Articles | Volume 22, issue 1
https://doi.org/10.5194/hess-22-265-2018
https://doi.org/10.5194/hess-22-265-2018
Research article
 | 
12 Jan 2018
Research article |  | 12 Jan 2018

An adaptive two-stage analog/regression model for probabilistic prediction of small-scale precipitation in France

Jérémy Chardon, Benoit Hingray, and Anne-Catherine Favre

Related authors

Comprehensive space–time hydrometeorological simulations for estimating very rare floods at multiple sites in a large river basin
Daniel Viviroli, Anna E. Sikorska-Senoner, Guillaume Evin, Maria Staudinger, Martina Kauzlaric, Jérémy Chardon, Anne-Catherine Favre, Benoit Hingray, Gilles Nicolet, Damien Raynaud, Jan Seibert, Rolf Weingartner, and Calvin Whealton
Nat. Hazards Earth Syst. Sci., 22, 2891–2920, https://doi.org/10.5194/nhess-22-2891-2022,https://doi.org/10.5194/nhess-22-2891-2022, 2022
Short summary
Assessment of meteorological extremes using a synoptic weather generator and a downscaling model based on analogues
Damien Raynaud, Benoit Hingray, Guillaume Evin, Anne-Catherine Favre, and Jérémy Chardon
Hydrol. Earth Syst. Sci., 24, 4339–4352, https://doi.org/10.5194/hess-24-4339-2020,https://doi.org/10.5194/hess-24-4339-2020, 2020
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Stochastic approaches
Scientific logic and spatio-temporal dependence in analyzing extreme-precipitation frequency: negligible or neglected?
Francesco Serinaldi
Hydrol. Earth Syst. Sci., 28, 3191–3218, https://doi.org/10.5194/hess-28-3191-2024,https://doi.org/10.5194/hess-28-3191-2024, 2024
Short summary
Assessing downscaling techniques for frequency analysis, total precipitation and rainy day estimation in CMIP6 simulations over hydrological years
David A. Jimenez, Andrea Menapace, Ariele Zanfei, Eber José de Andrade Pinto, and Bruno Brentan
Hydrol. Earth Syst. Sci., 28, 1981–1997, https://doi.org/10.5194/hess-28-1981-2024,https://doi.org/10.5194/hess-28-1981-2024, 2024
Short summary
Simulating sub-hourly rainfall data for current and future periods using two statistical disaggregation models: case studies from Germany and South Korea
Ivan Vorobevskii, Jeongha Park, Dongkyun Kim, Klemens Barfus, and Rico Kronenberg
Hydrol. Earth Syst. Sci., 28, 391–416, https://doi.org/10.5194/hess-28-391-2024,https://doi.org/10.5194/hess-28-391-2024, 2024
Short summary
Synoptic weather patterns conducive to compound extreme rainfall–wave events in the NW Mediterranean
Marc Sanuy, Juan C. Peña, Sotiris Assimenidis, and José A. Jiménez
Hydrol. Earth Syst. Sci., 28, 283–302, https://doi.org/10.5194/hess-28-283-2024,https://doi.org/10.5194/hess-28-283-2024, 2024
Short summary
Exploring the joint probability of precipitation and soil moisture over Europe using copulas
Carmelo Cammalleri, Carlo De Michele, and Andrea Toreti
Hydrol. Earth Syst. Sci., 28, 103–115, https://doi.org/10.5194/hess-28-103-2024,https://doi.org/10.5194/hess-28-103-2024, 2024
Short summary

Cited articles

Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
Asong, Z. E., Khaliq, M. N., and Wheater, H. S.: Projected changes in precipitation and temperature over the Canadian Prairie Provinces using the Generalized Linear Model statistical downscaling approach, J. Hydrol., 539, 429–446, https://doi.org/10.1016/j.jhydrol.2016.05.044, 2016.
Ben Daoud, A., Sauquet, E., Bontron, G., Obled, C., and Lang, M.: Daily quantitative precipitation forecasts based on the analogue method: improvements and application to a French large river basin, Atmos. Res., 169, Part A, 147–159, https://doi.org/10.1016/j.atmosres.2015.09.015, 2016.
Boé, J., Terray, L., Habets, F., and Martin, E.: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies, Int. J. Climatol., 27, 1643–1655, https://doi.org/10.1002/joc.1602, 2007.
Bontron, G. and Obled, C.: A probabilistic adaptation of meteorological model outputs to hydrological forecasting, Houille Blanche, 23–28, 2005.
Download
Short summary
We present a two-stage statistical downscaling model for the probabilistic prediction of local precipitation, where the downscaling statistical link is estimated from atmospheric circulation analogs of the current prediction day. The model allows for a day-to-day adaptive and tailored downscaling. It can reveal specific predictors for peculiar and non-frequent weather configurations. This approach noticeably improves the skill of the prediction for both precipitation occurrence and quantity.