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Figure S1. IPCC AR5 conceptual representation of changes in probability density functions of daily temperature (a – c) and precipitation. The 

previous and the new distributions are marked by the solid and the dashed lines respectively. The frequency (probability of occurrence) of 

extremes is denoted by the shaded areas (Source: IPCC AR5 Working Group I report, Figure 1.8, page no. 134).   
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SI 1. Infilling Missing AMP Record: Method and Results 

Multiplicative Random Cascade (MRC) Models for Temporal Disaggregation of Rainfall 

Multiplicative Random Cascades were first developed for studies of turbulence (Mandelbrot, 1999; Yaglom, 1966) 

with a motivation to have mathematical models, which produce time series that have statistically scale-invariant 

properties. In general, random cascade model for rainfall assumes a division of known rainfall total RL occurring 

over an interval of time among a number of smaller intervals of fixed size, which implies a successive fine graining 

process that starts from an original, large-scale resolution RL and continues till a target small-scale resolution is 

reached. The approach is based on scaling laws, which describe the scale-invariant properties or relationships that 

connect the statistical properties of rainfall for different timescales (Willems, 2012). The number of subintervals is 

defined by the branching number b, is set to 2, which is a redistribution of total rainfall in period i at a resolution r, 

𝑅𝑖,𝑟, between the amount associated with the first and last half respectively.  

Here we implement a micro-canonical (exact conservation of mass in each cascade branching) cascade-

based temporal disaggregation model as proposed by (Olsson, 1998), in which daily rainfall is disaggregated using 

a uniformly distributed generator, dependent on rainfall intensity and position of the rain sequence. The technique 

was later successfully implemented by (Güntner et al., 2001; Jebari et al., 2012; Rana et al., 2013) for 

temporal disaggregation of point rainfall and the development of IDF-curves from short-duration rainfall 

extremes.  In the disaggregation process, each time interval (box) at a given resolution (for example 1 day) is split 

into two half of the original length (1/2 day). The procedure is continued as a cascade until the desired time 

resolution is reached, i.e., to ¼ day, then to 1/8 of a day and so on. Each step is termed as a cascade step, with 

cascade step 0 as the longest time period with only one box (i.e., a day). The distribution of the volume between 

two sub-intervals (or smaller boxes) is computed by multiplication with the cascade weights ( ,i rW ), 
,0 1i rW   

that assigns , ,i r i rW R  to the first half of the period and (1 −  ,i rW ) ,i rR  to the next half. In each branching two 

possibilities exist: (1) W1 = 0, W1 = 1 (2) 0 < W1 < 1. The occurrence of (1) and (2) may be expressed in terms of 

probabilities, P01 = 𝑃(1 0⁄ ) or 𝑃(0 1⁄ ) = P(W1 = 0 or W1 = 1) and Pxx = 𝑃(𝑥 𝑥⁄ ) = P(0 < W1 < 1) = 1 - P01.  

Depending on the range of resolution involve, P01 either be assumed as resolution independent or 

parameterized as a scaling law: 𝑃𝑟01(𝑟) = 𝑐1𝑟𝑐2 where c1 and c2 are constants. The distribution of ,i rW is termed as 

cascade generator, assumed to follow 1-parameter beta distribution (Olsson, 2012).  Following (Olsson, 1998), the 

probabilities P, the probability distribution of cascade generator are assumed to be related to (1) position in rainfall 

sequence, and (2) rainfall volume. The wet boxes, with a rainfall volume V > 0, can be characterized by their position 

in the rainfall series: (1) the starting box, box preceded by a dry box (V = 0) and succeeded by a wet box (V > 0); 

(2) the enclosed box, box preceded and succeeded by wet boxes; (3) the ending box, box preceded by a wet box and 

succeeded by a dry box, and (4) the isolated box, box preceded and succeeded by dry boxes. On the other hand, 

based on volume dependence, if the volume is large then it is more likely that both halves of the subintervals 
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contribute to nonzero volume than if the volume is small. Following (Olsson, 1998), a partition into three volume 

classes (vc = 1, 2, 3) was used, separated by percentiles 33rd and 67th of the values at the cascade step. Next, the 

variation of 𝑃(𝑥 𝑥⁄ ) with volume is parameterised as,  /
  m cx x
P a b v  , where a is the intercept at 

cv  = 0, 
mb  is the 

mean slope of linear regression obtained from all cascade steps and 
cv  is volume class. For details about theory and 

implementation issues of MRC-based disaggregation tool, interested readers are requested to refer (Olsson, 1998).  

 For calibration and application of the disaggregated model from an original resolution Rl, two situations are 

considered: (1) when representative data at target resolution Rs is available; such as in this case, disaggregation from 

daily to hourly time steps, in which hourly data were available. Hence, parameters are calibrated over the actual 

resolution interval Rl < r < Rs using 5 cascade steps. This implies, 5 successive “halving” from one day to generate 

45-minute (2700 seconds) data. (2) When no representative high-resolution data are available, then parameters are 

estimated by coarse graining from lower resolution Rl to a higher resolution Rs by successive disaggregation steps. 

In this study, it is the disaggregation from daily to minute scales (or sub-hourly time steps), in which no sub-hourly 

data were available for any of the representative sites. In such case, parameters are calibrated from daily rainfall 

data using 7 cascade steps. This implies disaggregating by halving from 1-day to 11-minute 15 seconds (675 

seconds) data. After calibration, Monte Carlo simulation is performed to gradually fine-grain the data and generate 

realizations at desired resolution, Rs. Since Rs in these cases are not directly achieved by exact resolution doubling 

from Rl, the target resolutions are obtained by geometric interpolation of the disaggregated model output at the final 

time step. In the next sub-sections, we demonstrate the performance of the MRC-based disaggregation tool using 

two different sets of observations. 

 

S 1.1 Performance Evaluation of MRC-based disaggregation Tools for McMaster Weather Station Data      

McMaster weather station is situated on a rooftop of McMaster University campus (43.26° N latitude and 79.92° 

W longitude, 114 m above sea level). We obtain daily, hourly and sub-hourly (15-min) rainfall information from 

the year 2010 to 2013, archived at McMaster Weather Station (MUWS; 

http://geomedia.mcmaster.ca/muws/weatherstation.html) website. The time slice was chosen based on data 

completeness and quality of available records.  

We investigate two cases: (1) First, we calibrate the model using 1-year (2012 – 2013) hourly data, 

estimated model parameters, and then assess the performance of disaggregated model output using 2010 – 2013 

observed data (2) Next, the observed 15-min time series was first aggregated to an hourly time step and then 

calibrated the model using aggregated hourly data. Then we compare disaggregated versus observed data at a 15-

min temporal resolution for validation. Since we do not have 15-min daily rainfall information available for any of 

rain gauge locations, in both cases we calibrate the model using hourly data, which in turn gives us the opportunity 

to evaluate the performance of the disaggregation algorithm. In all cases, disaggregation was performed from daily 

time scales. Table S1 shows results of disaggregation experiments. We find a satisfactory performance between 

http://geomedia.mcmaster.ca/muws/weatherstation.html


 

 

5 

 

observed and simulated model output, especially for the simulation of the percentage of zero values. However, we 

find a slight underestimation for simulated standard deviations of event volume and duration, whereas variance of 

mean inter-arrival time is overestimated.  

 

Table S1. Comparison between observed and disaggregated 15-min and 1-hour time series for McMaster Weather 

Station Data 

Time scale Metrics Observed Simulated 

Hourly (1-hr) Zero values (%) 92 91.5 

 Individual Rainfall volume (mean ± SD) mm 1.60 ± 2.95 1.45 ± 2.89 

 Event volume (mean ± SD) mm 4.52 ± 10.40 4.50 ± 8.82 

 Event duration (mean ± SD) hour 2.83 ± 3.51 3.09 ± 2.69 

 Mean inter-arrival time between event, hour 36.82 ± 64.70 37.33 ± 65.10 

 Mean annual maxima (mean ± SD) mm 39.97 ± 21.42 32.97 ± 12.33 

Minute 

(15-min) 

Zero values (%) 94.63 95.35 

Individual Rainfall volume (mean ± SD) mm 0.032 ± 1.20 0.031 ± 1.28 

Event volume (mean ± SD) mm 1.87 ± 6.28 1.96 ± 4.64 

Event duration (mean ± SD) hour 3.15 ± 5.77 2.94 ± 3.47 

Mean inter-arrival time between event, hour 59.54 ± 177.33 64.12 ± 182.01 

Mean annual maxima (mean ± SD) mm 20.4 ± 10.22 23.4 ± 12.70 

 

 S 1.2 Performance Evaluation of MRC-based disaggregation Tools for the Nine Locations in Southern 

Ontario 

Figures S2 – S8 display disaggregation fit of the MRC-based tools for Toronto International Airport. Figure S2 

presents variations of probability with volume classes, which often show substantial differences between the classes. 

The figure shows a linear relationship between precipitation, P and volume class, vc changes with cascade steps. 

The mean regression line ap+ bm*vc, (where ap is the intercept and bm is the slope) is shown as a dashed line with 

squares (Figure S2). Figures S3 and S4 show variations of intercepts with cascade steps. The probabilities P(x/x) 

and P(0/1) for daily to minute-scale disaggregation of four different type of boxes are shown in Tables S2 and S3. 

P(x/x) can be modelled assuming linear dependence on the cascade step, which is given as, P(x/x)= ap+ bm*vc with 

ap is estimated as, ap = c1 + c2*Cs, where c1 and c2 are the slopes and the intercept of the linear regression. Since 

P(0/1) [or P(1/0)] is relatively independent of cascade step, it can be modeled using ap+ bm*vc. Finally, P(0/1) [or 

P(1/0)] can be estimated as, P(0/1)=1-(P(x/x)+P(1/0) [or P(1/0)=1-(P(x/x)+P(0/1)]. The empirical histograms (the 

observed, shown in bars) and the fitted beta distributions (shown in lines) [Figures S5 and S6] show a good 

agreement in the overall fit. However, at higher cascade steps, i.e. finer time scales, the number of bins in the 

histogram is small, and the fits appear naturally uncertain.    
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Figure S7 shows time series of disaggregated versus observed annual maxima (the 15-min and 1-hour) for Toronto 

International Airport. The Quantile Mapping (QM) is employed to adjust occasional overestimation due to 

disaggregation. Except for a few extremes, we find a close agreement between the observed versus bias-corrected 

disaggregated annual maxima time series. For example, the algorithm overestimates the wettest event in Toronto 

(137.4 mm of rainfall) during Hurricane Hazel (1954) at hourly disaggregation time steps. However, due to lack of 

observation, we could not validate 15-min disaggregation model performance. Figure S8 shows 1-hour 

disaggregated model performance for the nine sites. Although we find evidence of occasional overestimations in 

disaggregated model output, the adjustment of extremes by QM could correct biases to some extent. However, the 

algorithm fails to correct extreme wet biases for London International Airport (during 1954), Trenton Airport 

(2000), Stratford WWTP (2002) and Fergus Shand Dam (2004 and 2006).  
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Table S2. Probabilities P(x/x) as function of volume class, cascade step and type of box for daily to minute scale disaggregation 

1. Isolated Box (bm = 0.223) 

Volume 

Class/Cascade Step 

1 2 3 4 5 6 7 Mean 

1 0.001 0.030 0.051 0.048 0.073 0.082 0.031 0.045 

2 0.244 0.254 0.266 0.299 0.249 0.289 0.267 0.27 

3 0.509 0.505 0.510 0.513 0.512 0.470 0.420 0.49 

2. Starting Box (bm = 0.244) 

1 0.054 0.122 0.081 0.064 0.101 0.130 0.095 0.092 

2 0.399 0.415 0.345 0.290 0.275 0.283 0.437 0.349 

3 0.635 0.612 0.610 0.527 0.487 0.570 0.628 0.581 

3. Enclosed Box (bm = 0.263) 

1 0.423 0.357 0.272 0.157 0.097 0.156 0.194 0.236 

2 0.862 0.817 0.703 0.510 0.335 0.345 0.463 0.576 

3 0.951 0.938 0.875 0.736 0.585 0.562 0.685 0.762 

4. Ending Box (bm = 0.247) 

1 0.063 0.033 0.064 0.087 0.084 0.109 0.114 0.079 

2 0.381 0.372 0.323 0.253 0.303 0.237 0.439 0.330 

3 0.651 0.639 0.591 0.564 0.474 0.496 0.593 0.572 
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Table S3. Probabilities P(0/1) as function of volume class, cascade step and type of box for daily to minute scale disaggregation 

