of the Colorado River basin. Climate change coupled with landscape disturbance leads to reduced streamflow in the San Juan River basin. Disturbances are expected to be widespread in this region. Therefore, accounting for these changes within the context of climate change is imperative for water resource planning.
Fernando Jaramillo, Neil Cory, Berit Arheimer, Hjalmar Laudon, Ype van der Velde, Thomas B. Hasper, Claudia Teutschbein, and Johan Uddling
Hydrol. Earth Syst. Sci., 22, 567–580, https://doi.org/10.5194/hess-22-567-2018, https://doi.org/10.5194/hess-22-567-2018, 2018
Short summary
Short summary
Which is the dominant effect on evapotranspiration in northern forests, an increase by recent forests expansion or a decrease by the water use response due to increasing CO2 concentrations? We determined the dominant effect during the period 1961–2012 in 65 Swedish basins. We used the Budyko framework to study the hydroclimatic movements in Budyko space. Our findings suggest that forest expansion is the dominant driver of long-term and large-scale evapotranspiration changes.
Jie Zhu, Ge Sun, Wenhong Li, Yu Zhang, Guofang Miao, Asko Noormets, Steve G. McNulty, John S. King, Mukesh Kumar, and Xuan Wang
Hydrol. Earth Syst. Sci., 21, 6289–6305, https://doi.org/10.5194/hess-21-6289-2017, https://doi.org/10.5194/hess-21-6289-2017, 2017
Short summary
Short summary
Forested wetlands provide myriad ecosystem services threatened by climate change. This study develops empirical hydrologic models by synthesizing hydrometeorological data across the southeastern US. We used global climate projections to model hydrological changes for five wetlands. We found all wetlands are predicted to become drier by the end of this century. This study suggests that climate change may substantially affect wetland biogeochemical cycles and other functions in the future.
Guiomar Ruiz-Pérez, Julian Koch, Salvatore Manfreda, Kelly Caylor, and Félix Francés
Hydrol. Earth Syst. Sci., 21, 6235–6251, https://doi.org/10.5194/hess-21-6235-2017, https://doi.org/10.5194/hess-21-6235-2017, 2017
Short summary
Short summary
Plants are shaping the landscape and controlling the hydrological cycle, particularly in arid and semi-arid ecosystems. Remote sensing data appears as an appealing source of information for vegetation monitoring, in particular in areas with a limited amount of available field data. Here, we present an example of how remote sensing data can be exploited in a data-scarce basin. We propose a mathematical methodology that can be used as a springboard for future applications.
Cited articles
Allaire, S. E., Roulier, S., and Cessna, A. J.: Quantifying preferential flow
in soils: A review of different techniques, J. Hydrol., 378, 179–204,
https://doi.org/10.1016/j.jhydrol.2009.08.013, 2009.
Anthoni, P. M., Knohl, A., Rebmann, C., Freibauer, A., Mund, M., Ziegler, W.,
Kolle, O., and Schulze, E.-D.: Forest and agricultural land-use-dependent
CO2 exchange in Thuringia, Germany, Glob. Change Biol., 10,
2005–2019, https://doi.org/10.1111/j.1365-2486.2004.00863.x, 2004.
Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and
Laitat, E.: Long term carbon dioxide exchange above a mixed forest in the
Belgian Ardennes, Agr. Forest Meteorol., 108, 293–315,
https://doi.org/10.1016/S0168-1923(01)00244-1, 2001.
Bai, Y.,
Zhang, J.,
Zhang, S.,
Koju, U. A.,
Yao, F., and
Igbawua, T.: Using precipitation, vertical root distribution, and satellite-retrieved vegetation information
to parameterize water stress in a Penman-Monteith approach to evapotranspiration modeling under Mediterranean climate, J. Adv. Model. Earth Sy., 9, 168–192,
https://doi.org/10.1002/2016MS000702, 2017.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A.,
Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W.,
Paw, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala,
T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and
Spatial Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and
Energy Flux Densities, B. Am. Meteorol. Soc., 82, 2415–2434,
https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
Bartholomeus, R. P., Stagge, J. H., Tallaksen, L. M., and Witte, J. P. M.:
Sensitivity of potential evaporation estimates to 100 years of climate
variability, Hydrol. Earth Syst. Sci., 19, 997–1014,
https://doi.org/10.5194/hess-19-997-2015, 2015.
