Articles | Volume 21, issue 1
https://doi.org/10.5194/hess-21-295-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-21-295-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Attributing regional trends of evapotranspiration and gross primary productivity with remote sensing: a case study in the North China Plain
Xingguo Mo
CORRESPONDING AUTHOR
Key Laboratory of Water Cycle & Related Land Surface Processes, Institute
of Geographic Sciences and Natural Resources Research, Chinese Academy of
Sciences, Beijing 100101, China
College of Resources and Environment, University of Chinese Academy of
Sciences, Beijing, 100190, China
Xuejuan Chen
Key Laboratory of Water Cycle & Related Land Surface Processes, Institute
of Geographic Sciences and Natural Resources Research, Chinese Academy of
Sciences, Beijing 100101, China
College of Resources and Environment, University of Chinese Academy of
Sciences, Beijing, 100190, China
Shi Hu
Key Laboratory of Water Cycle & Related Land Surface Processes, Institute
of Geographic Sciences and Natural Resources Research, Chinese Academy of
Sciences, Beijing 100101, China
Suxia Liu
Key Laboratory of Water Cycle & Related Land Surface Processes, Institute
of Geographic Sciences and Natural Resources Research, Chinese Academy of
Sciences, Beijing 100101, China
College of Resources and Environment, University of Chinese Academy of
Sciences, Beijing, 100190, China
Jun Xia
Key Laboratory of Water Cycle & Related Land Surface Processes, Institute
of Geographic Sciences and Natural Resources Research, Chinese Academy of
Sciences, Beijing 100101, China
Related authors
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023, https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
Short summary
This paper uses remote sensing data from ICESat-2 to calibrate a 1D hydraulic model. With the model, we can make estimations of discharge and water surface elevation, which are important indicators in flooding risk assessment. ICESat-2 data give an added value, thanks to the 0.7 m resolution, which allows the measurement of narrow river streams. In addition, ICESat-2 provides measurements on the river dry portion geometry that can be included in the model.
Claus Davidsen, Suxia Liu, Xingguo Mo, Dan Rosbjerg, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 20, 771–785, https://doi.org/10.5194/hess-20-771-2016, https://doi.org/10.5194/hess-20-771-2016, 2016
Short summary
Short summary
In northern China, rivers run dry and groundwater tables drop, causing economic losses for all water use sectors. We present a groundwater-surface water allocation decision support tool for cost-effective long-term recovery of an overpumped aquifer. The tool is demonstrated for a part of the North China Plain and can support the implementation of the recent China No. 1 Document in a rational and economically efficient way.
S. Liu, L. Tan, X. Mo, and S. Zhang
Proc. IAHS, 371, 167–172, https://doi.org/10.5194/piahs-371-167-2015, https://doi.org/10.5194/piahs-371-167-2015, 2015
Short summary
Short summary
By taking an example of Allen’s formula as a hydrological model based on long-term data at a Chinese site, the relationships between driving forces and responses for average, minimum and maximum values at daily, monthly and annual scale are revealed. It indicates due to the relationships’ nonlinearity a routine model may not be able to catch hydrological responses extreme from extreme driving events and it is even more so for future. Finding a primary driver is one of the ways for improvements.
Yongyong Zhang, Yongqiang Zhang, Xiaoyan Zhai, Jun Xia, Qiuhong Tang, Wei Wang, Jian Wu, Xiaoyu Niu, and Bing Han
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-126, https://doi.org/10.5194/hess-2024-126, 2024
Preprint under review for HESS
Short summary
Short summary
It is challenging to investigate flood variabilities and their formation mechanisms from massive event samples. This study explores spatiotemporal variabilities of 1446 flood events using hierarchical and partitional clustering methods. Control mechanisms of meteorological and physio-geographical factors are explored for individual flood event classes using constrained rank analysis. It provides insights into comprehensive changes of flood events, and aids in flood prediction and control.
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023, https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
Short summary
This paper uses remote sensing data from ICESat-2 to calibrate a 1D hydraulic model. With the model, we can make estimations of discharge and water surface elevation, which are important indicators in flooding risk assessment. ICESat-2 data give an added value, thanks to the 0.7 m resolution, which allows the measurement of narrow river streams. In addition, ICESat-2 provides measurements on the river dry portion geometry that can be included in the model.
Song Liu, Dunxian She, Liping Zhang, and Jun Xia
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-414, https://doi.org/10.5194/hess-2022-414, 2023
Preprint under review for HESS
Short summary
Short summary
Quantifying the uncertainty in streamflow predictions is a major challenge, with research and operational significance. This study advances the field of catchment-scale hydrological modelling by developing an improved uncertainty analysis technique that provides more reliable and accurate probabilistic streamflow predictions. This finding provides hydrologists with robust modelling tools for handling hydrological modelling uncertainties in engineering practices.
Zhihong Song, Jun Xia, Gangsheng Wang, Dunxian She, Chen Hu, and Si Hong
Hydrol. Earth Syst. Sci., 26, 505–524, https://doi.org/10.5194/hess-26-505-2022, https://doi.org/10.5194/hess-26-505-2022, 2022
Short summary
Short summary
We performed a machine learning approach to regionalize the parameters of a China-wide hydrological model by linking six model parameters with 10 physical attributes (terrain and soil properties). The results show the superiority of machine-learning-based regionalization approach compared with the traditional linear regression method in ungauged regions. We also obtained the relative importance of attributes against model parameters.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, Yanghe Liu, and Jun Xia
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-5, https://doi.org/10.5194/hess-2021-5, 2021
Manuscript not accepted for further review
Short summary
Short summary
We use statistical methods and data assimilation method with physical model to verify that prolonged drought can induce non-stationarity in the control catchment rainfall-runoff relationship, which causes three inconsistent results at the Red Hill paired-catchment site. The findings are fundamental to correctly use long-term historical data and effectively assess ecohydrological impacts of vegetation change given that extreme climate events are projected to occur more frequently in the future.