1. Isolated Box (bm = -0.113) 

Volume 

Class/Cascade Step 

1 2 3 4 5 6 7 Mean 

1 0.446 0.449 0.494 0.466 0.427 0.482 0.50 0.466 

2 0.369 0.388 0.370 0.330 0.400 0.369 0.30 0.361 

3 0.257 0.248 0.236 0.242 0.241 0.259 0.193 0.239 

2. Starting Box (bm = -0.175) 

1 0.747 0.713 0.771 0.711 0.681 0.565 0.526 0.673 

2 0.535 0.521 0.583 0.593 0.558 0.409 0.295 0.499 

3 0.320 0.333 0.347 0.408 0.394 0.274 0.195 0.324 

3. Enclosed Box (bm = -0.113) 

1 0.272 0.283 0.330 0.387 0.400 0.405 0.374 0.350 

2 0.078 0.103 0.159 0.220 0.350 0.348 0.253 0.216 

3 0.027 0.031 0.077 0.154 0.204 0.224 0.158 0.125 

4. Ending Box (bm = -0.068) 

1 0.215 0.211 0.167 0.202 0.210 0.330 0.298 0.233 

2 0.093 0.083 0.098 0.144 0.187 0.318 0.263 0.169 

3 0.040      0.054 0.068 0.072 0.120 0.174 0.159 0.098 
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Figure S2. Variation of probabilities with volume class, vc for Toronto International Airport at (a) daily to hourly-, and (b) daily to minute- 

time step disaggregation. X-axes show, vc: 1 – small, 2 – medium, and 3 – large; Y-axes show, probabilities. P – denotes position type, 1: 

Isolated, 2: Starting, 3: Enclosed, and 4: Ending, D denotes division type (1: 0/1, 2: 1/0, 3: x/x), and N denotes the total number of periods 

for associated position and division type. The solid lines marked with different colors indicate different cascade steps. The dashed line with 

squares represents the mean of all cascade levels.  
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Figure S3. Variations of intercept, ap with cascade steps for daily to hourly- time step disaggregation at Toronto International Airport. P-

denotes position types, 1: Isolated, 2: Starting, 3: Enclosed and 4: Ending. D denotes division type (1: 0/1, 2: 1/0, 3: x/x), and bm indicates the 

mean slope for corresponding position and division type, estimated from the fitted mean lines as in Figure S3. The third column indicates the 

fraction of 0/1-divisions of all “non-x/x-divisions” summed over volume classes. 
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Figure S4. Same as in Figure S3 but for daily to minute- time step disaggregation. 
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Figure S5. Variations of empirical x/x-distributions with cascade steps (bars) and fitted beta distributions (lines) for daily to hourly- time step 

disaggregation at Toronto International Airport. P-denotes position types, 1: Isolated, 2: Starting, 3: Enclosed and 4: Ending; Cs denotes 

cascade steps, for example, step 1 shows cascading from 32 to 16 minute, step 2 indicates from 16 to minute and so on. N indicates the total 

number of x/x- divisions for this position type and cascade level. 
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Figure S6. Same as in Figure S5 but for daily to minute- time step disaggregation. 
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Figure S7. Comparison of observed versus disaggregated (a) sub-hourly and (b) hourly Annual Maximum (AM) rainfall values (Observed – 

red, disaggregated – blue and disaggregated and bias corrected - black) for Toronto International Airport. (c) The bottom panel shows AM 

daily rainfall values. A multiplicative random cascade-based disaggregation tool is used to disaggregate daily rainfall time series into a sub-

hourly and hourly time step.  
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Figure S8. Comparison of observed versus disaggregated time series for 1-hour AMP across nine locations (a-g) 
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SI 2 Trend and Change point, Autocorrelation: Methods and Results 

SI 2.1 Detection of Monotonic trend: Mann-Kendall Test Statistics 

The null hypothesis 
0H of the test assumes that no temporal trend exists in the data and the alternate 

hypothesis H1 assumes that a significant temporal trend (upward or downward) exists. The test statistic ZMK is 

computed as (Hirsch et al., 1982) 

 

 

1
0;

0, 0;

1
0

MK

S
if S

Var S

Z if S

S
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where S is defined by, 
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                (2.2) 

where xj and xk  are the data points in time periods j and k ( j k ) respectively, and n is number of observed 

data points. For n≥10, the test statistic S is approximately normally distributed with the mean of E(S) =0, and 

the variance of, 

        
1

1
1 2 5 .( ). 1 . 2 5

18

g

i

i

Var S n n n t i i i


 
      

 
                    (2.3) 

where g is the  number of tied groups and ti is the number of data points in the ith group.    

 

SI 2.2 Detection of Abrupt or Step Change  

SI 2.2.1 General Formulation of Sequential Change Point Test  

When a sequence of random variables is divided into two segments represented by 
01,..., tx x and 

0 0 01 2, ,...,t t tx x x 
, if each segment has distribution functions,  1F x  and  2F x , where    1 2F x F x , then 

change point is identified at 0t . Thus the null hypothesis of the test is “no change”, 0 :H T   against the 

alternative of “change” 1 :1H T  . Suppose t points in the sequence of observations and we wish to test 

whether a change point has occurred at some point in the historical observation. For any fixed k t  the 

hypothesis that a change point occurs at the kth observation can be written as (Ross et al., 2011) 
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0

0 1

1

~ , : ~o i i

F if i k
H i X F H X

F if i k


 


                  (2.4)  

Now a two-sample hypothesis test can be used to test for a change point at a location k using a test statistic ,k tN

. The test statistic ,k tN  can be evaluated for all values of 1 k t  , and then using the maximum value, i.e., 

max, ,maxt k t
k

N N                      (2.5) 

Then, the hypothesis that no change has occurred before the tth observation is rejected if max,t tN h  at a 

threshold th . The value   of the change point is then the value of k which maximizes 
max,tN  

Change Point in Location 

 Pettitt Change Point Test 

The test is based on following statistic (Serinaldi and Kilsby, 2016; Xie et al., 2014) 

,
1
maxT t T

t T
K U

 


                    (2.6) 

Where ,t TU the ranked sample as is defined in Eq. 2.2. The statistical significance of Pettitt test quantified by 

p-value is approximately evaluated as (Xie et al., 2014), 

2

2 3

6
2exp TK

p
T T

 
  

 
. Given a certain significance 

level  , if  p  , we reject the null hypothesis and conclude that  x is a significant change point at level 

. The analysis was performed using R statistical software with add-on package “trend”.  
 

 Mann-Whitney Change Point Test 

Mann-Whitney (MW) test statistics detect shifts in location parameter in the time series. The test is based on 

the following observation: if there are n points spread over two samples S and T, containing sn and tn  points 

respectively, n = sn + tn . The MW U statistic is then defined as (Ross, 2013) 

 1

2

s s

s

n n
U r


                        (2.7)  

Where sr  is the sum of the ranks of the points in sample S. Under the null hypothesis that S and T have equal 

location parameter, the distribution of of U is independent of the distribution of the observations in two 

samples and its first two moments are 

2U s tn n   ,  2 1 12U s t s tn n n n                       (2.8) 

The standardized MW statistic,  U UU U   
                   (2.9) 
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A nonparametric change point for location shifts is then defined as by replacing 
max,tN  with this U statistic. 

Change Point in Scale: Mood Test 

The Mood Test uses a test statistic which measures the extent to which the rank of each point deviates from 

its expected value (Ross et al., 2011) 

    
2

1 2
i

i

x S

M r x n


                     (2.10) 

Where  ir x  denotes the rank of ix  in the pooled sample. Similar to MW statistic, the distribution of Mood 

statistic is independent of the underlying random variables. The mean and variance of the Mood statistic is 

given as 

 2 1 12M sn n    ,   2 21 4 180M s Tn n n n                  (2.11)  

Then the standardized statistic is given as (Ross et al., 2011) 

 M MM M   
                   (2.12) 

Similar to MW statistic, a nonparametric change point for scale shifts is defined as by replacing 
max,tN  with 

this M statistic. Both Mann-Whitney and Mood tests were performed using R statistical software with add-on 

package “cpm”. 

 

SI 2.3 Non-parametric Trend Free Pre-Whitening (TPFW) for Correction of Autocorrelation  

To correct the autocorrelation present in the data, we followed the non-parametric procedure of trend-free pre-

whitening (TPFW) as suggested by the (Petrow and Merz, 2009): 

 At first, the trend of annual maxima time series of a particular duration is estimated by the non-

parametric trend slope estimator,   as suggested by  (Sen, 1968), which is the median of all pair wise slopes 

(bi) in the time series of length (N): 

 

 

  

1 2

2 1 2
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N

N N
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




 
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                             (2.13) 

Where, 
 

, 1, 2,....,
j k

i

x x
b i N and j k

j k


  


, and jx  and kx  are the data points in time periods j and k (j 

> k) respectively. Hence, if there are n values of data in the time series, it results into as many as N = nC2 number 

of bi values.  
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 Secondly, the computed trend is removed from the original series: 

 t tY X t                                  (2.14) 

Where, tX  is the original time series and t is the time. 

 Next, the lag1- autocorrelation [  , using MATLAB function ‘autocorr ()’], is computed from tY . If 

no statistically significant (significance is checked at 5 and 10% significance level) autocorrelation is found, 

the trend and change-point detection algorithms are directly applied to the original time series. Otherwise, the 

lag-1 autocorrelation is removed from the time series: 

1t t tY Y Y 
                           (2.15) 

 Finally, the removed trend in the first step is added back into the time series free from trend and 

autocorrelation. 

t tY Y t                      (2.16) 

The resulting time series Y   includes the original trend but free from autocorrelation. 
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Table S4. Detection of trends and nonstationarity in Toronto Pearson International Airport 

Time 

Slice 

Ljung-

Box 

Test 

Augmented 

Dickey-Fuller 

Test 

KPSS Test Mann-Kendall Trend Test 

 

Priestley-

Subbarao 

Test 

Pettitt 

Test 

Mann-Whitney Change 

Point Test 

Mood Change Point Test 

p-value Test 

statistics 

p-

value 

Test 

statistics 

p-

value 

MKZ   p-

value 

p-value p-value Year Test 

statistics 

Threshold Year Test 

statistics 

Threshold 

15-min 0.014** -0.326 0.53** 0.120 0.098* -0.71  -0.23 0.48 0.383 0.141 x x x x x x 

30-min 0.027** -0.177 0.58** 0.123 0.092* -0.52 -0.25 0.61 0.283 0.179 x x x x x x 

1-hr 0.805 -0.077 0.62** 0.138 0.064* 0.39 0.22 0.69 0.409 0.368 x x x x x x 

2-hr 0.920 0.043 0.66** 0.129 0.081* -0.07 -0.05 0.94 0.143 0.564 x x x x x x 

6-hr 0.959 0.051 0.67** 0.060 > 0.10 -0.61 -0.48 0.54 0.025 0.733 x x x x x x 

12-hr 0.965 0.106 0.67** 0.065 > 0.10 -0.55 -0.49 0.58 2.0e-4** 0.659 x x x x x x 

24-hr 0.885 0.106 0.69** 0.046 > 0.10 -0.06 -0.06 0.95 0.046** -† x x x x x x 

** and * indicate statistically significant at 5% and 10% significance levels, ‘x’ denotes no change point is detected using Mann-Whitney and Mood tests 

respectively.  indicates slope per decade calculated using Theil-Sen method. P-values larger than 0.1 in KPSS test indicates test statistics are non-significant, 

whereas p-values smaller than 0.01 are considered to be highly significant. The standardized Mann-Kendall test statistic (MKZ) is positive (negative) with an 

increasing (decreasing) trend, and statistically significant at 5% and 10% significance levels when |MKZ| > 1.96 and |MKZ| > 1.64 respectively. Change point 

tests are performed at 10% significance level. †p-values are not reported due to analytical intractability. 