Beachkofski, B. and Grandhi, R.: Improved Distributed Hypercube Sampling,
American Institute of Aeronautics and Astronautics,
https://doi.org/10.2514/6.2002-1274, 2002.
Bergström, S.: The HBV model – its structure and applications, SMHI
Reports Hydrology, SMHI, Norrköping, Sweden, 1992.
Beven, K.: Prophecy, reality and uncertainty in distributed hydrological
modelling, Adv. Water Resour., 16, 41–51, https://doi.org/10.1016/0309-1708(93)90028-E,
1993.
Blöschl, G. and Sivapalan, M.: Scale issues in hydrological modelling: A
review, Hydrol. Process., 9, 251–290, https://doi.org/10.1002/hyp.3360090305, 1995.
Bolte, A. and Villanueva, I.: Interspecific competition impacts on the
morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.), Eur. J.
For. Res., 125, 15–26, https://doi.org/10.1007/s10342-005-0075-5, 2006.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Burton, A. J., Pregitzer, K. S., Ruess, R. W., Hendrick, R. L., and Allen, M.
F.: Root respiration in North American forests: effects of nitrogen
concentration and temperature across biomes, Oecologia, 131, 559–568,
https://doi.org/10.1007/s00442-002-0931-7, 2002.
Cescatti, A. and Marcolla, B.: Drag coefficient and turbulence intensity in
conifer canopies, Agr. Forest Meteorol., 121, 197–206,
https://doi.org/10.1016/j.agrformet.2003.08.028, 2004.
Chaney, N. W., Herman, J. D., Ek, M. B., and Wood, E. F.: Deriving global
parameter estimates for the Noah land surface model using FLUXNET and machine
learning: Improving Noah LSM Parameters, J. Geophys. Res.-Atmos., 121,
13218–13235, https://doi.org/10.1002/2016JD024821, 2016.
Chaves, M. M.: How Plants Cope with Water Stress in the Field? Photosynthesis
and Growth, Ann. Bot.-London, 89, 907–916, https://doi.org/10.1093/aob/mcf105, 2002.
Chiti, T., Papale, D., Smith, P., Dalmonech, D., Matteucci, G., Yeluripati,
J., Rodeghiero, M., and Valentini, R.: Predicting changes in soil organic
carbon in mediterranean and alpine forests during the Kyoto Protocol
commitment periods using the CENTURY model: Changes in SOC in mediterranean
and alpine forests, Soil Use Manage., 26, 475–484,
https://doi.org/10.1111/j.1475-2743.2010.00300.x, 2010.
Coenders-Gerrits, A. M. J., Hopp, L., Savenije, H. H. G., and Pfister, L.:
The effect of spatial throughfall patterns on soil moisture patterns at the
hillslope scale, Hydrol. Earth Syst. Sci., 17, 1749–1763,
https://doi.org/10.5194/hess-17-1749-2013, 2013.
Collins, D. B. G. and Bras, R. L.: Plant rooting strategies in water-limited
ecosystems, Water Resour. Res., 43, W06407, https://doi.org/10.1029/2006WR005541, 2007.
de Boer-Euser, T., McMillan, H. K., Hrachowitz, M., Winsemius, H. C., and
Savenije, H. H. G.: Influence of soil and climate on root zone storage
capacity, Water Resour. Res., 52, 2009–2024, https://doi.org/10.1002/2015WR018115, 2016.