Bin Xiong, Lihua Xiong, Jun Xia, Chong-Yu Xu, Cong Jiang, and Tao Du
Hydrol. Earth Syst. Sci., 23, 4453–4470, https://doi.org/10.5194/hess-23-4453-2019, https://doi.org/10.5194/hess-23-4453-2019, 2019
Short summary
Short summary
We develop a new indicator of reservoir effects, called the rainfall–reservoir composite index (RRCI). RRCI, coupled with the effects of static reservoir capacity and scheduling-related multivariate rainfall, has a better performance than the previous indicator in terms of explaining the variation in the downstream floods affected by reservoir operation. A covariate-based flood frequency analysis using RRCI can provide more reliable downstream flood risk estimation.
Zhengke Pan, Pan Liu, Shida Gao, Jun Xia, Jie Chen, and Lei Cheng
Hydrol. Earth Syst. Sci., 23, 3405–3421, https://doi.org/10.5194/hess-23-3405-2019, https://doi.org/10.5194/hess-23-3405-2019, 2019
Short summary
Short summary
Understanding the projection performance of hydrological models under contrasting climatic conditions supports robust decision making, which highlights the need to adopt time-varying parameters in hydrological modeling to reduce performance degradation. This study improves our understanding of the spatial coherence of time-varying parameters, which will help improve the projection performance under differing climatic conditions.
Hong Wang, Fubao Sun, Jun Xia, and Wenbin Liu
Hydrol. Earth Syst. Sci., 21, 1929–1945, https://doi.org/10.5194/hess-21-1929-2017, https://doi.org/10.5194/hess-21-1929-2017, 2017
Claus Davidsen, Suxia Liu, Xingguo Mo, Dan Rosbjerg, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 20, 771–785, https://doi.org/10.5194/hess-20-771-2016, https://doi.org/10.5194/hess-20-771-2016, 2016
Short summary
Short summary
In northern China, rivers run dry and groundwater tables drop, causing economic losses for all water use sectors. We present a groundwater-surface water allocation decision support tool for cost-effective long-term recovery of an overpumped aquifer. The tool is demonstrated for a part of the North China Plain and can support the implementation of the recent China No. 1 Document in a rational and economically efficient way.
S. Liu, L. Tan, X. Mo, and S. Zhang
Proc. IAHS, 371, 167–172, https://doi.org/10.5194/piahs-371-167-2015, https://doi.org/10.5194/piahs-371-167-2015, 2015
Short summary
Short summary
By taking an example of Allen’s formula as a hydrological model based on long-term data at a Chinese site, the relationships between driving forces and responses for average, minimum and maximum values at daily, monthly and annual scale are revealed. It indicates due to the relationships’ nonlinearity a routine model may not be able to catch hydrological responses extreme from extreme driving events and it is even more so for future. Finding a primary driver is one of the ways for improvements.
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Regional patterns and drivers of modelled water flows along environmental, functional, and stand structure gradients in Spanish forests
Machine learning and global vegetation: random forests for downscaling and gap filling
Unraveling phenological and stomatal responses to flash drought and implications for water and carbon budgets
Ecohydrological responses to solar radiation changes
Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
Technical assessment combined with extended cost-benefit analysis for groundwater ecosystem services restoration – An application for Grand Bahama
Technical note: Seamless extraction and analysis of river networks in R
Advancing stream classification and hydrologic modeling of ungaged basins for environmental flow management in coastal southern California
Improving regional climate simulations based on a hybrid data assimilation and machine learning method
A comprehensive assessment of in situ and remote sensing soil moisture data assimilation in the APSIM model for improving agricultural forecasting across the US Midwest
Does non-stationarity induced by multiyear drought invalidate the paired-catchment method?
Is the reputation of Eucalyptus plantations for using more water than Pinus plantations justified?
Attributing trend in naturalized streamflow to temporally explicit vegetation change and climate variation in the Yellow River basin of China
Impacts of different types of El Niño events on water quality over the Corn Belt, United States
Leveraging sap flow data in a catchment-scale hybrid model to improve soil moisture and transpiration estimates
Coupled modelling of hydrological processes and grassland production in two contrasting climates
Does maximization of net carbon profit enable the prediction of vegetation behaviour in savanna sites along a precipitation gradient?
Modelling the artificial forest (Robinia pseudoacacia L.) root–soil water interactions in the Loess Plateau, China
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
Vegetation greening weakened the capacity of water supply to China's South-to-North Water Diversion Project
Structural changes to forests during regeneration affect water flux partitioning, water ages and hydrological connectivity: Insights from tracer-aided ecohydrological modelling
How does water yield respond to mountain pine beetle infestation in a semiarid forest?
Daily soil temperature modeling improved by integrating observed snow cover and estimated soil moisture in the USA Great Plains
Plant hydraulic transport controls transpiration sensitivity to soil water stress
Drought onset and propagation into soil moisture and grassland vegetation responses during the 2012–2019 major drought in Southern California
Quantifying the effects of urban green space on water partitioning and ages using an isotope-based ecohydrological model
Low and contrasting impacts of vegetation CO2 fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO2 effects
Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion
Quantifying the effects of land use and model scale on water partitioning and water ages using tracer-aided ecohydrological models
Quantification of ecohydrological sensitivities and their influencing factors at the seasonal scale
Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation – a modeling analysis
Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks
Testing water fluxes and storage from two hydrology configurations within the ORCHIDEE land surface model across US semi-arid sites
Novel Keeling-plot-based methods to estimate the isotopic composition of ambient water vapor
Disentangling temporal and population variability in plant root water uptake from stable isotopic analysis: when rooting depth matters in labeling studies
Calibration of hydrological models for ecologically relevant streamflow predictions: a trade-off between fitting well to data and estimating consistent parameter sets?