 

Table S4.1 Detection of trends and nonstationarity after performing TFPW in Toronto Pearson International Airport 

 

Time 

Slice 

Ljung-

Box 

Test 

Augmented 

Dickey-Fuller 

Test 

KPSS Test Mann-Kendall Trend 

Test 

Priestley-

Subbarao 

Test 

Pettitt Test Mann-Whitney Change 

Point Test 

Mood Change Point Test 

p-value Test 

statistics 

p-

value 

Test 

statistics 

p-

value 

MKZ   p-

value 

p-value p-value Year Test 

statistics 

Threshold Year Test 

statistics 

Threshold 

15-min 0.258 -0.60** 0.43 0.089 >0.10 -0.17 -0.04 0.87 0.504 0.531 x x x x x x 

30-min 0.243 -0.35** 0.52 0.098 >0.10 0.07 0.05 0.94 0.498 0.777 x x x x x x 
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Table S5. Detection of trends and nonstationarity in Hamilton Airport 

Time 

Slice 

Ljung-

Box 

Test 

Augmented 

Dickey-Fuller 

Test 

KPSS Test Mann-Kendall Trend 

Test 

Priestley-

Subbarao 

Test 

Pettitt Test Mann-Whitney Change 

Point Test 

Mood Change Point 

Test 

p-value Test 

statistics 

p-

value 

Test 

statistics 

p-

value 

MKZ   p-

value 

p-value p-value Year Test 

statistics 

Threshold Year Test 

statistics 

Threshold 

15-min 0.173 -0.454 0.48** 0.033 >0.10 -0.65 -0.24 0.516 0.406 0.438 x x x x x x 

30-min 0.911 -0.428 0.49** 0.047 >0.10 -1.186 -0.45 0.236 2.56e-5** 0.402 x x x x x x 

1-hr 0.918 -0.170 0.58** 0.082 >0.10 0.244 0.28 0.807 0.002** 0.870 x x x x x x 

2-hr 0.735 -0.176 0.58** 0.154 0.043** 1.023 0.75 0.306 8.03e-6** 0.300 x x x x x x 

6-hr 0.099* -0.138 0.60** 0.193 0.019** -0.097 -0.11 0.922 3.49e-9** 0.216 x x x x x x 

12-hr 0.150 -0.055 0.63** 0.183 0.023** -0.122 -0.14 0.903 2.78e-10** 0.506 x x x x x x 

24-hr 0.059* -0.035 0.63** 0.307 0.010** 0.309 0.39 0.758 1.82e-7** 0.199 x x x x x x 

 

Table S5.1 Detection of trends and nonstationarity after performing TFPW in Hamilton Airport 

Time 

Slice 

Ljung

-Box 

Test 

Augmented 

Dickey-Fuller 

Test 

KPSS Test Mann-Kendall Trend 

Test 

Priestley-

Subbarao 

Test 

Pettitt 

Test 

Mann-Whitney Change 

Point Test 

Mood Change Point Test 

p-

value 

Test 

statistics 

p-value Test 

statistics 

p-

value 

MKZ   p-

value 

p-value p-value Year Test 

statistics 

Threshold Year Test 

statistics 

Threshold 

6-hr 0.108 -0.211 0.570** 0.197 0.02** -0.02 -0.03 0.981 2.83e-6** 0.227 x x x x x x 

24-hr 0.282 -0.202 0.573** 0.282 0.01** 0.318 0.41 0.751 9.78e-4** 0.316 x x x x x x 
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Table S6. Detection of trends and nonstationarity in Oshawa WPCP 

Time 

Slice 

Ljung

-Box 

Test 

Augmented 

Dickey-Fuller 

Test 

KPSS Test Mann-Kendall Trend 

Test 

Priestley-

Subbarao 

Test 

Pettitt Test Mann-Whitney Change 

Point Test 

Mood Change Point Test 

p-

value 

Test 

statistics 

p-

value 

Test 

statistics 

p-

value 

MKZ   p-value p-value p-value Year Test 

statistics 

Threshold Year Test 

statistics 

Threshold 

15-min 0.986 -0.152 0.59** 0.044 >0.10 0.93 2.12 0.35 0.18 0.89 x x x x x x 

30-min 0.620 -0.251 0.55** 0.045 >0.10 0.73 1.02 0.47 0.92 - x x x 1974 2.62* 2.59 

1-hr 0.994 -0.065 0.62** 0.081 >0.10 1.29 1.5 0.20 0.57 0.562 x x x x x x 

2-hr 0.938 -0.116 0.61** 0.08 >0.10 1.68 0.82 0.09* 0.005** 0.259 2009 2.64* 2.58 x x x 

6-hr 0.924 -0.311 0.53** 0.075 >0.10 1.49 0.3 0.14 0.027** 0.248 x x x x x x 

12-hr 0.998 -0.928 0.31** 0.048 >0.10 1.73 0.13 0.08* 2.4e-4** 0.321 1975 2.59* 2.67 x x x 

24-hr 0.990 -1.716 0.08* 0.040 >0.10 2.20 0.14 0.03** 2.4e-3** 0.056* 1983 2.90* 2.58 x x x 
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Table S7. Detection of trends and nonstationarity in Windsor Airport 
Time 

Slice 

Ljung-

Box 

Test 

Augmented 

Dickey-Fuller 

Test 

KPSS Test Mann-Kendall Trend 

Test 

 

Priestley-

Subbarao 

Test 

Pettitt Test Mann-Whitney Change 

Point Test 

Mood Change Point Test 

p-

value 

Test 

statistics 

p-

value 

Test 

statistics 

p-

value 

MKZ   p-value p-value p-value Year Test 

statistics 

Threshold Year Test 

statistics 

Threshold 

15-min 0.595 -0.237 0.56** 0.108 >0.10 -1.29 -0.42 0.198 0.156 0.141 x x x x x x 

30-min 0.749 -0.363 0.51** 0.074 >0.10 -1.59 -0.77 0.111 0.845 0.093* x x x x x x 

1-hr 0.462 -0.366 0.51** 0.083 >0.10 -1.52 -0.9 0.129 0.851 0.103 x x x x x x 

2-hr 0.614 -0.222 0.56** 0.127 0.085* -0.82 -0.74 0.414 0.529 0.281 2005 2.99* 2.63 x x x 

6-hr 0.504 -0.098 0.61** 0.128 0.084* -0.47 -0.45 0.656 0.256 0.300 2005 2.95* 2.63 x x x 

12-hr 0.969 -0.238 0.56** 0.065 >0.10 -1.48 -1.4 0.138 0.296 0.141 x x x x x x 

24-hr 0.414 -0.177 0.58** 0.041 >0.10 -0.035 -0.01 0.972 0.976 0.940 x x x x x x 
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Table S8. Detection of trends and nonstationarity in Kingston P. Station 

Time 

Slice 

Ljung

-Box 

Test 

Augmented 

Dickey-Fuller 

Test 

KPSS Test Mann-Kendall Trend 

Test 

Priestley-

Subbarao 

Test 

Pettitt Test Mann-Whitney Change 

Point Test 

Mood Change Point Test 

p-

value 

Test 

statistics 

p-

value 

Test 

statistics 

p-value MKZ   p-

value 

p-value p-value Year Test 

statistics 

Threshold Year Test 

statistics 

Threshold 

15-min 0.257 -0.502 0.46** 0.024 >0.10 0.63 0.2 0.53 0.040 - x x x x x x 

30-min 0.094 -0.485 0.47** 0.027 >0.10 0.18 0.12 0.85 0.322 - x x x x x x 

1-hr 0.371 -0.316 0.53** 0.039 >0.10 0.16 0.12 0.88 0.094* - x x x 1996 2.73* 2.6 

2-hr 0.124 -0.306 0.53** 0.084 >0.10 0.05 0.03 0.96 0.333 - x x x x x x 

6-hr 0.273 -0.330 0.53** 0.168 0.032** -0.22 -0.36 0.83 0.0009** 0.397 x x x x x x 

12-hr 0.886 -0.298 0.54** 0.102 >0.10 0.56 0.39 0.58 5.53e-6** 0.347 x x x x x x 

24-hr 0.346 -0.258 0.55** 0.131 0.078* 0.68 0.75 0.50 1.06e-5** 0.514 1965 2.62* 2.60 x x x 
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Table S9. Detection of trends and nonstationarity in London International Airport 

 

Table S10. Detection of trends and nonstationarity in Trenton Airport 

Time 

Slice 

Ljung

-Box 

Test 

Augmented 

Dickey-Fuller 

Test 

KPSS Test Mann-Kendall Trend Test Priestley-

Subbarao 

Test 

Pettitt 

Test 

Mann-Whitney Change 

Point Test 

Mood Change Point Test 

p-

value 

Test 

statistics 

p-

value 

Test 

statistics 

p-value MKZ   p-value p-value p-value Year Test 

statistics 

Threshold Year Test 

statistics 

Threshold 

15-min 0.263 -0.398 0.50** 0.051 >0.10 0.708 0.16 0.479 2.65e-6** 0.893 x x x 1979 3.66* 2.66 

30-min 0.161 -0.325 0.53** 0.034 >0.10 1.732 0.68 0.083* 0.0033** 0.264 x x x 1978 3.16* 2.66 

1-hr 0.373 -0.328 0.53** 0.061 >0.10 1.776 0.87 0.076* 0.0013** 0.098* x x x x x x 

2-hr 0.423 -0.341 0.52** 0.063 >0.10 2.313 1.27 0.021** 5.1e-5** 0.053* 1994 2.81* 2.63 x x x 

6-hr 0.638 -0.244 0.56** 0.078 >0.10 2.031 1.12 0.042** 0.005** 0.092* 1994 2.66* 2.63 x x x 

12-hr 0.295 -0.105 0.61** 0.204 0.014** 2.009 1.64 0.045** 0.044** 0.022** 1996 3.25* 2.63 x x x 

24-hr 0.321 -0.131 0.60** 0.238 0.010** 2.031 1.82 0.042** 0.39 0.014** 1994 3.37* 2.63 x x x 

Time 

Slice 

Ljung

-Box 

Test 

Augmented 

Dickey-Fuller 

Test 

KPSS Test Mann-Kendall Trend Test Priestley-

Subbarao 

Test 

Pettitt 

Test 

Mann-Whitney Change 

Point Test 

Mood Change Point Test 

p-

value 

Test 

statistics 

p-

value 

Test 

statistics 

p-value MKZ   p-value p-value p-value Year Test 

statistics 

Thres

hold 

Year Test 

statistics 

Threshold 

15-min 0.344 -0.662 0.41** 0.179 0.024** -0.549 -0.23 0.583 0.092* 0.253 2006 2.94* 2.63 2006 3.09* 2.66 

30-min 0.288 -0.598 0.43** 0.106 >0.10 -1.422 -0.64 0.155 0.019** 0.240 2005 2.87* 2.63 x x x 

1-hr 0.783 -0.487 0.47** 0.117 >0.10 -1.173 -0.66 0.241 0.031** 0.359 2011 3.06* 2.63 2011 2.96* 2.66 

2-hr 0.845 -0.552 0.45** 0.135 0.070* -1.566 -1.03 0.117 0.224 0.216 2011 3.14* 2.63 2011 3.15* 2.66 

6-hr 0.700 -0.418 0.49** 0.071 >0.10 -1.893 -1.11 0.058* 0.199 0.161 2011 3.01* 2.63 2011 2.80* 2.66 

12-hr 0.587 -0.347 0.52** 0.090 >0.10 -2.142 -1.47 0.032** 0.755 0.093* 2011 2.98* 2.63 x x x 

24-hr 0.733 -0.414 0.50** 0.223 0.010** -2.297 -2.45 0.022** 0.909 0.024** 2005 3.46* 2.63 x x x 
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Table S11. Detection of trends and nonstationarity in Stratford WWTP 

Time 

Slice 

Ljung-

Box 

Test 

Augmented 

Dickey-Fuller 

Test 

KPSS Test Mann-Kendall Trend 

Test 

Priestley-

Subbarao 

Test 

Pettitt 

Test 

Mann-Whitney Change 

Point Test 

Mood Change Point Test 

p-

value 

Test 

statistics 

p-

value 

Test 

statistics 

p-

value 

MKZ   p-

value 

p-value p-value Year Test 

statistics 

Threshold Year Test 

statistics 

Threshold 

15-min 0.070 -0.321 0.53** 0.068 >0.10 -0.233 -0.07 0.816 0.143 - 1994 3.37* 2.63 x x x 

