Articles | Volume 22, issue 3
Hydrol. Earth Syst. Sci., 22, 1775–1791, 2018
https://doi.org/10.5194/hess-22-1775-2018
Hydrol. Earth Syst. Sci., 22, 1775–1791, 2018
https://doi.org/10.5194/hess-22-1775-2018
Research article
12 Mar 2018
Research article | 12 Mar 2018

Mapping (dis)agreement in hydrologic projections

Lieke A. Melsen et al.

Related authors

A geography of drought indices: mismatch between indicators of drought and its impacts on water and food securities
Sarra Kchouk, Lieke A. Melsen, David W. Walker, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 22, 323–344, https://doi.org/10.5194/nhess-22-323-2022,https://doi.org/10.5194/nhess-22-323-2022, 2022
Short summary
Numerical daemons of hydrological models are summoned by extreme precipitation
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021,https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary
Seasonal discharge response to temperature-driven changes in evaporation and snow processes in the Rhine Basin
Joost Buitink, Lieke A. Melsen, and Adriaan J. Teuling
Earth Syst. Dynam., 12, 387–400, https://doi.org/10.5194/esd-12-387-2021,https://doi.org/10.5194/esd-12-387-2021, 2021
Short summary
Climate change impacts model parameter sensitivity – implications for calibration strategy and model diagnostic evaluation
Lieke Anna Melsen and Björn Guse
Hydrol. Earth Syst. Sci., 25, 1307–1332, https://doi.org/10.5194/hess-25-1307-2021,https://doi.org/10.5194/hess-25-1307-2021, 2021
Short summary
The impact of hydrological model structure on the simulation of extreme runoff events
Gijs van Kempen, Karin van der Wiel, and Lieke Anna Melsen
Nat. Hazards Earth Syst. Sci., 21, 961–976, https://doi.org/10.5194/nhess-21-961-2021,https://doi.org/10.5194/nhess-21-961-2021, 2021
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
Guidance on evaluating parametric model uncertainty at decision-relevant scales
Jared D. Smith, Laurence Lin, Julianne D. Quinn, and Lawrence E. Band
Hydrol. Earth Syst. Sci., 26, 2519–2539, https://doi.org/10.5194/hess-26-2519-2022,https://doi.org/10.5194/hess-26-2519-2022, 2022
Short summary
Quantifying input uncertainty in the calibration of water quality models: reordering errors via the secant method
Xia Wu, Lucy Marshall, and Ashish Sharma
Hydrol. Earth Syst. Sci., 26, 1203–1221, https://doi.org/10.5194/hess-26-1203-2022,https://doi.org/10.5194/hess-26-1203-2022, 2022
Short summary
Sequential data assimilation for real-time probabilistic flood inundation mapping
Keighobad Jafarzadegan, Peyman Abbaszadeh, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 25, 4995–5011, https://doi.org/10.5194/hess-25-4995-2021,https://doi.org/10.5194/hess-25-4995-2021, 2021
Short summary
Benchmarking global hydrological and land surface models against GRACE in a medium-size tropical basin
Silvana Bolaños Chavarría, Micha Werner, and Juan Fernando Salazar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-323,https://doi.org/10.5194/hess-2021-323, 2021
Revised manuscript accepted for HESS
Short summary
Key challenges facing the application of the conductivity mass balance method: a case study of the Mississippi River basin
Hang Lyu, Chenxi Xia, Jinghan Zhang, and Bo Li
Hydrol. Earth Syst. Sci., 24, 6075–6090, https://doi.org/10.5194/hess-24-6075-2020,https://doi.org/10.5194/hess-24-6075-2020, 2020
Short summary

Cited articles

Abebe, N., Ogden, F., and Pradhan, N.: Sensitivity and uncertainty analysis of the conceptual HBV rainfall–runoff model: Implications for parameter estimation, J. Hydrol., 389, 301–310, https://doi.org/10.1016/j.jhydrol.2010.06.007, 2010.
Addor, N., Rössler, O., Köplin, N., Huss, M., Weingartner, R., and Seibert, J.: Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments, Water Resour. Res., 50, 7541–7562, https://doi.org/10.1002/2014WR015549, 2014.
Addor, N., Newman, A., Mizukami, N., and Clark, M.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, version 1.0, UCAR/NCAR, Boulder, CO, https://doi.org/10.5065/D6G73C3Q, 2017a.
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017b.
Anderson, E.: National Weather Service River Forecast System – Snow accumulation and ablation model, Tech. rep., NOAA NWS, HYDRO-17, US Department of Commerce, Silver Spring, MD, 1973.
Download
Short summary
Long-term hydrological predictions are important for water management planning, but are also prone to uncertainty. This study investigates three sources of uncertainty for long-term hydrological predictions in the US: climate models, hydrological models, and hydrological model parameters. Mapping the results revealed spatial patterns in the three sources of uncertainty: different sources of uncertainty dominate in different regions.