Spatial variability of mean daily estimates of actual evaporation from remotely sensed imagery and surface reference data
Quantification of soil water balance components based on continuous soil moisture measurement and the Richards equation in an irrigated agricultural field of a desert oasis
Mapping the suitability of groundwater-dependent vegetation in a semi-arid Mediterranean area
Modeling boreal forest evapotranspiration and water balance at stand and catchment scales: a spatial approach
The 18O ecohydrology of a grassland ecosystem – predictions and observations
A comprehensive sensitivity and uncertainty analysis for discharge and nitrate-nitrogen loads involving multiple discrete model inputs under future changing conditions
Dynamic responses of DOC and DIC transport to different flow regimes in a subtropical small mountainous river
Evaluation of ORCHIDEE-MICT-simulated soil moisture over China and impacts of different atmospheric forcing data
Testing an optimality-based model of rooting zone water storage capacity in temperate forests
A regional-scale ecological risk framework for environmental flow evaluations
Climate-driven disturbances in the San Juan River sub-basin of the Colorado River
Dominant effect of increasing forest biomass on evapotranspiration: interpretations of movement in Budyko space
Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States
Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI
Jesús Sánchez-Dávila, Miquel De Cáceres, Jordi Vayreda, and Javier Retana
Hydrol. Earth Syst. Sci., 28, 3037–3050, https://doi.org/10.5194/hess-28-3037-2024, https://doi.org/10.5194/hess-28-3037-2024, 2024
Short summary
Short summary
Forest blue water is determined by the climate, functional traits, and stand structure variables. The leaf area index (LAI) is the main driver of the trade-off between the blue and green water. Blue water is concentrated in the autumn–winter season, and deciduous trees can increase the relative blue water. The leaf phenology and seasonal distribution are determinants for the relative blue water.
Barry van Jaarsveld, Sandra M. Hauswirth, and Niko Wanders
Hydrol. Earth Syst. Sci., 28, 2357–2374, https://doi.org/10.5194/hess-28-2357-2024, https://doi.org/10.5194/hess-28-2357-2024, 2024
Short summary
Short summary
Drought often manifests itself in vegetation; however, obtaining high-resolution remote-sensing products that are spatially and temporally consistent is difficult. In this study, we show that machine learning (ML) can fill data gaps in existing products. We also demonstrate that ML can be used as a downscaling tool. By relying on ML for gap filling and downscaling, we can obtain a more holistic view of the impacts of drought on vegetation.
Nicholas K. Corak, Jason A. Otkin, Trent W. Ford, and Lauren E. L. Lowman
Hydrol. Earth Syst. Sci., 28, 1827–1851, https://doi.org/10.5194/hess-28-1827-2024, https://doi.org/10.5194/hess-28-1827-2024, 2024
Short summary
Short summary
We simulate how dynamic vegetation interacts with the atmosphere during extreme drought events known as flash droughts. We find that plants nearly halt water and carbon exchanges and limit their growth during flash drought. This work has implications for how to account for changes in vegetation state during extreme drought events when making predictions under future climate scenarios.
Yiran Wang, Naika Meili, and Simone Fatichi
EGUsphere, https://doi.org/10.5194/egusphere-2024-768, https://doi.org/10.5194/egusphere-2024-768, 2024
Short summary
Short summary
Our study uses climate model simulations and process-based ecohydrological modeling to assess the direct and climate feedback induced effects of solar radiation changes on hydrological variables. Results show that solar radiation without climate feedback primarily affects sensible heat with limited effects on hydrology and vegetation. However, climate feedback exacerbates the effects of radiation changes on evapotranspiration and affects vegetation productivity.
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023, https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Short summary
We explored different options for data assimilation (DA) of the remotely sensed leaf area index (LAI). We found strong biases between LAI predicted by Noah-MP and observations. LAI DA that does not take these biases into account can induce unphysical patterns in the resulting LAI and flux estimates and leads to large changes in the climatology of root zone soil moisture. We tested two bias-correction approaches and explored alternative solutions to treating bias in LAI DA.
Anne Imig, Francesca Perosa, Carolina Iwane Hotta, Sophia Klausner, Kristen Welsh, and Arno Rein
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-236, https://doi.org/10.5194/hess-2023-236, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
In 2019, Hurricane Dorian led to salinization of groundwater resources on the island of Grand Bahama. We assessed the feasibility of managed aquifer recharge (MAR) for restoring fresh groundwater. Furthermore, we applied a financial and an extended cost-benefit analysis for assessing ecosystem services supported by MAR and reforestation. As a first estimate, MAR could only provide a small contribution to the water demand. Reforestation measures were assessed as financially profitable.
Luca Carraro
Hydrol. Earth Syst. Sci., 27, 3733–3742, https://doi.org/10.5194/hess-27-3733-2023, https://doi.org/10.5194/hess-27-3733-2023, 2023
Short summary
Short summary
Mathematical models are key to the study of environmental processes in rivers. Such models often require information on river morphology from geographic information system (GIS) software, which hinders the use of replicable workflows. Here I present rivnet, an R package for simple, robust, GIS-free extraction and analysis of river networks. The package is designed so as to require minimal user input and is oriented towards ecohydrological, ecological and biogeochemical modeling.
Stephen K. Adams, Brian P. Bledsoe, and Eric D. Stein
Hydrol. Earth Syst. Sci., 27, 3021–3039, https://doi.org/10.5194/hess-27-3021-2023, https://doi.org/10.5194/hess-27-3021-2023, 2023
Short summary
Short summary
Managing streams for environmental flows involves prioritizing healthy stream ecosystems while distributing water resources. Classifying streams of similar types is a useful step in developing environmental flows. Environmental flows are often developed on data-poor streams that must be modeled. This paper has developed a new method of classification that prioritizes model accuracy. The new method advances environmental streamflow management and modeling of data-poor watersheds.