Deckmyn, G., Laureysens, I., Garcia, J., Muys, B., and Ceulemans, R.: Poplar
growth and yield in short rotation coppice: model simulations using the
process model SECRETS, Biomass and Bioenergy, 26, 221–227,
https://doi.org/10.1016/S0961-9534(03)00121-1, 2004.
Donohue, R. J., Roderick, M. L., and McVicar, T. R.: Roots, storms and soil
pores: Incorporating key ecohydrological processes into Budyko's hydrological
model, J. Hydrol., 436–437, 35–50, https://doi.org/10.1016/j.jhydrol.2012.02.033, 2012.
Eagleson, P. S.: Ecological optimality in water-limited natural
soil-vegetation systems: 1. Theory and hypothesis, Water Resour. Res., 18,
325–340, https://doi.org/10.1029/WR018i002p00325, 1982.
Etzold, S., Ruehr, N. K., Zweifel, R., Dobbertin, M., Zingg, A., Pluess, P.,
Häsler, R., Eugster, W., and Buchmann, N.: The Carbon Balance of Two
Contrasting Mountain Forest Ecosystems in Switzerland: Similar Annual Trends,
but Seasonal Differences, Ecosystems, 14, 1289–1309,
https://doi.org/10.1007/s10021-011-9481-3, 2011.
Federer, C. A., Vörösmarty, C., and Fekete, B.: Sensitivity of Annual
Evaporation to Soil and Root Properties in Two Models of Contrasting
Complexity, J. Hydrometeorol., 4, 1276–1290,
https://doi.org/10.1175/1525-7541(2003)004<1276:SOAETS>2.0.CO;2, 2003.
Gao, H., Hrachowitz, M., Schymanski, S. J., Fenicia, F., Sriwongsitanon, N.,
and Savenije, H. H. G.: Climate controls how ecosystems size the root zone
storage capacity at catchment scale: Root zone storage capacity in
catchments, Geophys. Res. Lett., 41, 7916–7923, https://doi.org/10.1002/2014GL061668,
2014.
Gentine, P., D'Odorico, P., Lintner, B. R., Sivandran, G., and Salvucci, G.:
Interdependence of climate, soil, and vegetation as constrained by the Budyko
curve, Geophys. Res. Lett., 39, L19404, https://doi.org/10.1029/2012GL053492, 2012.
Genuer, R., Poggi, J.-M., and Tuleau-Malot, C.: Variable selection using
random forests, Pattern Recogn. Lett., 31, 2225–2236,
https://doi.org/10.1016/j.patrec.2010.03.014, 2010.
Giorgi, F. and Lionello, P.: Climate change projections fort he Mediterranean
region, Global Planet. Change, 63, 90–104,
https://doi.org/10.1016/j.gloplacha.2007.09.005, 2008.
Glenz, C.: Process-based, Spatially-explicit Modelling of Riparian Forest
Dynamics in Central Europe – Tool for Decision-making in River Restoration,
EPFL, Lausanne, 2005.
González de Andrés, E., Seely, B., Blanco, J. A., Imbert, J. B., Lo,
Y.-H., and Castillo, F. J.: Increased complementarity in water-limited
environments in Scots pine and European beech mixtures under climate change:
Climate change increases complementarity in pine/beech mixedwoods,
Ecohydrology, 10, e1810, https://doi.org/10.1002/eco.1810, 2017.
Granier, A., Bréda, N., Biron, P., and Villette, S.: A lumped water
balance model to evaluate duration and intensity of drought constraints in
forest stands, Ecol. Model., 116, 269–283,
https://doi.org/10.1016/S0304-3800(98)00205-1, 1999.
