Articles | Volume 21, issue 12
Research article
18 Dec 2017
Research article |  | 18 Dec 2017

Does nonstationarity in rainfall require nonstationary intensity–duration–frequency curves?

Poulomi Ganguli and Paulin Coulibaly

Related authors

Future shift in winter streamflow modulated by the internal variability of climate in southern Ontario
Olivier Champagne, M. Altaf Arain, Martin Leduc, Paulin Coulibaly, and Shawn McKenzie
Hydrol. Earth Syst. Sci., 24, 3077–3096,,, 2020
Short summary
Winter hydrometeorological extreme events modulated by large-scale atmospheric circulation in southern Ontario
Olivier Champagne, Martin Leduc, Paulin Coulibaly, and M. Altaf Arain
Earth Syst. Dynam., 11, 301–318,,, 2020
Short summary
Evaluation of ensemble precipitation forecasts generated through post-processing in a Canadian catchment
Sanjeev K. Jha, Durga L. Shrestha, Tricia A. Stadnyk, and Paulin Coulibaly
Hydrol. Earth Syst. Sci., 22, 1957–1969,,, 2018
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Stochastic approaches
Stochastic simulation of reference rainfall scenarios for hydrological applications using a universal multi-fractal approach
Arun Ramanathan, Pierre-Antoine Versini, Daniel Schertzer, Remi Perrin, Lionel Sindt, and Ioulia Tchiguirinskaia
Hydrol. Earth Syst. Sci., 26, 6477–6491,,, 2022
Short summary
Atmospheric conditions favouring extreme precipitation and flash floods in temperate regions of Europe
Judith Meyer, Malte Neuper, Luca Mathias, Erwin Zehe, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 6163–6183,,, 2022
Short summary
A storm-centered multivariate modeling of extreme precipitation frequency based on atmospheric water balance
Yuan Liu and Daniel B. Wright
Hydrol. Earth Syst. Sci., 26, 5241–5267,,, 2022
Short summary
Probabilistic subseasonal precipitation forecasts using preceding atmospheric intraseasonal signals in a Bayesian perspective
Yuan Li, Zhiyong Wu, Hai He, and Hao Yin
Hydrol. Earth Syst. Sci., 26, 4975–4994,,, 2022
Short summary
Technical note: A stochastic framework for identification and evaluation of flash drought
Yuxin Li, Sisi Chen, Jun Yin, and Xing Yuan
Hydrol. Earth Syst. Sci. Discuss.,,, 2022
Revised manuscript accepted for HESS
Short summary

Cited articles

Adamowski, K. and Bougadis, J.: Detection of trends in annual extreme rainfall, Hydrol. Process., 17, 3547–3560, 2003.
Agilan, V. and Umamahesh, N. V.: What are the best covariates for developing non-stationary rainfall Intensity–Duration–Frequency relationship?, Adv. Water Resour., 101, 11–22, 2017.
Ali, H. and Mishra, V.: Contrasting response of rainfall extremes to increase in surface air and dewpoint temperatures at urban locations in India, Sci. Rep.-UK, 7, 1228,, 2017.
ASCE: Standard Guidelines for the Design of Urban Stormwater Systems, Standard Guidelines for Installation of Urban Stormwater Systems, and Standard Guidelines for the Operation and Maintenance of Urban Stormwater Systems, ASCE/EWRI 45-05, 46-05, and 47-05, American Society of Civil Engineers, Reston, VA, available at: (last access: 9 December 2016), 2006.
Baldwin, D. J. B., Desloges, J. R., and Band, L. E.: Physical geography of Ontario, in: Ecology of a Managed Terrestrial Landscape: Patterns and Processes of Forest Landscapes in Ontario, University of British Columbia Press, Vancouver, 2011.
Short summary
Using statistical models, we test whether nonstationary versus stationary models show any significant differences in terms of design storm intensity at different durations across Southern Ontario. We find that detectable nonstationarity in rainfall extremes does not necessarily lead to significant differences in design storm intensity, especially for shorter return periods. An update of 2–44 % is required in current design standards to mitigate the risk of storm-induced urban flooding.