Xinlei He, Yanping Li, Shaomin Liu, Tongren Xu, Fei Chen, Zhenhua Li, Zhe Zhang, Rui Liu, Lisheng Song, Ziwei Xu, Zhixing Peng, and Chen Zheng
Hydrol. Earth Syst. Sci., 27, 1583–1606, https://doi.org/10.5194/hess-27-1583-2023, https://doi.org/10.5194/hess-27-1583-2023, 2023
Short summary
Short summary
This study highlights the role of integrating vegetation and multi-source soil moisture observations in regional climate models via a hybrid data assimilation and machine learning method. In particular, we show that this approach can improve land surface fluxes, near-surface atmospheric conditions, and land–atmosphere interactions by implementing detailed land characterization information in basins with complex underlying surfaces.
Marissa Kivi, Noemi Vergopolan, and Hamze Dokoohaki
Hydrol. Earth Syst. Sci., 27, 1173–1199, https://doi.org/10.5194/hess-27-1173-2023, https://doi.org/10.5194/hess-27-1173-2023, 2023
Short summary
Short summary
This study attempts to provide a framework for direct integration of soil moisture observations collected from soil sensors and satellite imagery into process-based crop models for improving the representation of agricultural systems. The performance of this framework was evaluated across 19 sites times years for crop yield, normalized difference vegetation index (NDVI), soil moisture, tile flow drainage, and nitrate leaching.
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, and Yanghe Liu
Hydrol. Earth Syst. Sci., 26, 6379–6397, https://doi.org/10.5194/hess-26-6379-2022, https://doi.org/10.5194/hess-26-6379-2022, 2022
Short summary
Short summary
Multiyear drought has been demonstrated to cause non-stationary rainfall–runoff relationship. But whether changes can invalidate the most fundamental method (i.e., paired-catchment method (PCM)) for separating vegetation change impacts is still unknown. Using paired-catchment data with 10-year drought, PCM is shown to still be reliable even in catchments with non-stationarity. A new framework is further proposed to separate impacts of two non-stationary drivers, using paired-catchment data.
Don A. White, Shiqi Ren, Daniel S. Mendham, Francisco Balocchi-Contreras, Richard P. Silberstein, Dean Meason, Andrés Iroumé, and Pablo Ramirez de Arellano
Hydrol. Earth Syst. Sci., 26, 5357–5371, https://doi.org/10.5194/hess-26-5357-2022, https://doi.org/10.5194/hess-26-5357-2022, 2022
Short summary
Short summary
Of all the planting options for wood production and carbon storage, Eucalyptus species provoke the greatest concern about their effect on water resources. We compared Eucalyptus and Pinus species (the two most widely planted genera) by fitting a simple model to the published estimates of their annual water use. There was no significant difference between the two genera. This has important implications for the global debate around Eucalyptus and is an option for carbon forests.
Zhihui Wang, Qiuhong Tang, Daoxi Wang, Peiqing Xiao, Runliang Xia, Pengcheng Sun, and Feng Feng
Hydrol. Earth Syst. Sci., 26, 5291–5314, https://doi.org/10.5194/hess-26-5291-2022, https://doi.org/10.5194/hess-26-5291-2022, 2022
Short summary
Short summary
Variable infiltration capacity simulation considering dynamic vegetation types and structural parameters is able to better capture the effect of temporally explicit vegetation change and climate variation in hydrological regimes. Vegetation greening including interannual LAI and intra-annual LAI temporal pattern change induced by large-scale ecological restoration and non-vegetation underlying surface change played dominant roles in the natural streamflow reduction of the Yellow River basin.
Pan Chen, Wenhong Li, and Keqi He
Hydrol. Earth Syst. Sci., 26, 4875–4892, https://doi.org/10.5194/hess-26-4875-2022, https://doi.org/10.5194/hess-26-4875-2022, 2022
Short summary
Short summary
The study assessed changes in total nitrogen (TN) and total phosphorus (TP) loads in response to eastern Pacific (EP) and central Pacific (CP) El Niño events over the Corn Belt, USA, using the SWAT model. Results showed that EP (CP) El Niño events improved (exacerbated) water quality in the region. Furthermore, EP El Niño had a much broader and longer impact on water quality at the outlets, but CP El Niño could lead to similar increases in TN/TP loads as EP El Niño at the specific watersheds.
Ralf Loritz, Maoya Bassiouni, Anke Hildebrandt, Sibylle K. Hassler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 4757–4771, https://doi.org/10.5194/hess-26-4757-2022, https://doi.org/10.5194/hess-26-4757-2022, 2022
Short summary
Short summary
In this study, we combine a deep-learning approach that predicts sap flow with a hydrological model to improve soil moisture and transpiration estimates at the catchment scale. Our results highlight that hybrid-model approaches, combining machine learning with physically based models, are a promising way to improve our ability to make hydrological predictions.
Nicholas Jarvis, Jannis Groh, Elisabet Lewan, Katharina H. E. Meurer, Walter Durka, Cornelia Baessler, Thomas Pütz, Elvin Rufullayev, and Harry Vereecken
Hydrol. Earth Syst. Sci., 26, 2277–2299, https://doi.org/10.5194/hess-26-2277-2022, https://doi.org/10.5194/hess-26-2277-2022, 2022
Short summary
Short summary
We apply an eco-hydrological model to data on soil water balance and grassland growth obtained at two sites with contrasting climates. Our results show that the grassland in the drier climate had adapted by developing deeper roots, which maintained water supply to the plants in the face of severe drought. Our study emphasizes the importance of considering such plastic responses of plant traits to environmental stress in the modelling of soil water balance and plant growth under climate change.