Granier, A., Reichstein, M., Bréda, N., Janssens, I. A., Falge, E.,
Ciais, P., Grünwald, T., Aubinet, M., Berbigier, P., Bernhofer, C.,
Buchmann, N., Facini, O., Grassi, G., Heinesch, B., Ilvesniemi, H., Keronen,
P., Knohl, A., Köstner, B., Lagergren, F., Lindroth, A., Longdoz, B.,
Loustau, D., Mateus, J., Montagnani, L., Nys, C., Moors, E., Papale, D.,
Peiffer, M., Pilegaard, K., Pita, G., Pumpanen, J., Rambal, S., Rebmann, C.,
Rodrigues, A., Seufert, G., Tenhunen, J., Vesala, T., and Wang, Q.: Evidence
for soil water control on carbon and water dynamics in European forests
during the extremely dry year: 2003, Agr. Forest Meteorol., 143, 123–145,
https://doi.org/10.1016/j.agrformet.2006.12.004, 2007.
Grünwald, T. and Bernhofer, C.: A decade of carbon, water and energy flux
measurements of an old spruce forest at the Anchor Station Tharandt, Tellus
B, 59, 387–396, https://doi.org/10.1111/j.1600-0889.2007.00259.x, 2007.
Guan, H. and Wilson, J. L.: A hybrid dual-source model for potential
evaporation and transpiration partitioning, J. Hydrol., 377, 405–416,
https://doi.org/10.1016/j.jhydrol.2009.08.037, 2009.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Guswa, A. J.: The influence of climate on root depth: A carbon cost-benefit
analysis, Water Resour. Res., 44, W02427, https://doi.org/10.1029/2007WR006384, 2008.
Guswa, A. J.: Effect of plant uptake strategy on the water-optimal root
depth, Water Resour. Res., 46, W09601, https://doi.org/10.1029/2010WR009122, 2010.
Hacke, U. G., Sperry, J. S., Ewers, B. E., Ellsworth, D. S., Schäfer, K.
V. R., and Oren, R.: Influence of soil porosity on water use in Pinus taeda,
Oecologia, 124, 495–505, https://doi.org/10.1007/PL00008875, 2000.
Harper, E. B., Stella, J. C., and Fremier, A. K.: Global sensitivity analysis
for complex ecological models: a case study of riparian cottonwood population
dynamics, Ecol. Appl., 21, 1225–1240, https://doi.org/10.1890/10-0506.1, 2011.
Hickler, T., Prentice, I. C., Smith, B., Sykes, M. T., and Zaehle, S.:
Implementing plant hydraulic architecture within the LPJ Dynamic Global
Vegetation Model, Global Ecol. Biogeogr., 15, 567–577,
https://doi.org/10.1111/j.1466-8238.2006.00254.x, 2006.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Bøssing Christensen, O.,
Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G.,
Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A.,
Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski,
S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S.,
Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M.,
Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R.,
Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution
climate change projections for European impact research, Reg. Environ.
Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Jarvis, P. G.: The interpretation of the variations in leaf water potential
and stomatal conductance found in canopies in the field, Philos. T. Roy. Soc.
B, 273, 593–610, 1976.
Kalliokoski, T., Pennanen, T., Nygren, P., Sievänen, R., and Helmisaari,
H.-S.: Belowground interspecific competition in mixed boreal forests: fine
root and ectomycorrhiza characteristics along stand developmental stage and
soil fertility gradients, Plant Soil, 330, 73–89,
https://doi.org/10.1007/s11104-009-0177-9, 2010.
Keller, T.: Beitrag zur Kenntnis der Wurzelatmung von Koniferenjungpflanzen,
in: Proc. from XIV IUFRO-Congress, IUFRO, Munich, 329–340, 1967.
Kleidon, A. and Heimann, M.: A method of determining rooting depth from a
terrestrial biosphere model and its impacts on the global water and carbon
cycle, Glob. Change Biol., 4, 275–286, https://doi.org/10.1046/j.1365-2486.1998.00152.x,
1998.
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube
basin under an ensemble of climate change scenarios, J. Hydrol., 424–425,
264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012.
Köppen, W.: The thermal zones of the Earth according to the duration of
hot, moderate and cold periods and to the impact of heat on the organic
world, Meteorol. Z., 20, 351–360, https://doi.org/10.1127/0941-2948/2011/105, 2011.