30-min 0.473 -0.375 0.51** 0.039 >0.10 -0.297 -0.13 0.767 0.004** - x x x 2011 3.23* 2.63 

1-hr 0.857 -0.230 0.56** 0.077 >0.10 0.417 0.26 0.677 0.013** - x x x x x x 

2-hr 0.149 -0.263 0.55** 0.055 >0.10 0.389 0.3 0.697 0.016** - x x x 1967 2.73* 2.63 

6-hr 0.375 -0.134 0.60** 0.062 >0.10 -0.459 -0.51 0.646 3.9e-4** 0.802 x x x x x x 

12-hr 0.336 -0.186 0.58** 0.058 >0.10 0.82 -0.67 0.412 8.9e-5** 0.254 x x x x x x 

24-hr 0.789 -0.208 0.57** 0.056 >0.10 -1.442 -1.43 0.149 8.7e-4** 0.360 x x x x x x 
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Table S12. Detection of trends and nonstationarity in Fergus Shand Dam 

Time 

Slice 

Ljung-

Box 

Test 

Augmented 

Dickey-Fuller 

Test 

KPSS Test Mann-Kendall Trend Test Priestley-

Subbarao 

Test 

Pettitt 

Test 

Mann-Whitney Change 

Point Test 

Mood Change Point Test 

p-value Test 

statistics 

p-

value 

Test 

statistics 

p-value MKZ   p-

value 

p-value p-

value 

Year Test 

statistics 

Threshold Year Test 

statistics 

Threshold 

15-min 0.955 -0.267 0.55** 0.184 0.022** -0.99 -0.43 0.322 0.049** 0.25 x x x x x x 

30-min 0.935 -0.204 0.57** 0.172 0.028** -0.44 -0.27 0.658 0.015** 0.33 x x x x x x 

1-hr 0.879 -0.494 0.47** 0.068 >0.10 -1.00 -0.72 0.317 0.004** 0.57 x x x x x x 

2-hr 0.849 -0.540 0.45** 0.055 >0.10 -0.92 -0.69 0.358 0.002** 0.67 x x x x x x 

6-hr 0.967 -0.318 0.53** 0.104 >0.10 -0.26 -0.29 0.795 0.053** 0.77 x x x x x x 

12-hr 0.018** 

(0.033**) 

-0.116 0.61** 0.035 >0.10 -0.45 -0.28 0.652     0.255 - x x x x x x 

24-hr 1.5e-4** 

(0.011**) 

-0.218 0.57** 0.035 >0.10 -1.34 -1.2 0.180     0.216 0.53 x x x x x x 

1Values within first Brackets indicate p-values of Ljung-Box Test after performing two-successive TFPWs. 
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SI 3 GEV Fitting: Methods and Results 

SI 3.1 Estimation of GEV Parameters 

GEV parameters are estimated using Bayesian Inference. For this, a Bayesian analysis is performed by imposing 

a prior distribution on the parameters. We estimated parameters using Bayesian Inference (BI) coupled with 

Differential Evaluation Markov Chain (DE-MC) simulation as in (Cheng and AghaKouchak, 2014; Cheng et 

al., 2014). This approach combines knowledge from a prior distribution and the observation vector 

 
1:t t N

y


y =  (i.e., annual maxima rainfall, where N denotes the number of annual maxima in the observation 

vector Y ) into the posterior distribution of parameters  , ,     and  1 0 1 0, , , ,       assuming 

stationary and nonstationary conditions respectively.  The priors for the location and scale parameters are non-

informative normal distributions, whereas prior for the shape parameter is a normal distribution with a standard 

deviation of 0.3 (Renard et al., 2013) as used in the default option in the NEVA package. The Bayes theorem 

for estimation of GEV parameters under stationarity assumption can be expressed as (Cheng et al., 2014; Renard 

et al., 2013) 

𝑝(𝝎|𝒚) ∝ 𝑝(𝒚|𝝎)𝑝(𝝎) =  ∏ 𝑝(𝒚|𝝎)𝑝(𝝎)𝑁
𝑡=1                        (3.1) 

Under the assumption of nonstationarity, the equation (3.1) is given as (Cheng et al., 2014; Renard et al., 

2013), 

𝑝 ( |𝒚, 𝒙) ∝ 𝑝 (𝒚| , 𝒙) 𝑝 ( |𝒙)                        (3.2) 

𝑝 (𝒚| , 𝒙) =  ∏ 𝑝 (𝒚𝑡| , 𝒙(𝑡)) =  ∏ 𝑝(𝒚𝑡|µ(𝑡), 𝜎(𝑡),  ) 𝑁
𝑡=1

𝑁
𝑡=1                             (3.3) 

Where, 𝒙(𝑡) denote covariates under nonstationarity. The  𝑝(𝝎|𝒚) and 𝑝( | y , 𝒙)  in Eqns. 3.1 and 3.2 

indicate resulting posterior distributions whereas 𝑝(𝒚|𝝎) and 𝑝 (𝒚𝑡| , 𝒙(𝑡)) denote likelihood functions. 

Since the posterior distributions of model parameters are, in general, analytically intractable, the DE-MC is 

integrated with BI to generate a large number of realizations (Cheng et al., 2014). DE-MC is an adaptive 

Monte Carlo Markov Chain (MCMC) algorithm (Ter Braak and Vrugt, 2008; Ter Braak, 2006), in which 

multiple chains (here, we fix chain length ‘n’ as 5) are run in parallel. The resulting MC simulations are then 

run to an equilibrium. It is a standard practice to discard the initial iterations (often referred to as the burn-in 

period) of simulated samples since they are strongly influenced by starting values and do not provide usable 

information of the target distribution. Here we run DE-MC simulations for 3000 iterations and kept the 2001-

3000th iterations of each chain. The convergence of MC simulation is checked by the “potential scale reduction 
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factor (𝑅)̂” as in (Gelman et al., 2011), which suggests the value of 𝑅̂  should remain below the threshold value 

of 1.1. The post burn-in random draws from posterior distribution are then used to construct predictive 

distributions. For annual maxima time series of each duration, the mean and associated 95% credibility interval 

of parameters (µ(𝑡), 𝜎(𝑡)) are derived by computing 50th (the median), 2.5th and 97.5th (bounds) percentiles of 

post burn-in random draw (for example, 50th percentile of µ(𝑡1), … . , µ(𝑡100)). The derived model parameters 

are then used to compute corresponding design rainfall quantiles at T-year return period. For more details of BI 

and parameter estimation by DE-MC simulation, interested readers are requested to refer (Gelman et al., 2014; 

Renard et al., 2013).  

 

SI 3.2 Model Selection 

SI 3.2.1 Bayes Factor 

To evaluate the fit of the stationary model (null model, M1) relative to the nonstationary model (alternative 

model, M2) Bayes factor is computed based on the posterior distributions of sampled parameters, which is 

given as (Cheng et al., 2014) 

 

 

   

   

1

2 2

Pr | Pr ,Pr

Pr Pr | Pr ,

M d

M d




 





 




   

    



 
                            (3.4) 

Where   denotes input data,   and   denote model parameters as described in the previous section. The 

term  Pr    can be expressed using Monte Carlo integration estimation as described in (Kass and 

Raftery, 1995).  A value of 1   indicates nonstationary model, the nonstationary model, M2 fits the data 

better than the stationary model, M1. 

 

SI 3.2.2 Akaike Information Criterion (AIC) for Small Samples 

The AIC (Anderson et al., 1994; Bozdogan, 2000) is defined as follows: 

   log 2AIC m n MSE m                           (3.5) 

Where n is the number of observations, m denotes the number of fitted model parameters. MSE is the Mean 

Square Error of the fitted distribution against empirical distribution, which is expressed as (Dawson et al., 2007; 

Hu, 2007; Karmakar and Simonovic, 2007, 2007), 

 
2

1

1 n

i i

i

MSE O F
n m 

 


                          (3.6)  
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Where iO  and iF  are empirical (observed) and estimated distributions. The observed distribution ( XO ) is 

computed using rank-based Gringorten’s plotting position formula (Yue, 2001) 

 
0.44

1,2,...,
0.12

X i

i
O X x i n

n


   


                        (3.7) 

Where, i is the rank in ascending order and ix  is the ith largest variate in a data series of size n.  

The AIC for small sample sizes ( 40n m ) is given by (Hurvich and Tsai, 1995),  

 
 2 1

1
c

m m
AIC m AIC

n m


 

 
                         (3.8) 

As sample size increases, the last term of the second-order AIC statistics ( cAIC ) approaches zero, and the AICc 

tends to give the same conclusion as the traditional AIC (Burnham and Anderson, 2003). Since in the present 

study, length of data series varies from 46 to 66 years, we used AICc instead of traditional AIC, which is also 

a widely used method for model selection in hydrology (Caroni and Panagoulia, 2016; Gu et al., 2017; 

Panagoulia et al., 2014).  
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Table S13. Performance of stationary and nonstationary models for Oshawa WPCP 

Time 

Slice 

Model Location 

parameter 

Scale parameter Shape 

parameter 

AICc Bayes-

factor 

LB (100yr) UB (100yr) UB/LB 

15-min GEVt-0 48.33 15.71 -0.075 -332.55 - 81.65 156.01 1.91 

 GEVt-I 47.22+0.095t 17.95 -0.202 -304.31 7736.97 86.91 134.98 1.55 

 GEVt-II 51.03-0.074t exp(3.06-0.007t) -0.108 -290.55 5.44 91.48 156.69 1.71 

30-min GEVt-0 31.67 11.21 -0.21 -306.10 - 47.64 107.8 2.26 

 GEVt-I 27.66+0.135t 10.73 -0.098 -287.17 0.15 51.74 74.03 1.43 

 GEVt-II 28.55+0.104t exp(2.47-0.005t) -0.155 -279.13 2.13 51.03 94.42 1.85 

1-hr GEV t-0 18.10 7.33 -0.03 -317.73 - 31.82 104.55 3.28 

 GEVt-I 16.62+0.082t 7.28 -0.05 -320.87 0.47 39.59 59.46 1.50 

 GEVt-II 16.44+0.07t exp(1.97+0.002t) -0.002 -319.36 0.42 38.23 77.35 2.02 

2-hr GEV t-0 11.09 3.81 0.13 -333.15 - 21.21 73.71 3.47 

 GEVt-I 10.04+0.05t 3.72 0.095 -316.87 0.16 23.03 48.89 2.12 

 GEVt-II 9.61+0.07t exp(1.41+0.0034t) 0.007 -304.53 0.54 24.97 47.67 1.91 

6-hr GEVt-0 5.02 1.42 0.094 -315.85 - 9.49 22.66 2.39 

 GEVt-I 4.5+0.02t 1.44 0.062 -302.12 0.51 10.8 15.46 1.43 

 GEVt-II 4.6+0.02t exp(0.52-0.004t) 0.032 -291.60 0.67 10.34 15.94 1.54 

12-hr GEVt-0 2.83 0.78 0.28 -310.34 - 6.36 20.48 3.22 

 GEVt-I 2.65+0.0073t 0.78 0.36 -319.6 0.46 9.3 15.85 1.70 

 GEVt-II 2.68+0.0092t exp(-0.24+0.0017t) 0.29 -304.38 3.83 8.2 14.16 1.72 

24-hr GEVt-0 1.65 0.51 0.17 -318.65 - 3.3 10.1 3.06 

 GEVt-I 1.51+0.0056t 0.50 0.17 -316.24 0.46 3.8 7.63 2.00 

 GEVt-II 1.51+0.0072t exp(-0.68+0.00135t) 0.14 -305.97 1.98 3.94 7.18 1.82 

*GEVt-0 is stationary model whereas GEVt-I and GEVt-II are nonstationary models with time-variant mean, and both time-variant mean and standard deviation 

respectively. The selected best fitted nonstationary model is marked in bold letters. Bayes factor, 1   indicates that the nonstationary model fits better than 

the stationary model. However, in cases 1  , to compare with stationary model, the nonstationary model is selected following minimum AICc criteria. LB and 