Remko C. Nijzink, Jason Beringer, Lindsay B. Hutley, and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 525–550, https://doi.org/10.5194/hess-26-525-2022, https://doi.org/10.5194/hess-26-525-2022, 2022
Short summary
Short summary
Most models that simulate water and carbon exchanges with the atmosphere rely on information about vegetation, but optimality models predict vegetation properties based on general principles. Here, we use the Vegetation Optimality Model (VOM) to predict vegetation behaviour at five savanna sites. The VOM overpredicted vegetation cover and carbon uptake during the wet seasons but also performed similarly to conventional models, showing that vegetation optimality is a promising approach.
Hongyu Li, Yi Luo, Lin Sun, Xiangdong Li, Changkun Ma, Xiaolei Wang, Ting Jiang, and Haoyang Zhu
Hydrol. Earth Syst. Sci., 26, 17–34, https://doi.org/10.5194/hess-26-17-2022, https://doi.org/10.5194/hess-26-17-2022, 2022
Short summary
Short summary
Drying soil layers (DSLs) have been extensively reported in artificial forestland in the Loess Plateau, China, which has limited water resources and deep loess. To address this issue relating to plant root–soil water interactions, this study developed a root growth model that simulates both the dynamic rooting depth and fine-root distribution. Evaluation vs. field data proved a positive performance. Long-term simulation reproduced the evolution process of the DSLs and revealed their mechanisms.
Jiancong Chen, Baptiste Dafflon, Anh Phuong Tran, Nicola Falco, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 25, 6041–6066, https://doi.org/10.5194/hess-25-6041-2021, https://doi.org/10.5194/hess-25-6041-2021, 2021
Short summary
Short summary
The novel hybrid predictive modeling (HPM) approach uses a long short-term memory recurrent neural network to estimate evapotranspiration (ET) and ecosystem respiration (Reco) with only meteorological and remote-sensing inputs. We developed four use cases to demonstrate the applicability of HPM. The results indicate HPM is capable of providing ET and Reco estimations in challenging mountainous systems and enhances our understanding of watershed dynamics at sparsely monitored watersheds.
Jiehao Zhang, Yulong Zhang, Ge Sun, Conghe Song, Matthew P. Dannenberg, Jiangfeng Li, Ning Liu, Kerong Zhang, Quanfa Zhang, and Lu Hao
Hydrol. Earth Syst. Sci., 25, 5623–5640, https://doi.org/10.5194/hess-25-5623-2021, https://doi.org/10.5194/hess-25-5623-2021, 2021
Short summary
Short summary
To quantify how vegetation greening impacts the capacity of water supply, we built a hybrid model and conducted a case study using the upper Han River basin (UHRB) that serves as the water source area to the world’s largest water diversion project. Vegetation greening in the UHRB during 2001–2018 induced annual water yield (WY) greatly decreased. Vegetation greening also increased the possibility of drought and reduced a quarter of WY on average during drought periods.
Aaron J. Neill, Christian Birkel, Marco P. Maneta, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 4861–4886, https://doi.org/10.5194/hess-25-4861-2021, https://doi.org/10.5194/hess-25-4861-2021, 2021
Short summary
Short summary
Structural changes (cover and height of vegetation plus tree canopy characteristics) to forests during regeneration on degraded land affect how water is partitioned between streamflow, groundwater recharge and evapotranspiration. Partitioning most strongly deviates from baseline conditions during earlier stages of regeneration with dense forest, while recovery may be possible as the forest matures and opens out. This has consequences for informing sustainable landscape restoration strategies.
Jianning Ren, Jennifer C. Adam, Jeffrey A. Hicke, Erin J. Hanan, Christina L. Tague, Mingliang Liu, Crystal A. Kolden, and John T. Abatzoglou
Hydrol. Earth Syst. Sci., 25, 4681–4699, https://doi.org/10.5194/hess-25-4681-2021, https://doi.org/10.5194/hess-25-4681-2021, 2021
Short summary
Short summary
Mountain pine beetle outbreaks have caused widespread tree mortality. While some research shows that water yield increases after trees are killed, many others document no change or a decrease. The climatic and environmental mechanisms driving hydrologic response to tree mortality are not well understood. We demonstrated that the direction of hydrologic response is a function of multiple factors, so previous studies do not necessarily conflict with each other; they represent different conditions.
Haidong Zhao, Gretchen F. Sassenrath, Mary Beth Kirkham, Nenghan Wan, and Xiaomao Lin
Hydrol. Earth Syst. Sci., 25, 4357–4372, https://doi.org/10.5194/hess-25-4357-2021, https://doi.org/10.5194/hess-25-4357-2021, 2021
Short summary
Short summary
This study was done to develop an improved soil temperature model for the USA Great Plains by using common weather station variables as inputs. After incorporating knowledge of estimated soil moisture and observed daily snow depth, the improved model showed a near 50 % gain in performance compared to the original model. We conclude that our improved model can better estimate soil temperature at the surface soil layer where most hydrological and biological processes occur.
Brandon P. Sloan, Sally E. Thompson, and Xue Feng
Hydrol. Earth Syst. Sci., 25, 4259–4274, https://doi.org/10.5194/hess-25-4259-2021, https://doi.org/10.5194/hess-25-4259-2021, 2021
Short summary
Short summary
Plants affect the global water and carbon cycles by modifying their water use and carbon intake in response to soil moisture. Global climate models represent this response with either simple empirical models or complex physical models. We reveal that the latter improves predictions in plants with large flow resistance; however, adding dependence on atmospheric moisture demand to the former matches performance of the latter, leading to a new tool for improving carbon and water cycle predictions.