Kramer, K.: Phenology and growth of European trees in relation to climate
change, Landbouw Universiteit, Wageningen, the Netherlands, 1996.
Kramer, K., Leinonen, I., Bartelink, H. H., Berbigier, P., Borghetti, M.,
Bernhofer, C., Cienciala, E., Dolman, A. J., Froer, O., Gracia, C. A.,
Granier, A., Grunwald, T., Hari, P., Jans, W., Kellomaki, S., Loustau, D.,
Magnani, F., Markkanen, T., Matteucci, G., Mohren, G. M. J., Moors, E.,
Nissinen, A., Peltola, H., Sabate, S., Sanchez, A., Sontag, M., Valentini,
R., and Vesala, T.: Evaluation of six process-based forest growth models
using eddy-covariance measurements of CO2 and H2O fluxes at
six forest sites in Europe, Glob. Change Biol., 8, 213–230,
https://doi.org/10.1046/j.1365-2486.2002.00471.x, 2002.
Kutschera, L. and Lichtenegger, E.: Wurzelatlas mitteleuropäischer
Waldbäume und Sträucher, 2nd Edn., Wurzelatlas-Reihe, Stocker, Graz,
2002.
Larcher, W.: Ökophysiologie der Pflanzen: Leben, Leistung und
Streßbewältigung der Pflanzen in ihrer Umwelt?, 77 Tabellen, 8 Boxen,
6th Edn., UTB für Wissenschaft, Ulmer, Stuttgart, 2001.
Liaw, A. and Wiener, M.: Classification and Regression by randomForest, R
News, 2, 18–22, 2002.
Lindroth, A., Lagergren, F., Aurela, M., Bjarnadottir, B., Christensen, T.,
Dellwik, E., Grelle, A., Ibrom, A., Johansson, T., Lankreijer, H.,
Launiainen, S., Laurila, T., Mölder, M., Nikinmaa, E., Pilegaard, K.,
Sigurdsson, B. D., and Vesala, T.: Leaf area index is the principal scaling
parameter for both gross photosynthesis and ecosystem respiration of Northern
deciduous and coniferous forests, Tellus B, 60, 129–142,
https://doi.org/10.1111/j.1600-0889.2007.00330.x, 2008.
Loustau, D., Bosc, A., Colin, A., Ogee, J., Davi, H., Francois, C., Dufrene,
E., Deque, M., Cloppet, E., Arrouays, D., Le Bas, C., Saby, N., Pignard, G.,
Hamza, N., Granier, A., Breda, N., Ciais, P., Viovy, N., and Delage, F.:
Modeling climate change effects on the potential production of French plains
forests at the sub-regional level, Tree Physiol., 25, 813–823,
https://doi.org/10.1093/treephys/25.7.813, 2005.
Lu, H., Liu, T., Yang, Y., and Yao, D.: A Hybrid Dual-Source Model of
Estimating Evapotranspiration over Different Ecosystems and Implications for
Satellite-Based Approaches, Remote Sens., 6, 8359–8386,
https://doi.org/10.3390/rs6098359, 2014.
Mauder, M., Cuntz, M., Drüe, C., Graf, A., Rebmann, C., Schmid, H. P.,
Schmidt, M., and Steinbrecher, R.: A strategy for quality and uncertainty
assessment of long-term eddy-covariance measurements, Agr. Forest Meteorol.,
169, 122–135, https://doi.org/10.1016/j.agrformet.2012.09.006, 2013.
Menzel, L.: Modellierung der Evapotranspiration im System
Boden-Pflanze-Atmosphäre, Zürcher Geographische Schriften, ETH
Zurich, 1997.
Miller, G. R., Baldocchi, D. D., Law, B. E., and Meyers, T.: An analysis of
soil moisture dynamics using multi-year data from a network of
micrometeorological observation sites, Adv. Water Resour., 30, 1065–1081,
https://doi.org/10.1016/j.advwatres.2006.10.002, 2007.