UB indicate lower and upper bounds of DSI at 100-year return period.  
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Table S14. Performance of stationary and nonstationary models for Kingston Airport 

Time 

Slice 

Model Location parameter Scale parameter Shape 

parameter 

AICc Bayes-

factor 

LB (100yr) UB (100yr) UB/LB 

15-min GEVt-0 44.59 12.70 -0.04 -315.08 - 76 140.88 1.85 

 GEVt-I 41.36+0.13t 12.83 -0.04 -311.53 1.93 85.2 118.76 1.40 

 GEVt-II 40.83+0.19t exp(2.92-0.013t) -0.07 -317.65 5.19 78.8 142.36 1.81 

30-min GEVt-0 28.40 9.04 -0.05 -345.71 - 48.1 97.36 2.02 

 GEVt-I 27.61+0.042t 9.01 -0.04 -348.92 0.91 53.41 98.27 1.84 

 GEVt-II 27.57+0.035t exp(2.11+0.0026t) -0.07 -331.17 37.31 53.12 73.41 1.38 

1-hr GEVt-0 18.35 5.87 -0.11 -318.56 - 29.45 56.19 1.91 

 GEVt-I 18.4+0.008t 6.02 -0.12 -326.50 3.76 31.21 61.45 1.97 

 GEVt-II 16.77+0.046t exp(1.84-0.0059t) 0.02 -291.35 1.84 37.8 52.93 1.40 

2-hr GEVt-0 11.32 3.16 0.06 -330.11 - 19.36 49.78 2.57 

 GEVt-I 11.09+0.009t 3.19 0.05 -321.46 1.27 23.74 33.6 1.41 

 GEVt-II 11.12+0.0055t exp(1.10+0.0004t) 0.15 -325.34 4.47 22.89 46.26 2.02 

6-hr GEVt-0 5.21 1.44 0.10 -327.18 - 10.1 23.64 2.34 

 GEVt-I 5.07+0.0073t 1.41 0.13 -329.47 0.23 11.17 17.79 1.59 

 GEVt-II 4.88+0.0093t exp(0.38-0.00335t) 0.21 -326.79 0.77 12.91 19.57 1.51 

12-hr GEVt-0 3.13 0.83 0.11 -312.19 - 6.09 13.04 2.14 

 GEVt-I 2.85+0.009t 0.78 0.14 -321.61 0.57 6.36 10.59 1.66 

 GEVt-II 2.84+0.009t exp(-0.126-0.006t) 0.14 -317.09 0.16 6.78 9.5 1.40 

24-hr GEVt-0 1.77 0.46 0.07 -297.12 - 3.18 6.43 2.02 

 GEVt-I 1.59+0.0071t 0.44 0.08 -299.78 0.54 6.36 10.59 1.66 

 GEVt-II 1.64+0.005t exp(-0.81-0.0006t) 0.07 -296.75 0.97 3.42 5.57 1.63 
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Table S15. Performance of stationary and nonstationary models for Trenton Airport 

Time 

Slice 

Model Location 

parameter 

Scale parameter Shape 

parameter 

AICc Bayes-

factor 

LB (100yr) UB (100yr) UB/LB 

15-min GEVt-0 43.08 12.41 0.24 -485.30 - 95.12 250.55 2.63 

 GEVt-I 43.96-0.05t 11.87 0.19 -474.35 4.18 98.79 173.25 1.75 

 GEVt-II 40.37+0.16t exp(1.65+0.04t) -0.20 -472.29 7075420 86.12 120.33 1.40 

30-min GEVt-0 26.94 8.50 0.13 -495.06 - 55.05 133.25 2.42 

 GEVt-I 26.71+0.014t 8.28 0.09 -477.87 13.50 55.16 111.31 2.02 

 GEVt-II 22.39+0.16t exp(2.34+0.0024) -0.07 -418.98 77.76 56.23 96.9 1.72 

1-hr GEVt-0 16.25 5.022 0.15 -448.76 - 34.7 88.1 2.54 

 GEVt-I 15.40 + 0.032t 5.44 0.17 -476.72 0.73 39.3 73.74 1.88 

 GEVt-II 14.62+0.057t exp(1.31+0.010) 0.13 -463.04 0.06 37.0 81.02 2.19 

2-hr GEVt-0 10.13 3.32 0.17 -524.45 - 21.72 59.53 2.74 

 GEVt-I 9.03 + 0.03t 3.38 0.09 -481.72 0.99 20.46 51.05 2.49 

 GEVt-II 8.63 + 0.05t exp(1.02 + 0.007t) 0.09 -493.82 0.16 24.76 36.64 1.48 

6-hr GEVt-0 5.100 1.31 0.14 -419.26 - 10.24 22.05 2.15 

 GEVt-I 4.72 + 0.0124t 1.37 0.16 -429.78 1.83 12.56 17.14 1.36 

 GEVt-II 4.75 + 0.014t exp(0.33 + 0.0012t) 0.15 -415.55 1.11 12.65 17.03 1.35 

12-hr GEVt-0 3.19 0.94 0.14 -480.19 - 6.09 14.86 2.44 

 GEVt-I 2.85 + 0.0114t 0.87 0.09 -491.15 0.93 6.74 10.26 1.52 

 GEVt-II 2.84 + 0.0113t exp(-0.16+0.0014t) 0.15 -488.52 0.15 7.95 10.58 1.33 

24-hr GEVt-0 1.90 0.52 -0.04 -499.41 - 3.38 4.99 1.48 

 GEVt-I 1.51 + 0.011t 0.50 0.02 -467.34 0.26 3.19 5.84 1.83 

 GEVt-II 1.57 + 0.0096t exp(-0.80 + 0.0033t) -0.02 -475.74 0.14 3.38 4.99 1.48 
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Table S16. Performance of stationary and nonstationary models for Stratford WWTP 

Time 

Slice 

Model Location 

parameter 

Scale parameter Shape 

parameter 

AICc Bayes-

factor 

LB (100yr) UB (100yr) UB/LB 

15-min GEVt-0 56.30 15.70 0.04 -423.32 - 100.59 216.41 2.15 

 GEVt-I 57.31-0.05t 15.06 0.18 -414.85 5.26 105.08 144.59 1.38 

 GEVt-II 60.72-0.13t exp(3.04-0.009t) 0.12 -384.65 54.70 134.37 184.4 1.37 

30-min GEVt-0 33.83 10.81 0.17 -413.45 - 73.35 205.5 2.80 

 GEVt-I 34.76-0.023t 11.16 0.28 -419.35 6.24 110.13 177.76 1.61 

 GEVt-II 38.75-0.164t exp(2.97-0.015t) 0.45 -314.14 68.72 311.05 163.32 1.90 

1-hr GEVt-0 19.03 6.31 0.21 -388.39 - 44.6 149.69 3.36 

 GEVt-I 18.62-0.0045t 6.42 0.36 -398.93 3.93 74.66 125.4 1.68 

 GEVt-II 17.43+0.0552t exp(1.5+0.0125t) 0.17 -372.02 2.79 49.84 84.84 1.70 

2-hr GEVt-0 11.71 4.37 0.26 -390.44 - 28.84 118.37 4.10 

 GEVt-I 11.49+0.023t 4.99 0.34 -371.43 3.77 33.97 158.15 4.65 

 GEVt-II 11.82-0.027t exp(1.70-0.008t) 0.53 -342.82 3.35 70.43 147.35 2.09 

6-hr GEVt-0 5.32 1.80 0.24 -400.01 - 13.34 38.24 2.87 

 GEVt-I 5.76-0.012t 1.78 0.21 -392.41 3.97 13.2 31.6 2.40 

 GEVt-II 5.52-0.007t exp(0.59+0.0002t) 0.28 -400.2 29.5 18.2 28.63 1.57 

12-hr GEVt-0 3.11 0.89 0.26 -365.66 - 7.45 19.5 2.62 

 GEVt-I 3.38-0.01t 0.89 0.34 -377.72 0.96 9.75 17.42 1.79 

 GEVt-II 3.44-0.0097t exp(-0.11-6e-5t) 0.29 -367.39 0.25 9.88 14.77 1.50 

24-hr GEVt-0 1.68 0.45 0.26 -376.96 - 3.75 9.93 2.65 

 GEVt-I 1.77-0.004t 0.45 0.29 -377.32 0.71 9.75 17.42 1.79 

 GEVt-II 1.82-0.005t exp(-0.80-0.0008t) 0.30 -378.44    0.41          4.56 8.69 1.90 
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Table S17. Performance of stationary and nonstationary models for Fergas Shand Dam 

Time Slice Model Location 

parameter 

Scale parameter Shape 

parameter 

AICc Bayes-

factor 

LB (100yr) UB (100yr) UB/LB 

15-min GEVt-0 54.92 15.4 0.13 -538.02 - 116.76 224.08 1.92 

 GEVt-I 61.55-0.09t 20.77 0.047 -516.45 3.40 119.9 255.47 2.13 

 GEVt-II 65.49-0.19t exp(2.99-0.00064t) 0.03 -529.81 1.22 117.27 230.15 1.96 

30-min GEVt-0 37.63 13.2 0.11 -469.76 - 86.68 185.36 2.14 

 GEVt-I 38.27-0.024t 13.6 0.11 -462.14 2.98 85.51 200.77 2.35 

 GEVt-II 34.08+0.074t exp(2.12+0.0115t) 0.14 -444.82 105.23 93.66 150.24 1.60 

1-hr GEVt-0 22.10 8.57 0.16 -532.24 - 52.91 137.9 2.61 

 GEVt-I 25.35-0.096t 8.58 0.17 -526.26 0.12 60.42 115.43 1.91 

 GEVt-II 19.54+0.04t exp(1.59+0.013t) 0.28 -476.74 11.4 74.7 112.48 1.50 

2-hr GEVt-0 12.54 5.26 0.12 -542.06 - 30.02 76.43 2.55 

 GEVt-I 13.75-0.049t 5.02 0.23 -487.49 1.17 41.93 69.76 1.66 

 GEVt-II 12.89-0.026t     exp(1.64-0.00013t) 0.32 -462.93 1.95 49.89 89.83 1.80 

6-hr GEVt-0 5.34 2.31 0.055 -558.5 - 12.11 28.94 2.39 

 GEVt-I 5.30-0.0026t 2.35 0.064 -537.24 1.35 14.66 21.69 1.48 

 GEVt-II 5.15+0.0011t exp(0.88-0.00035t) 0.046 -524.53 1.25 14.86 20.51 1.38 
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Figure S9. The performance of stationary (Blue) versus nonstationary (Orange - nonstationary with time variant mean; red - nonstationary with time variant 

mean and standard deviation) GEV models with durations ranging between 15-minute and 24-hour (a-g) in nine urbanized sites. Sites with double circles 

indicate either better or comparable performance of stationary model relative to the nonstationary model. The shades denote the type of distribution. 
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Figure S10. PP plots of nonstationary versus stationary GEV distributions for 30-min storm duration in nine sites (a - i) 
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Figure S11. PP plots of nonstationary versus stationary GEV distributions for 1-hour storm duration in nine sites (a - i). 
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Figure S12. PP plots of nonstationary versus stationary GEV distributions for 6-hour duration in nine sites (a - i)
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4 Estimation of Design Storm Intensity (DSI) 

The DSI 𝑞𝑝, often referred as return level in the literature is the value which is expected to be exceeded on an 

average once in every  1
𝑝⁄   periods, where 1 − 𝑝 is the specific probability associated with the quantile 

(Gilleland and Katz, 2014). We obtain the 1 − 𝑝 (i.e., non-exceedance probability of occurrence) quantile of 

the annual maximum rainfall fitted with stationary GEV distribution using following expression (Coles and 

Tawn, 1996):  

 

  ln 1 1 0pq p


 


       
 

                       (4.1) 

Where, 𝑞𝑝 is the DSI, associated with a 
 

1
1

T
p




 - year return period. The nonstationary design intensity 

is analogous to the standard stationary precipitation intensity with the exception of inclusion of time variant 

parameters (Cheng et al., 2014) 

  ln 1 1 0pq p


 


       
 

                       (4.2) 