Maria Magdalena Warter, Michael Bliss Singer, Mark O. Cuthbert, Dar Roberts, Kelly K. Caylor, Romy Sabathier, and John Stella
Hydrol. Earth Syst. Sci., 25, 3713–3729, https://doi.org/10.5194/hess-25-3713-2021, https://doi.org/10.5194/hess-25-3713-2021, 2021
Short summary
Short summary
Intensified drying of soil and grassland vegetation is raising the impact of fire severity and extent in Southern California. While browned grassland is a common sight during the dry season, this study has shown that there is a pronounced shift in the timing of senescence, due to changing climate conditions favoring milder winter temperatures and increased precipitation variability. Vegetation may be limited in its ability to adapt to these shifts, as drought periods become more frequent.
Mikael Gillefalk, Dörthe Tetzlaff, Reinhard Hinkelmann, Lena-Marie Kuhlemann, Aaron Smith, Fred Meier, Marco P. Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021, https://doi.org/10.5194/hess-25-3635-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model to quantify water flux–storage–age interactions for three urban vegetation types: trees, shrub and grass. The model results showed that evapotranspiration increased in the order shrub < grass < trees during one growing season. Additionally, we could show how
infiltration hotspotscreated by runoff from sealed onto vegetated surfaces can enhance both evapotranspiration and groundwater recharge.
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
Yanlan Liu, Nataniel M. Holtzman, and Alexandra G. Konings
Hydrol. Earth Syst. Sci., 25, 2399–2417, https://doi.org/10.5194/hess-25-2399-2021, https://doi.org/10.5194/hess-25-2399-2021, 2021
Short summary
Short summary
The flow of water through plants varies with species-specific traits. To determine how they vary across the world, we mapped the traits that best allowed a model to match microwave satellite data. We also defined average values across a few clusters of trait behavior. These form a tractable solution for use in large-scale models. Transpiration estimates using these clusters were more accurate than if using plant functional types. We expect our maps to improve transpiration forecasts.
Aaron Smith, Doerthe Tetzlaff, Lukas Kleine, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 2239–2259, https://doi.org/10.5194/hess-25-2239-2021, https://doi.org/10.5194/hess-25-2239-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model on a mixed land use catchment in northeastern Germany to quantify water flux–storage–age interactions at four model grid resolutions. The model's ability to reproduce spatio-temporal flux–storage–age interactions decreases with increasing model grid sizes. Similarly, larger model grids showed vegetation-influenced changes in blue and green water partitioning. Simulations reveal the value of measured soil and stream isotopes for model calibration.
Yiping Hou, Mingfang Zhang, Xiaohua Wei, Shirong Liu, Qiang Li, Tijiu Cai, Wenfei Liu, Runqi Zhao, and Xiangzhuo Liu
Hydrol. Earth Syst. Sci., 25, 1447–1466, https://doi.org/10.5194/hess-25-1447-2021, https://doi.org/10.5194/hess-25-1447-2021, 2021
Short summary
Short summary
Ecohydrological sensitivity, defined as the response intensity of streamflow to vegetation change, indicates the hydrological sensitivity to vegetation change. The study revealed seasonal ecohydrological sensitivities were highly variable, depending on climate condition and watershed attributes. Dry season ecohydrological sensitivity was mostly determined by topography, soil and vegetation, while wet season ecohydrological sensitivity was mainly controlled by soil, landscape and vegetation.
Xiangyu Luan and Giulia Vico
Hydrol. Earth Syst. Sci., 25, 1411–1423, https://doi.org/10.5194/hess-25-1411-2021, https://doi.org/10.5194/hess-25-1411-2021, 2021
Short summary
Short summary
Crop yield is reduced by heat and water stress, particularly when they co-occur. We quantify the joint effects of (unpredictable) air temperature and soil water availability on crop heat stress via a mechanistic model. Larger but more infrequent precipitation increased crop canopy temperatures. Keeping crops well watered via irrigation could reduce canopy temperature but not enough to always exclude heat damage. Thus, irrigation is only a partial solution to adapt to warmer and drier climates.
Songyan Yu, Hong Xuan Do, Albert I. J. M. van Dijk, Nick R. Bond, Peirong Lin, and Mark J. Kennard
Hydrol. Earth Syst. Sci., 24, 5279–5295, https://doi.org/10.5194/hess-24-5279-2020, https://doi.org/10.5194/hess-24-5279-2020, 2020
Short summary
Short summary
There is a growing interest globally in the spatial distribution and temporal dynamics of intermittently flowing streams and rivers. We developed an approach to quantify catchment-wide flow intermittency over long time frames. Modelled patterns of flow intermittency in eastern Australia revealed highly dynamic behaviour in space and time. The developed approach is transferable to other parts of the world and can inform hydro-ecological understanding and management of intermittent streams.
Natasha MacBean, Russell L. Scott, Joel A. Biederman, Catherine Ottlé, Nicolas Vuichard, Agnès Ducharne, Thomas Kolb, Sabina Dore, Marcy Litvak, and David J. P. Moore
Hydrol. Earth Syst. Sci., 24, 5203–5230, https://doi.org/10.5194/hess-24-5203-2020, https://doi.org/10.5194/hess-24-5203-2020, 2020
Yusen Yuan, Taisheng Du, Honglang Wang, and Lixin Wang
Hydrol. Earth Syst. Sci., 24, 4491–4501, https://doi.org/10.5194/hess-24-4491-2020, https://doi.org/10.5194/hess-24-4491-2020, 2020
Short summary
Short summary
The isotopic composition of ambient water vapor is an important source of atmospheric water vapor and has not been able to be estimated to date using the Keeling plot approach. Here we proposed two new methods to estimate the isotopic composition of ambient water vapor: one using the intersection point method and another relying on the intermediate value theorem.