Milly, P. C. D.: Climate, soil water storage, and the average annual water
balance, Water Resour. Res., 30, 2143–2156, https://doi.org/10.1029/94WR00586, 1994.
Milly, P. C. D.: An analytic solution of the stochastic storage problem
applicable to soil water, Water Resour. Res., 29, 3755–3758,
https://doi.org/10.1029/93WR01934, 1993.
Montanari, A., Young, G., Savenije, H. H. G., Hughes, D., Wagener, T., Ren,
L. L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl,
G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer,
B., Boegh, E., Schymanski, S. J., Di Baldassarre, G., Yu, B., Hubert, P.,
Huang, Y., Schumann, A., Post, D. A., Srinivasan, V., Harman, C., Thompson,
S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and
Belyaev, V.: “Panta Rhei–Everything Flows”: Change in hydrology and
society – The IAHS Scientific Decade 2013–2022, Hydrolog. Sci. J., 58,
1256–1275, https://doi.org/10.1080/02626667.2013.809088, 2013.
Morillas, L., Leuning, R., Villagarcía, L., García, M.,
Serrano-Ortiz, P., and Domingo, F.: Improving evapotranspiration estimates in
Mediterranean drylands: The role of soil evaporation: Evapotranspiration
Estimation in Mediterranean Dry Lands, Water Resour. Res., 49, 6572–6586,
https://doi.org/10.1002/wrcr.20468, 2013.
Nijzink, R., Hutton, C., Pechlivanidis, I., Capell, R., Arheimer, B., Freer,
J., Han, D., Wagener, T., McGuire, K., Savenije, H., and Hrachowitz, M.: The
evolution of root-zone moisture capacities after deforestation: a step
towards hydrological predictions under change?, Hydrol. Earth Syst. Sci., 20,
4775–4799, https://doi.org/10.5194/hess-20-4775-2016, 2016.
Papale, D., Migliavacca, M., Cremonese, E., Cescatti, A., Alberti, G.,
Balzarolo, M., Belelli Marchesini, L., Canfora, E., Casa, R., Duce, P.,
Facini, O., Galvagno, M., Genesio, L., Gianelle, D., Magliulo, V., Matteucci,
G., Montagnani, L., Petrella, F., Pitacco, A., Seufert, G., Spano, D.,
Stefani, P., Vaccari, F. P., and Valentini, R.: Carbon, Water and Energy
Fluxes of Terrestrial Ecosystems in Italy, in: The Greenhouse Gas Balance of
Italy, edited by: Valentini, R. and Miglietta, F., Springer Berlin
Heidelberg, Berlin, Heidelberg, 11–45, 2015.
Penman, H. L.: Natural evaporation from open water, bare soil and grass, P.
Roy. Soc. Lond. A, 193, 120–146, 1948.
Polster, H.: Die physiologischen Grundlagen der Stofferzeugung im Walde.
Untersuchungen über Assimilation, Respiration und Transpiration unserer
Hauptholzarten, Bayerischer Landwirtschaftsverlag GmbH, Munich, 1950.
Porporato, A., Daly, E., and Rodriguez-Iturbe, I.: Soil Water Balance and
Ecosystem Response to Climate Change, Am. Nat., 164, 625–632,
https://doi.org/10.2307/3473173, 2004.
Poyatos, R., Villagarcía, L., Domingo, F., Piñol, J., and Llorens,
P.: Modelling evapotranspiration in a Scots pine stand under Mediterranean
mountain climate using the GLUE methodology, Agr. Forest Meteorol., 146,
13–28, https://doi.org/10.1016/j.agrformet.2007.05.003, 2007.
re3data.org: FLUXNET, https://doi.org/10.17616/R36K9X, 2018.