Where time-variant parameters,   and   are derived by computing 0.50, 0.025 and 0.975 quantiles of DE-

MC sampled  t  and  t            1 1,...., ,....,n nt t and t t     respectively. In Eq. 4.1, when 

0  , the GEV distribution reduces to Gumbel distribution (or Extreme Value Type I). It should be noted 

that Gumbel Extreme value distribution has been commonly used to estimate design storm by Environment 

Canada (CSA, 2010). The Gumbel probability distribution has following form (Wang et al., 2015) 

p pq K                              (4.3) 

Where 
pK denotes frequency factor depending on the return period T, which is obtained using following 

relationship (Wang et al., 2015) 

6
0.5772 ln ln

1
p

T
K

T

    
    

   
                       (4.4) 

Environment Canada uses this method to estimate rainfall frequency at a given duration and obtain nationwide 

IDF curves.  
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Figure S13. Uncertainty in DSI for 10-year return periods for stationary (blue) versus nonstationary (red) models The boxplots indicate 95% credibility 

interval in  DSI estimate.  
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Figure S14. Same as Figure S13 but for 5-year return period. 
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Table S18.1 Ratio and percentage changes between updated nonstationary versus EC-

generated DSI for Toronto International Airport for different durations  

Duration 2-year 5-year 10-year 25-year  50-year 100-year 

15-min 0.72  

[-38.6%] 

0.84 

[-19.1%] 

0.91 

[-10.0%] 

0.99 

[-0.8%] 

1.05 

[5.1%] 

1.12 

[10.4%] 

30-min 0.75 

[-33.2%] 

0.80 

[-25.1%] 

0.81 

[-22.9%] 

0.82 

[-21.7%] 

0.82 

[-21.6%] 

0.82 

[-21.8%] 

1-hour 0.94 

[-6.7%] 

0.93 

[-7.3%] 

0.92 

[-8.9%] 

0.90 

[-11.7%] 

0.88 

[-14.1%] 

0.86 

[-16.7%] 

2-hour 0.97 

[-3.3%] 

0.93 

[-7.5%] 

0.91 

[-9.4%] 

0.90 

[-11.3%] 

0.89 

[-12.6%] 

0.88 

[-13.7%] 

6-hour 0.96 

[-4.4%] 

0.92 

[-9.17%] 

0.94 

[-6.8%] 

0.99 

[-0.7%] 

1.05 

[5.2%] 

1.13 

[11.7*%] 

12-hour 0.94 

[-6.4%] 

0.94 

[-6.7%] 

1.03 

[2.5%] 

1.23 

[18.9%] 

1.47 

[32.2%] 

1.80 

[44.5%] 

24-hour 0.94 

[-5.9%] 

0.89 

[-12.1%] 

0.90 

[-10.7%] 

0.96 

[-4.18%] 

1.03 

[2.8%] 

1.11 

[10.1%] 

*Results within brackets indicate percentage changes between updated versus EC-generated DSI. More than 1% 

increase in DSI is shown in bold, whereas 10% or more is marked with bold italic letters. 

 

Table S18.2 Ratio and percentage changes between updated stationary versus EC-generated 

DSI for Toronto International Airport for different durations  

Duration 2-year 5-year 10-year 25-year  50-year 100-year 

15-min 0.73  

[-37.7%] 

0.80 

[-25.3%] 

0.82 

[-22.1%] 

0.83 

[-20.6%] 

0.83 

[-20.5%] 

0.83 

[-25.6%] 

30-min 0.76 

[-32.3%] 

0.83 

[-21.0%] 

0.86 

[-16.5%] 

0.89 

[-12.4%] 

0.91 

[-10.0%] 

0.93 

[-8.08%] 

1-hour 0.97 

[-2.9%] 

0.97 

[-2.9%] 

0.98 

[-1.7%] 

1.01 

[0.6%] 

1.03 

[2.5%] 

1.05 

[4.6%] 

2-hour 0.98 

[-1.6%] 

0.96 

[-4.35%] 

0.97 

[-3.4%] 

0.99 

[-0.7%] 

1.02 

[1.9%] 

1.05 

[4.9%] 

6-hour 0.93 

[-7.7%] 

0.89 

[-12.6%] 

0.91 

[-9.7%] 

0.98 

[-2.4%] 

1.05 

[4.4%] 

1.13 

[11.8*%] 

12-hour 0.93 

[-8.0%] 

0.88 

[-13.5%] 

0.91 

[-9.8%] 

1.0 

[0.3%] 

1.1 

[9.8%] 

1.25 

[19.9%] 

24-hour 0.94 

[-5.9%] 

0.90 

[-11.6%] 

0.91 

[-9.6%] 

0.98 

[-2.3%] 

1.06 

[5.3%] 

1.15 

[13.2%] 

*More than 10% increase is marked in bold italics. 



 

 

44 

 

Table S19.1 Ratio and percentage changes between updated nonstationary versus EC-

generated DSI for Hamilton Airport for different durations  

Duration 2-year 5-year 10-year 25-year  50-year 100-year 

15-min 0.96  

[-4.7%] 

0.93 

[-7.1%] 

0.94 

[-6.1%] 

0.97 

[-3.2%] 

1.0 

[-0.3%] 

1.03 

[3.1%] 

30-min 0.71 

[-40.1%] 

0.72 

[-39.5%] 

0.75 

[-34.2%] 

0.80 

[-24.3%] 

0.86 

[-15.7%] 

0.94 

[-6.7%] 

1-hour 0.98 

[-2.1%] 

0.93 

[-7.8%] 

0.91 

[-9.7%] 

0.90 

[-10.9%] 

0.90 

[-11.2%] 

0.90 

[-11.2%] 

2-hour 0.94 

[-6.1%] 

0.89 

[-12.3%] 

0.90 

[-11.7%] 

0.93 

[-7.8%] 

0.97 

[-3.5%] 

1.02 

[1.5%] 

6-hour 0.90 

[-11.6%] 

0.85 

[-17.7%] 

0.87 

[-15.2%] 

0.93 

[-7.8%] 

1.0 

[-0.3%] 

1.09 

[7.9%] 

12-hour 0.91 

[-9.2%] 

0.88 

[-13.8%] 

0.89 

[-

12.07%] 

0.94 

[-6.5%] 

0.99 

[-0.76%] 

1.06 

[5.59%] 

24-hour 0.75 

[-32.9%] 

0.80 

[-25.8%] 

0.84 

[-19.0%] 

0.92 

[-8.9%] 

0.99 

[-1.1%] 

1.07 

[6.5%] 

 

Table S19.2 Ratio and percentage changes between updated stationary versus EC-generated 

DSI for Hamilton Airport for different durations  

Duration 2-year 5-year 10-year 25-year  50-year 100-year 

15-min 0.98  

[-1.7%] 

0.97 

[-2.8%] 

0.99 

[-1.5%] 

1.02 

[1.6%] 

1.05 

[4.5%] 

1.08 

[7.7%] 

30-min 0.72 

[-38.5%] 

0.72 

[-38.3%] 

0.75 

[-34.2%] 

0.79 

[-26.5%] 

0.83 

[-19.8%] 

0.61 

[-63.9%] 

1-hour 0.96 

[-3.7%] 

0.92 

[-9.2%] 

0.91 

[-9.5%] 

0.93 

[-7.6%] 

0.95 

[-5.2%] 

0.98 

[-2.1%] 

2-hour 0.94 

[-6.4%] 

0.87 

[-15.4%] 

0.85 

[-17.5%] 

0.85 

[-17.5%] 

0.86 

[-16.3%] 

0.87 

[-14.4%] 

6-hour 0.91 

[-10.1%] 

0.86 

[-16.8%] 

0.86 

[-15.6%] 

0.91 

[-10.4%] 

0.96 

[-4.7%] 

1.02 

[1.7%] 

12-hour 0.92 

[-8.5%] 

0.87 

[-14.5%] 

0.87 

[-14.2%] 

0.90 

[-10.4%] 

0.94 

[-6.3%] 

0.99 

[-1.3%] 

24-hour 0.76 

[-31.3%] 

0.79 

[-26.3%] 

0.83 

[-21.1%] 

0.88 

[-13.3%] 

0.93 

[-7.2%] 

0.99 

[-1.2%] 
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Table S20.1 Ratio and percentage changes between updated nonstationary versus EC-

generated DSI for Oshawa WPCP for different durations  

Duration 2-year 5-year 10-year 25-year  50-year 100-year 

15-min 1.09  

[7.8%] 

1.08 

[7.6%] 

1.06 

[5.3%] 

1.01 

[1.06%] 

0.97 

[-2.7%] 

0.94 

[-6.8%] 

30-min 1.09 

[8.7%] 

1.05 

[4.83%] 

1.0 

[0.1%] 

0.93 

[-7.4%] 

0.88 

[-13.6%] 

0.83 

[-20.3%] 

1-hour 1.05 

[4.3%] 

1.07 

[6.4%] 

1.07 

[6.5%] 

1.06 

[5.9%] 

1.05 

[5.1%] 

1.04 

[4.2%] 

2-hour 1.0 

[0.24%] 

1.02 

[1.81%] 

1.04 

[3.7%] 

1.07 

[6.9%] 

1.10 

[9.4%] 

1.14 

[12.0%] 

6-hour 1.0 

[0%] 

0.99 

[-0.55%] 

1.0 

[-0.11%] 

1.01 

[1.3%] 

1.03 

[2.5%] 

1.04 

[4.0%] 

12-hour 0.96 

[-4.2%] 

0.90 

[-11.6%] 

0.93 

[-7.56%] 

1.03 

[3.04%] 

1.15 

[12.8%] 

1.30 

[23.0%] 

24-hour 0.99 

[-1.1%] 

0.95 

[-5.6%] 

0.96 

[-4.6%] 

0.99 

[-1.05%] 

1.03 

[2.9%] 

1.08 

[7.3%] 

 

 

 

Table S20.2 Ratio and percentage changes between updated stationary versus EC-generated 

DSI for Oshawa WPCP for different durations  

Duration 2-year 5-year 10-year 25-year  50-year 100-year 

15-min 1.05  

[4.9%] 

1.05 

[4.9%] 

1.04 

[4.1%] 

1.03 

[2.5%] 

1.01 

[1.0%] 

0.99 

[-0.6%] 

30-min 1.07 

[6.3%] 

1.06 

[5.6%] 

1.03 

[3.0%] 

0.99 

[-1.5%] 

0.95 

[-5.5%] 

0.91 

[-9.9%] 

1-hour 1.03 

[2.6%] 

1.06 

[5.9%] 

1.07 

[6.9%] 

1.08 

[7.4%] 

1.08 

[7.5%] 

1.08 

[7.3%] 

2-hour 1.0 

[0.4%] 

1.04 

[3.5%] 

1.07 

[6.7%] 

1.13 

[11.4%] 

1.18 

[15.1%] 

1.23 

[18.9%] 

6-hour 1.01 

[0.9%] 

1.01 

[0.5%] 

1.02 

[1.5%] 

1.04 

[3.7%] 

1.06 

[5.9%] 

1.09 

[8.1%] 

12-hour 0.96 

[-3.8%] 

0.88 

[-14.2%] 

0.88 

[-13.3%] 

0.93 

[-7.0%] 

1.0 

[0%] 

1.08 

[7.8%] 

24-hour 0.98 

[-1.6%] 

0.95 

[-5.5%] 

0.96 

[-4.6%] 

0.99 

[-1.0%] 

1.03 

[2.7%] 

1.07 

[6.9%] 
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Table S21.1 Ratio and percentage changes between updated nonstationary versus EC-

generated DSI for Windsor Airport for different durations  

Duration 2-year 5-year 10-year 25-year  50-year 100-year 

15-min 0.94  

[-6.1%] 

0.97 

[-3.3%] 

1.02 

[1.6%] 

1.11 

[9.8%] 

1.20 

[16.5%] 

1.31 

[23.4%] 

30-min 0.99 

[-1.5%] 

1.00 

[0.5%] 

1.03 

[2.9%] 

1.07 

[6.8%] 

1.11 

[9.9%] 

1.15 

[13.2%] 

1-hour 0.98 

[-1.7%] 

0.98 

[-1.7%] 

1.00 

[0.21%] 