Valentin Couvreur, Youri Rothfuss, Félicien Meunier, Thierry Bariac, Philippe Biron, Jean-Louis Durand, Patricia Richard, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 24, 3057–3075, https://doi.org/10.5194/hess-24-3057-2020, https://doi.org/10.5194/hess-24-3057-2020, 2020
Short summary
Short summary
Isotopic labeling of soil water is a broadly used tool for tracing the origin of water extracted by plants and computing root water uptake (RWU) profiles with multisource mixing models. In this study, we show how a method such as this may misconstrue time series of xylem water isotopic composition as the temporal dynamics of RWU by simulating data collected during a tall fescue rhizotron experiment with an isotope-enabled physical soil–root model accounting for variability in root traits.
Thibault Hallouin, Michael Bruen, and Fiachra E. O'Loughlin
Hydrol. Earth Syst. Sci., 24, 1031–1054, https://doi.org/10.5194/hess-24-1031-2020, https://doi.org/10.5194/hess-24-1031-2020, 2020
Short summary
Short summary
A hydrological model was used to compare different parameterisation strategies in view of predicting ecologically relevant streamflow indices in 33 Irish catchments. Compared for 14 different periods, a strategy fitting simulated and observed streamflow indices yielded better performance than fitting simulated and observed streamflow, but it also yielded a less consistent ensemble of parameter sets, suggesting that these indices may not be hydrologically relevant for model parameterisation.
Robert N. Armstrong, John W. Pomeroy, and Lawrence W. Martz
Hydrol. Earth Syst. Sci., 23, 4891–4907, https://doi.org/10.5194/hess-23-4891-2019, https://doi.org/10.5194/hess-23-4891-2019, 2019
Short summary
Short summary
Digital and thermal images taken near midday were used to scale daily point observations of key factors driving actual-evaporation estimates across a complex Canadian Prairie landscape. Point estimates of actual evaporation agreed well with observed values via eddy covariance. Impacts of spatial variations on areal estimates were minor, and no covariance was found between model parameters driving the energy term. The methods can be applied further to improve land surface parameterisations.
Zhongkai Li, Hu Liu, Wenzhi Zhao, Qiyue Yang, Rong Yang, and Jintao Liu
Hydrol. Earth Syst. Sci., 23, 4685–4706, https://doi.org/10.5194/hess-23-4685-2019, https://doi.org/10.5194/hess-23-4685-2019, 2019
Short summary
Short summary
A database of soil moisture measurements from the middle Heihe River basin of China was used to test the potential of a soil moisture database in estimating the soil water balance components (SWBCs). We determined SWBCs using a method that combined the soil water balance method and the inverse Richards equation. This work confirmed that relatively reasonable estimations of the SWBCs in coarse-textured sandy soils can be derived using soil moisture measurements.
Inês Gomes Marques, João Nascimento, Rita M. Cardoso, Filipe Miguéns, Maria Teresa Condesso de Melo, Pedro M. M. Soares, Célia M. Gouveia, and Cathy Kurz Besson
Hydrol. Earth Syst. Sci., 23, 3525–3552, https://doi.org/10.5194/hess-23-3525-2019, https://doi.org/10.5194/hess-23-3525-2019, 2019
Short summary
Short summary
Mediterranean cork woodlands are very particular agroforestry systems present in a confined area of the Mediterranean Basin. They are of great importance due to their high socioeconomic value; however, a decrease in water availability has put this system in danger. In this paper we build a model that explains this system's tree-species distribution in southern Portugal from environmental variables. This could help predict their future distribution under changing climatic conditions.
Samuli Launiainen, Mingfu Guan, Aura Salmivaara, and Antti-Jussi Kieloaho
Hydrol. Earth Syst. Sci., 23, 3457–3480, https://doi.org/10.5194/hess-23-3457-2019, https://doi.org/10.5194/hess-23-3457-2019, 2019
Short summary
Short summary
Boreal forest evapotranspiration and water cycle is modeled at stand and catchment scale using physiological and physical principles, open GIS data and daily weather data. The approach can predict daily evapotranspiration well across Nordic coniferous-dominated stands and successfully reproduces daily streamflow and annual evapotranspiration across boreal headwater catchments in Finland. The model is modular and simple and designed for practical applications over large areas using open data.
Regina T. Hirl, Hans Schnyder, Ulrike Ostler, Rudi Schäufele, Inga Schleip, Sylvia H. Vetter, Karl Auerswald, Juan C. Baca Cabrera, Lisa Wingate, Margaret M. Barbour, and Jérôme Ogée
Hydrol. Earth Syst. Sci., 23, 2581–2600, https://doi.org/10.5194/hess-23-2581-2019, https://doi.org/10.5194/hess-23-2581-2019, 2019
Short summary
Short summary
We evaluated the system-scale understanding of the propagation of the oxygen isotope signal (δ18O) of rain through soil and xylem to leaf water in a temperate drought-prone grassland. Biweekly δ18O observations of the water pools made during seven growing seasons were accurately reproduced by the 18O-enabled process-based model MuSICA. While water uptake occurred from shallow soil depths throughout dry and wet periods, leaf water 18O enrichment responded to both soil and atmospheric moisture.
Christoph Schürz, Brigitta Hollosi, Christoph Matulla, Alexander Pressl, Thomas Ertl, Karsten Schulz, and Bano Mehdi
Hydrol. Earth Syst. Sci., 23, 1211–1244, https://doi.org/10.5194/hess-23-1211-2019, https://doi.org/10.5194/hess-23-1211-2019, 2019
Short summary
Short summary
For two Austrian catchments we simulated discharge and nitrate-nitrogen (NO3-N) considering future changes of climate, land use, and point source emissions together with the impact of different setups and parametrizations of the implemented eco-hydrological model. In a comprehensive analysis we identified the dominant sources of uncertainty for the simulation of discharge and NO3-N and further examined how specific properties of the model inputs control the future simulation results.