Reyer, C. P. O., Leuzinger, S., Rammig, A., Wolf, A., Bartholomeus, R. P.,
Bonfante, A., de Lorenzi, F., Dury, M., Gloning, P., Abou Jaoudé, R.,
Klein, T., Kuster, T. M., Martins, M., Niedrist, G., Riccardi, M., Wohlfahrt,
G., de Angelis, P., de Dato, G., François, L., Menzel, A., and Pereira,
M.: A plant's perspective of extremes: terrestrial plant responses to
changing climatic variability, Glob. Change Biol., 19, 75–89,
https://doi.org/10.1111/gcb.12023, 2013.
Richardson, A. D., Aubinet, M., Barr, A. G., Hollinger, D. Y., Ibrom, A.,
Lasslop, G., and Reichstein, M.: Uncertainty Quantification, in: Eddy
Covariance, edited by: Aubinet, M., Vesala, T., and Papale, D., Springer
Netherlands, Dordrecht, 173–209, 2012.
Rodriguez-Iturbe, I., Porporato, A., Ridolfi, L., Isham, V., and Coxi, D. R.:
Probabilistic modelling of water balance at a point: the role of climate,
soil and vegetation, P. R. Soc. A, 455, 3789–3805,
https://doi.org/10.1098/rspa.1999.0477, 1999.
Savenije, H. H. G. and Hrachowitz, M.: HESS Opinions “Catchments as
meta-organisms – a new blueprint for hydrological modelling”, Hydrol. Earth
Syst. Sci., 21, 1107–1116, https://doi.org/10.5194/hess-21-1107-2017, 2017.
Scartazza, A., Moscatello, S., Matteucci, G., Battistelli, A., and Brugnoli,
E.: Seasonal and inter-annual dynamics of growth, non-structural
carbohydrates and C stable isotopes in a Mediterranean beech forest, Tree
Physiol., 33, 730–742, https://doi.org/10.1093/treephys/tpt045, 2013.
Schenk, H. J. and Jackson, R. B.: Rooting depths, lateral root spreads and
below-ground/above-ground allometries of plants in water-limited ecosystems,
J. Ecol., 90, 480–494, https://doi.org/10.1046/j.1365-2745.2002.00682.x, 2002.
Schymanski, S. J., Sivapalan, M., Roderick, M. L., Beringer, J., and Hutley,
L. B.: An optimality-based model of the coupled soil moisture and root
dynamics, Hydrol. Earth Syst. Sci., 12, 913–932,
https://doi.org/10.5194/hess-12-913-2008, 2008.
Schymanski, S. J., Sivapalan, M., Roderick, M. L., Hutley, L. B., and
Beringer, J.: An optimality-based model of the dynamic feedbacks between
natural vegetation and the water balance, Water Resour. Res., 45, W01412,
https://doi.org/10.1029/2008WR006841, 2009.
Smettem, K. and Callow, N.: Impact of Forest Cover and Aridity on the
Interplay between Effective Rooting Depth and Annual Runoff in South-West
Western Australia, Water, 6, 2539–2551, https://doi.org/10.3390/w6092539, 2014.
Speich, M. J. R., Zappa, M., and Lischke, H.: Sensitivity of forest water
balance and physiological drought predictions to soil and vegetation
parameters – A model-based study, Environ. Modell. Softw., 102, 213–232,
https://doi.org/10.1016/j.envsoft.2018.01.016, 2018.
Sprenger, M., Volkmann, T. H. M., Blume, T., and Weiler, M.: Estimating flow
and transport parameters in the unsaturated zone with pore water stable
isotopes, Hydrol. Earth Syst. Sci., 19, 2617–2635,
https://doi.org/10.5194/hess-19-2617-2015, 2015.
Stewart, J.: Modelling surface conductance of pine forest, Agr. Forest
Meteorol., 43, 19–35, https://doi.org/10.1016/0168-1923(88)90003-2, 1988.