1.04 

[3.9%] 

1.08 

[7.4%] 

1.12 

[10.9%] 

2-hour 1.06 

[5.8%] 

1.06 

[5.3%] 

1.04 

[3.5%] 

1.00 

[0.27%] 

0.98 

[-2.5%] 

0.95 

[-5.5%] 

6-hour 1.04 

[3.7%] 

1.06 

[5.9%] 

1.08 

[7.2%] 

1.10 

[8.9%] 

1.11 

[10.3%] 

1.13 

[11.6%] 

12-hour 1.01 

[0.5%] 

1.01 

[1.2%] 

1.03 

[2.7%] 

1.05 

[5.2%] 

1.08 

[7.4%] 

1.11 

[9.8%] 

24-hour 1.00 

[-0.45%] 

1.00 

[0%] 

1.01 

[0.9%] 

1.02 

[1.8%] 

1.03 

[2.6%] 

1.03 

[3.2%] 

 

 

 

Table S21.2 Ratio and percentage changes between updated stationary versus EC-generated 

DSI for Windsor Airport for different durations  

Duration 2-year 5-year 10-year 25-year  50-year 100-year 

15-min 0.97  

[-3.0%] 

0.98 

[-1.94%] 

1.00 

[0.32%] 

1.04 

[4.2%] 

1.08 

[7.5%] 

1.12 

[11.1%] 

30-min 0.98 

[-1.56%] 

1.01 

[0.79%] 

1.03 

[2.6%] 

1.05 

[4.9%] 

1.07 

[6.7%] 

1.09 

[8.5%] 

1-hour 1.01 

[1.04%] 

1.01 

[0.99%] 

1.02 

[1.5%] 

1.03 

[2.7%] 

1.04 

[3.7%] 

1.05 

[4.8%] 

2-hour 1.07 

[6.9%] 

1.06 

[5.5%] 

1.03 

[3.3%] 

1.0 

[-0.3%] 

0.97 

[-3.4%] 

0.94 

[-6.8%] 

6-hour 1.03 

[2.4%] 

1.04 

[3.7%] 

1.05 

[4.7%] 

1.07 

[6.1%] 

1.08 

[7.2%] 

1.09 

[8.4%] 

12-hour 1.00 

[-0.26%] 

1.01 

[1.4%] 

1.04 

[3.5%] 

1.07 

[6.8%] 

1.10 

[9.5%] 

1.14 

[12.3%] 

24-hour 1.00 

[0.45%] 

1.01 

[0.7%] 

1.01 

[1.2%] 

1.02 

[2.1%] 

1.03 

[2.6%] 

1.03 

[3.2%] 
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Table S22.1 Ratio and percentage changes between updated nonstationary versus EC-

generated DSI for Kingston P. Station for different durations  

Duration 2-year 5-year 10-year 25-year  50-year 100-year 

15-min 1.00  

[-0.2%] 

1.00 

[0.5%] 

1.00 

[-0.03%] 

0.99 

[-1.3%] 

0.98 

[-2.5%] 

0.96 

[-3.9%] 

30-min 0.98 

[-1.8%] 

0.98 

[-2.5%] 

0.97 

[-3.4%] 

0.95 

[-4.78%] 

0.94 

[-5.93%] 

0.93 

[-7.13%] 

1-hour 1.00 

[0.1%] 

0.97 

[-2.8%] 

0.95 

[-5.68%] 

0.91 

[-9.8%] 

0.88 

[-13.3%] 

0.86 

[-16.8%] 

2-hour 0.96 

[-4.5%] 

0.95 

[-4.9%] 

0.97 

[-2.84%] 

1.01 

[1.18%] 

1.05 

[4.9%] 

1.10 

[8.82%] 

6-hour 0.99 

[-1.04%] 

0.98 

[-1.98%] 

0.99 

[-0.56%] 

1.03 

[2.5%] 

1.06 

[5.4%] 

1.09 

[8.6%] 

12-hour 0.98 

[-2.08%] 

0.96 

[-4.1%] 

0.97 

[-3.1%] 

1.00 

[-0.3%] 

1.03 

[2.8%] 

1.07 

[6.1%] 

24-hour 0.98 

[-1.5%] 

0.98 

[-1.6%] 

0.99 

[-0.7%] 

1.01 

[1.2%] 

1.03 

[3.1%] 

1.05 

[4.9%] 

 

 

 

Table S22.2 Ratio and percentage changes between updated stationary versus EC-generated 

DSI for Kingston P. Station for different durations  

Duration 2-year 5-year 10-year 25-year  50-year 100-year 

15-min 0.97 

[-2.8%] 

0.97 

[-2.7%] 

0.97 

[-3.1%] 

0.96 

[-4.0%] 

0.95 

[-4.8%] 

0.95 

[-5.7%] 

30-min 0.98 

[-2.5%] 

0.97 

[-3.2%] 

0.96 

[-4.1%] 

0.95 

[-5.7%] 

0.93 

[-7.1%] 

0.92 

[-8.5%] 

1-hour 0.99 

[-1.5%] 

0.96 

[-4.5%] 

0.93 

[-7.3%] 

0.90 

[-11.4%] 

0.87 

[-14.7%] 

0.85 

[-18.1%] 

2-hour 0.97 

[-3.3%] 

0.95 

[-5.1%] 

0.95 

[-4.9%] 

0.96 

[-4.1%] 

0.97 

[-3.0%] 

0.98 

[-1.8%] 

6-hour 0.99 

[-1.2%] 

0.98 

[-2.2%] 

0.99 

[-1.4%] 

1.01 

[0.8%] 

1.03 

[2.9%] 

1.06 

[5.3%] 

12-hour 1.0 

[0.3%] 

0.98 

[-1.5%] 

0.99 

[-0.8%] 

1.01 

[1.4%] 

1.04 

[3.9%] 

1.07 

[6.5%] 

24-hour 0.99 

[-0.5%] 

1.0 

[-0.4%] 

1.01 

[0.7%] 

1.02 

[2.3%] 

1.04 

[3.9%] 

1.06 

[5.6%] 
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Table S23.1 Ratio and percentage changes between updated nonstationary versus EC-

generated DSI for London International Airport for different durations  

Duration 2-year 5-year 10-year 25-year  50-year 100-year 

15-min 0.92  

[-9.2%] 

0.96 

[-4.3%] 

1.0 

[0.45%] 

1.08 

[7.1%] 

1.1 

[12.3%] 

1.21 

[17.4%] 

30-min 0.92 

[-9.3%] 

0.89 

[-12.3%] 

0.90 

[-11.7%] 

0.92 

[-9.2%] 

0.94 

[-6.4%] 

0.97 

[-3.3%] 

1-hour 0.88 

[-13.3%] 

0.88 

[-13.3%] 

0.91 

[-9.3%] 

0.98 

[-1.9%] 

1.05 

[4.3%] 

1.12 

[10.8%] 

2-hour 0.92 

[-8.9%] 

0.93 

[-7.8%] 

0.95 

[-5.8%] 

0.98 

[-2.5%] 

1.0 

[0.12%] 

1.03 

[2.9%] 

6-hour 0.93 

[-7.2%] 

0.92 

[-9.0%] 

0.92 

[-9.1%] 

0.92 

[-8.4%] 

0.93 

[-7.5%] 

0.94 

[-6.3%] 

12-hour 0.95 

[-5.6%] 

0.97 

[-3.4%] 

0.98 

[-1.8%] 

1.01 

[0.5%] 

1.03 

[2.5%] 

1.05 

[4.3%] 

24-hour 0.92 

[-9.3%] 

0.94 

[-6.2%] 

0.94 

[-5.9%] 

0.94 

[-5.9%] 

0.94 

[-6.7%] 

0.93 

[-7.6%] 

 

 

Table S23.2 Ratio and percentage changes between updated stationary versus EC-generated 

DSI for London International Airport for different durations  

Duration 2-year 5-year 10-year 25-year  50-year 100-year 

15-min 0.92  

[-8.9%] 

0.94 

[-6.8%] 

0.95 

[-5.2%] 

0.97 

[-3.2%] 

0.98 

[-1.7%] 

1.0 

[-0.1%] 

30-min 0.93 

[-7.6%] 

0.94 

[-6.2%] 

0.97 

[-3.1%] 

1.02 

[2.2%] 

1.07 

[6.6%] 

1.13 

[11.2%] 

1-hour 0.88 

[-13.1%] 

0.87 

[-14.8%] 

0.89 

[-12.9%] 

0.92 

[-8.9%] 

0.95 

[-5.1%] 

0.99 

[-1.05%] 

2-hour 0.92 

[-8.4%] 

0.92 

[-8.3%] 

0.93 

[-7.5%] 

0.94 

[-5.9%] 

0.95 

[-4.8%] 

0.97 

[-3.4%] 

6-hour 0.94 

[-6.4%] 

0.94 

[-5.8%] 

0.96 

[-4.4%] 

0.98 

[-2.1%] 

1.0 

[0.08%] 

1.02 

[2.3%] 

12-hour 0.95 

[-5.3%] 

0.96 

[-4.6%] 

0.96 

[-4.3%] 

0.96 

[-4.1%] 

0.96 

[-3.8%] 

0.96 

[-3.8%] 

24-hour 0.92 

[-8.7%] 

0.96 

[-4.5%] 

0.96 

[-3.9%] 

0.97 

[-3.3%] 

0.96 

[-3.8%] 

0.96 

[-4.4%] 
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Table S24.1 Ratio and percentage changes between updated nonstationary versus EC-

generated DSI for Trenton Airport for different durations  

Duration 2-year 5-year 10-year 25-year  50-year 100-year 

15-min 0.99  

[-0.67%] 

0.99 

[-1.11%] 

1.01 

[1.45%] 

1.07 

[6.56%] 

1.13 

[11.13%] 

1.19 

[16.0%] 

30-min 0.99 

[-1.32%] 

0.99 

[-0.54%] 

1.01 

[1.11%] 

1.04 

[3.9%] 

1.07 

[6.3%] 

1.10 

[8.88%] 

1-hour 0.97 

[-3.2%] 

0.94 

[-5.93%] 

0.96 

[-4.23%] 

1.0 

[0%] 

1.04 

[4.0%] 

1.09 

[8.5%] 

2-hour 0.99 

[-1.5%] 

0.95 

[-5.29%] 

0.95 

[-5.54%] 

0.96 

[-4.3%] 

0.97 

[-2.8%] 

0.99 

[-0.9%] 

6-hour 0.99 

[-0.53%] 

1.00 

[0.13%] 

1.03 

[2.6%] 

1.08 

[7.1%] 

1.12 

[11.1%] 

1.18 

[15.3%] 

12-hour 1.00 

[0%] 

1.02 

[1.5%] 

1.03 

[3.3%] 

1.06 

[6.04%] 

1.09 

[8.5%] 

1.12 

[10.9%] 

24-hour 1.02 

[1.93%] 

1.03 

[3.05%] 

1.03 

[3.02%] 

1.03 

[2.9%] 

1.03 

[2.9%] 

1.03 

[2.5%] 

 

 

Table S24.2 Ratio and percentage changes between updated stationary versus EC-generated 

DSI for Trenton Airport for different durations  

Duration 2-year 5-year 10-year 25-year  50-year 100-year 

15-min 1.01  

[1.38%] 

1.03 

[2.78%] 

1.07 

[6.8%] 

1.16 

[13.9%] 

1.25 

[19.9%] 

1.35 

[26.06%] 

30-min 0.98 

[-1.63%] 

1.01 

[0.8%] 

1.04 

[3.7%] 

1.09 

[8.1%] 

1.13 

[11.7%] 

1.18 

[15.4%] 

1-hour 0.95 

[-4.8%] 

0.91 

[-9.8%] 

0.91 

[-9.4%] 

0.94 

[-6.4%] 

0.97 

[-3.1%] 

1.01 

[0.7%] 

2-hour 0.96 

[-3.7%] 

0.94 

[-5.95%] 

0.96 

[-4.1%] 

1.0 

[0.45%] 

1.05 

[4.6%] 

1.10 

[9.1%] 

6-hour 0.98 

[-1.97%] 

0.98 

[-2.3%] 

0.99 

[-0.82%] 

1.03 

[2.69%] 