Tóth, B., Weynants, M., Pásztor, L., and Hengl, T.: 3D soil hydraulic
database of Europe at 250 m resolution, Hydrol. Process., 31, 2662–2666,
https://doi.org/10.1002/hyp.11203, 2017.
Valentini, R., Angelis, P., Matteucci, G., Monaco, R., Dore, S., and
Mucnozza, G. E. S.: Seasonal net carbon dioxide exchange of a beech forest
with the atmosphere, Glob. Change Biol., 2, 199–207,
https://doi.org/10.1111/j.1365-2486.1996.tb00072.x, 1996.
Valladares, F. and Niinemets, Ü.: Shade Tolerance, a Key Plant Feature of
Complex Nature and Consequences, Annu. Rev. Ecol. Evol. S., 39, 237–257,
https://doi.org/10.1146/annurev.ecolsys.39.110707.173506, 2008.
Vegas-Galdos, F., Alvarez, C., Garcia, A., and Revilla, J. A.: Estimated
distributed rainfall interception using a simple conceptual model and
Moderate Resolution Imaging Spectroradiometer (MODIS), J. Hydrol., 468–498,
213–228, 2012.
Wang, K. and Dickinson, R. E.: A review of global terrestrial
evapotranspiration: Observation, modeling, climatology, and climatic
variability, Rev. Geophys., 50, RG2005, https://doi.org/10.1029/2011RG000373, 2012.
Wang, Q., Tenhunen, J., Dinh, N., Reichstein, M., Otieno, D., Granier, A.,
and Pilegarrd, K.: Evaluation of seasonal variation of MODIS derived leaf
area index at two European deciduous broadleaf forest sites, Remote Sens.
Environ., 96, 475–484, https://doi.org/10.1016/j.rse.2005.04.003, 2005.
Wang-Erlandsson, L., Bastiaanssen, W. G. M., Gao, H., Jägermeyr, J.,
Senay, G. B., van Dijk, A. I. J. M., Guerschman, J. P., Keys, P. W., Gordon,
L. J., and Savenije, H. H. G.: Global root zone storage capacity from
satellite-based evaporation, Hydrol. Earth Syst. Sci., 20, 1459–1481,
https://doi.org/10.5194/hess-20-1459-2016, 2016.
Weisstein, E. W.: Incomplete Gamma Function [WWW Document], available at:
http://mathworld.wolfram.com/IncompleteGammaFunction.html, last access:
22 June 2017.
Withington, J. M., Reich, P. B., Oleksyn, J., and Eissenstat, D. M.:
Comparisons of structure and life span in roots and leaves among temperate
trees, Ecol. Monogr., 76, 381–397,
https://doi.org/10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2, 2006.
Yang, Y., Donohue, R. J., and McVicar, T. R.: Global estimation of effective
plant rooting depth: Implications for hydrological modelling, Water Resour.
Res., 52, 8260–8276, https://doi.org/10.1002/2016WR019392, 2016.
Zappa, M. and Gurtz, J.: Simulation of soil moisture and evapotranspiration
in a soil profile during the 1999 MAP-Riviera Campaign, Hydrol. Earth Syst.
Sci., 7, 903–919, https://doi.org/10.5194/hess-7-903-2003, 2003.
Zierl, B.: A water balance model to simulate drought in forested ecosystems
and its application to the entire forested area in Switzerland, J. Hydrol.,
242, 115–136, https://doi.org/10.1016/S0022-1694(00)00387-5, 2001.
Short summary
To simulate the water balance of, e.g., a forest plot, it is important to estimate the maximum volume of water available to plants. This depends on soil properties and the average depth of roots. Rooting depth has proven challenging to estimate. Here, we applied a model assuming that plants dimension their roots to optimize their carbon budget. We compared its results with values obtained by calibrating a dynamic water balance model. In most cases, there is good agreement between both methods.
To simulate the water balance of, e.g., a forest plot, it is important to estimate the maximum...