1.06 

[6.0%] 

1.11 

[9.5%] 

12-hour 1.0 

[-0.3%] 

1.05 

[4.41%] 

1.09 

[8.1%] 

1.15 

[13.04%] 

1.21 

[17.1%] 

1.27 

[21.1%] 

24-hour 1.03 

[2.87%] 

1.05 

[4.51%] 

1.05 

[4.6%] 

1.05 

[4.3%] 

1.04 

[4.2%] 

1.04 

[3.6%] 
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Table S25.1 Ratio and percentage changes between updated nonstationary versus EC-

generated DSI for Stratford WWTP for different durations  

Duration 2-year 5-year 10-year 25-year  50-year 100-year 

15-min 1.05  

[5.03%] 

1.08 

[7.02%] 

1.06 

[5.6%] 

1.02 

[2.4%] 

0.99 

[-0.76%] 

0.96 

[-4.35%] 

30-min 0.96 

[-3.99%] 

1.00 

[0.33%] 

1.07 

[6.6%] 

1.19 

[16.2%] 

1.31 

[23.72%] 

1.45 

[31.2%] 

1-hour 0.90 

[-10.9%] 

0.94 

[-6.1%] 

1.03 

[2.6%] 

1.19 

[16.2%] 

1.36 

[26.5%] 

1.57 

[36.4%] 

2-hour 0.97 

[-3.3%] 

0.98 

[-1.9%] 

1.06 

[5.3%] 

1.21 

[17.4%] 

1.37 

[26.8%] 

1.56 

[36.04%] 

6-hour 0.89 

[-12.3%] 

0.84 

[-19.4%] 

0.86 

[-16.1%] 

0.93 

[-7.2%] 

1.01 

[1.09%] 

1.11 

[9.8%] 

12-hour 0.90 

[-11.5%] 

0.83 

[-20.7%] 

0.84 

[-18.9%] 

0.90 

[-

11.04%] 

0.97 

[-2.9%] 

1.06 

[5.9%] 

24-hour 0.84 

[-19.02%] 

0.79 

[-27.2%] 

0.80 

[-24.3%] 

0.87 

[-15.6%] 

0.94 

[-6.8%] 

1.03 

[2.6%] 

 

 

 

Table S25.2 Ratio and percentage changes between updated stationary versus EC-generated 

DSI for Stratford WWTP for different durations  

Duration 2-year 5-year 10-year 25-year  50-year 100-year 

15-min 1.0  

[-0.1%] 

1.01 

[1.4%] 

1.03 

[2.47%] 

1.04 

[3.97%] 

1.05 

[5.1%] 

1.07 

[6.3%] 

30-min 0.95 

[-5.25%] 

0.96 

[-4.5%] 

0.99 

[-1.45%] 

1.04 

[3.89%] 

1.09 

[8.5%] 

1.15 

[13.2%] 

1-hour 0.92 

[-8.7%] 

0.91 

[-10.03%] 

0.94 

[-6.7%] 

1.0 

[-0.06%] 

1.06 

[5.8%] 

1.14 

[12.05%] 

2-hour 0.92 

[-8.7%] 

0.88 

[-13.6%] 

0.91 

[-10.2%] 

0.98 

[-2.18%] 

1.05 

[5.1%] 

1.15 

[12.7%] 

6-hour 0.89 

[-12.3%] 

0.82 

[-21.3%] 

0.84 

[-19.7%] 

0.88 

[-13.1%] 

0.94 

[-6.45%] 

1.01 

[0.8%] 

12-hour 0.89 

[-12.4%] 

0.81 

[-22.7%] 

0.82 

[-21.9%] 

0.86 

[-15.7%] 

0.92 

[-8.86%] 

0.99 

[-1.3%] 

24-hour 0.84 

[-19.02%] 

0.79 

[-27.2%] 

0.80 

[-25.5%] 

0.84 

[-18.5%] 

0.90 

[-11.4%] 

0.97 

[-3.1%] 
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Table S26.1 Ratio and percentage changes between updated nonstationary versus EC-

generated DSI for Fergus Shand dam for different durations  

Duration 2-year 5-year 10-year 25-year  50-year 100-year 

15-min 1.05  

[4.5%] 

1.02 

[1.8%] 

1.01 

[1.21%] 

1.01 

[1.1%] 

1.01 

[1.3%] 

1.02 

[1.75%] 

30-min 1.02 

[2.1%] 

0.98 

[-2.05%] 

0.98 

[-1.89%] 

1.0 

[0.06%] 

1.02 

[2.3%] 

1.05 

[4.8%] 

1-hour 0.99 

[-0.8%] 

0.94 

[-6.5%] 

0.95 

[-5.4%] 

0.99 

[-1.4%] 

1.03 

[2.8%] 

1.08 

[7.4%] 

2-hour 0.91 

[-10.4%] 

0.92 

[-9.0%] 

0.96 

[-3.9%] 

1.05 

[4.7%] 

1.13 

[11.6%] 

1.23 

[18.7%] 

6-hour 0.94 

[-6.2%] 

0.97 

[-3.0%] 

0.99 

[-0.7%] 

1.02 

[2.2%] 

1.05 

[4.3%] 

1.07 

[6.6%] 

 

 

 

Table S26.2 Ratio and percentage changes between updated stationary versus EC-generated 

DSI for Fergus Shand dam for different durations  

Duration 2-year 5-year 10-year 25-year  50-year 100-year 

15-min 1.05  

[4.5%] 

1.02 

[2.2%] 

1.02 

[1.73%] 

1.02 

[1.86%] 

1.02 

[2.27%] 

1.03 

[2.86%] 

30-min 1.03 

[2.4%] 

0.97 

[-2.74%] 

0.97 

[-3.1%] 

0.98 

[-1.60%] 

1.00 

[0.36%] 

1.03 

[3.76%] 

1-hour 0.99 

[-1.03%] 

0.93 

[-7.1%] 

0.94 

[-6.48%] 

0.97 

[-3.02%] 

1.01 

[0.67%] 

1.05 

[4.86%] 

2-hour 0.94 

[-6.3%] 

0.92 

[-8.44%] 

0.94 

[-6.95%] 

0.97 

[-3.47%] 

1.0 

[-0.31%] 

1.03 

[3.19%] 

6-hour 0.96 

[-4.36%] 

0.97 

[-2.7%] 

0.99 

[-1.1%] 

1.01 

[1.12%] 

1.03 

[2.79%] 

1.05 

[4.53%] 
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Figure S15. Estimated nonstationary versus EC-generated IDFs for return periods T = 2, 5, 10, 25, 50 and 100-year for the urbanized and moderately locations in 

Southern Ontario. The updated and EC IDFs are shown using solid and dotted lines respectively.  
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SI 5 Statistical Significance of Nonstationary versus Stationary DSI 

The (statistically) significant differences in DSI is computed using the statistical test for the difference between two 

means or the standardized z-statistics, which is given by (Madsen et al., 2009; Mikkelsen et al., 2005) 

𝑧 =
𝑧̂𝑇

𝑁𝑜𝑛𝑆𝑡𝑎− 𝑧̂𝑇
𝑆𝑡𝑎

√0.5(𝑣𝑎𝑟{𝑧̂𝑇
𝑁𝑜𝑛𝑆𝑡𝑎}+𝑣𝑎𝑟{𝑧̂𝑇

𝑆𝑡𝑎})

                                    (5.1) 

Where 𝑧̂𝑇
𝑁𝑜𝑛𝑆𝑡𝑎 is the T-year DSI obtained from the best selected nonstationary model, 𝑧̂𝑇

𝑆𝑡𝑎 describes the same 

but with the best stationary model. The denominator indicates predictive uncertainty; 𝑣𝑎𝑟{𝑧̂𝑇
𝑁𝑜𝑛𝑆𝑡𝑎} and 

𝑣𝑎𝑟{𝑧̂𝑇
𝑆𝑡𝑎} are the estimated variance obtained from the T-year event estimates and corresponding 95% credible 

interval. The z-statistic can be interpreted as statistically equivalent to quantiles of standard normal distribution, 

i.e., z = ± 1.64 correspond to 10% significance levels. The null hypothesis of the test assumes the T-year event 

estimate obtained using the best fitted nonstationary model is significantly different from its best fitted stationary 

counterpart.
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Table S27. Z-statistics* between best selected nonstationary and stationary model for 2-year return period 

Duration Toronto Hamilton Oshawa Windsor Kingston London Trenton Stratford Fergus Shand 

15-min -0.038 -0.362 0.251 -0.354 0.297 -0.032 -0.265 0.521 0.000 

30-min -0.050 -0.126 0.244 0.011 0.068 -0.158 0.030 0.118 -0.037 

1-hour -0.331 0.151 0.127 -0.288 0.158 -0.009 0.161 -0.168 0.016 

2-hour -0.170 0.041 -0.012 -0.153 -0.128 -0.041 0.246 0.371 -0.324 

6-hour 0.389 -0.147 0.195 0.151 0.021 -0.088 0.183 0.000 -0.154 

12-hour 0.214 -0.073 -0.031 0.088 -0.266 -0.038 0.032 -0.032 - 

24-hour 0.000 -0.108 0.044 -0.116 -0.116 -0.049 -0.126 0.000 - 

*The standardized Z-statistic is positive (negative) with an increasing (decreasing) trend, and statistically significant at 10% significance level when z  > ± 1.64. 

 

 

 

Table S28. Z-statistics between best selected nonstationary and stationary model for 10-year return period 

Duration Toronto Hamilton Oshawa Windsor Kingston London Trenton Stratford Fergus Shand 

15-min 0.373 -0.227 0.061 0.065 0.171 0.324 -0.281 0.196 -0.029 

30-min -0.201 0.001 -0.147 0.016 0.038 -0.295 -0.120 0.373 0.050 

1-hour -0.346 -0.007 -0.018 -0.068 0.075 0.151 0.224 0.348 0.046 

2-hour -0.324 0.309 -0.105 0.014 0.091 0.081 -0.070 0.397 0.129 

6-hour 0.103 0.014 0.074 0.174 0.041 -0.277 0.212 0.140 0.017 

12-hour 0.526 0.089 0.213 -0.043 -0.123 0.156 -0.264 0.201 - 

24-hour -0.039 0.061 0.000 -0.016 -0.071 -0.107 -0.104 0.047 - 
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Table S29. Z-statistics between best selected nonstationary and stationary model for 50-year return period 

Duration Toronto Hamilton Oshawa Windsor Kingston London Trenton Stratford Fergus Shand 

15-min 0.569 -0.144 -0.137 0.287 0.081 0.636 -0.287 -0.214 -0.032 

30-min -0.244 0.080 -0.230 0.077 0.035 -0.234 -0.160 0.499 0.050 

1-hour -0.497 -0.153 -0.054 0.120 0.039 0.273 0.195 0.564 0.059 

2-hour -0.498 0.465 -0.126 0.045 0.207 0.162 -0.205 0.349 0.372 

6-hour 0.016 0.107 -0.049 0.142 0.077 -0.290 0.204 0.198 0.050 

12-hour 0.635 0.138 0.328 -0.064 -0.037 0.273 -0.308 0.345 - 

24-hour -0.049 0.103 0.005 0.000 -0.024 -0.108 -0.052 0.111 - 

 

 

Table S30. Z-statistics between best selected nonstationary and stationary model for 100-year return period 

Duration Toronto Hamilton Oshawa Windsor Kingston London Trenton Stratford Fergus Shand 

15-min 0.615 -0.120 -0.199 0.346 0.054 0.748 -0.284 -0.311 -0.032 

30-min -0.249 0.098 -0.239 0.092 0.035 -0.208 -0.166 0.529 0.046 

1-hour -0.531 -0.192 -0.059 0.175 0.031 0.309 0.182 0.613 0.062 

2-hour -0.534 0.510 -0.127 0.051 0.236 0.185 -0.231 0.327 0.441 

6-hour -0.002 0.130 -0.083 0.130 0.087 -0.280 0.200 0.209 0.058 

12-hour 0.652 0.148 0.355 -0.067 -0.010 0.302 -0.311 0.390 - 

24-hour -0.052 0.110 0.007 0.000 -0.018 -0.104 -0.041 0.127 - 
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