Yu-Ting Shih, Pei-Hao Chen, Li-Chin Lee, Chien-Sen Liao, Shih-Hao Jien, Fuh-Kwo Shiah, Tsung-Yu Lee, Thomas Hein, Franz Zehetner, Chung-Te Chang, and Jr-Chuan Huang
Hydrol. Earth Syst. Sci., 22, 6579–6590, https://doi.org/10.5194/hess-22-6579-2018, https://doi.org/10.5194/hess-22-6579-2018, 2018
Short summary
Short summary
DOC and DIC export in Taiwan shows that the annual DOC and DIC fluxes were 2.7–4.8 and 48.4–54.3 ton C km2 yr1, respectively, which were approximately 2 and 20 times higher than the global means of 1.4 and 2.6 ton C km2 yr1, respectively.
Zun Yin, Catherine Ottlé, Philippe Ciais, Matthieu Guimberteau, Xuhui Wang, Dan Zhu, Fabienne Maignan, Shushi Peng, Shilong Piao, Jan Polcher, Feng Zhou, Hyungjun Kim, and other China-Trend-Stream project members
Hydrol. Earth Syst. Sci., 22, 5463–5484, https://doi.org/10.5194/hess-22-5463-2018, https://doi.org/10.5194/hess-22-5463-2018, 2018
Short summary
Short summary
Simulations in China were performed in ORCHIDEE driven by different forcing datasets: GSWP3, PGF, CRU-NCEP, and WFDEI. Simulated soil moisture was compared to several datasets to evaluate the ability of ORCHIDEE in reproducing soil moisture dynamics. Results showed that ORCHIDEE soil moisture coincided well with other datasets in wet areas and in non-irrigated areas. It suggested that the ORCHIDEE-MICT was suitable for further hydrological studies in China.
Matthias J. R. Speich, Heike Lischke, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 22, 4097–4124, https://doi.org/10.5194/hess-22-4097-2018, https://doi.org/10.5194/hess-22-4097-2018, 2018
Short summary
Short summary
To simulate the water balance of, e.g., a forest plot, it is important to estimate the maximum volume of water available to plants. This depends on soil properties and the average depth of roots. Rooting depth has proven challenging to estimate. Here, we applied a model assuming that plants dimension their roots to optimize their carbon budget. We compared its results with values obtained by calibrating a dynamic water balance model. In most cases, there is good agreement between both methods.
Gordon C. O'Brien, Chris Dickens, Eleanor Hines, Victor Wepener, Retha Stassen, Leo Quayle, Kelly Fouchy, James MacKenzie, P. Mark Graham, and Wayne G. Landis
Hydrol. Earth Syst. Sci., 22, 957–975, https://doi.org/10.5194/hess-22-957-2018, https://doi.org/10.5194/hess-22-957-2018, 2018
Short summary
Short summary
In global water resource allocation, robust tools are required to establish environmental flows. In addition, tools should characterize past, present and future consequences of altered flows and non-flow variables to social and ecological management objectives. PROBFLO is a risk assessment method designed to meet best practice principles for regional-scale holistic E-flow assessments. The approach has been developed in Africa and applied across the continent.
Katrina E. Bennett, Theodore J. Bohn, Kurt Solander, Nathan G. McDowell, Chonggang Xu, Enrique Vivoni, and Richard S. Middleton
Hydrol. Earth Syst. Sci., 22, 709–725, https://doi.org/10.5194/hess-22-709-2018, https://doi.org/10.5194/hess-22-709-2018, 2018
Short summary
Short summary
We applied the Variable Infiltration Capacity hydrologic model to examine scenarios of change under climate and landscape disturbances in the San Juan River basin, a major sub-watershed of the Colorado River basin. Climate change coupled with landscape disturbance leads to reduced streamflow in the San Juan River basin. Disturbances are expected to be widespread in this region. Therefore, accounting for these changes within the context of climate change is imperative for water resource planning.
Fernando Jaramillo, Neil Cory, Berit Arheimer, Hjalmar Laudon, Ype van der Velde, Thomas B. Hasper, Claudia Teutschbein, and Johan Uddling
Hydrol. Earth Syst. Sci., 22, 567–580, https://doi.org/10.5194/hess-22-567-2018, https://doi.org/10.5194/hess-22-567-2018, 2018
Short summary
Short summary
Which is the dominant effect on evapotranspiration in northern forests, an increase by recent forests expansion or a decrease by the water use response due to increasing CO2 concentrations? We determined the dominant effect during the period 1961–2012 in 65 Swedish basins. We used the Budyko framework to study the hydroclimatic movements in Budyko space. Our findings suggest that forest expansion is the dominant driver of long-term and large-scale evapotranspiration changes.
Jie Zhu, Ge Sun, Wenhong Li, Yu Zhang, Guofang Miao, Asko Noormets, Steve G. McNulty, John S. King, Mukesh Kumar, and Xuan Wang
Hydrol. Earth Syst. Sci., 21, 6289–6305, https://doi.org/10.5194/hess-21-6289-2017, https://doi.org/10.5194/hess-21-6289-2017, 2017
Short summary
Short summary
Forested wetlands provide myriad ecosystem services threatened by climate change. This study develops empirical hydrologic models by synthesizing hydrometeorological data across the southeastern US. We used global climate projections to model hydrological changes for five wetlands. We found all wetlands are predicted to become drier by the end of this century. This study suggests that climate change may substantially affect wetland biogeochemical cycles and other functions in the future.
Guiomar Ruiz-Pérez, Julian Koch, Salvatore Manfreda, Kelly Caylor, and Félix Francés
Hydrol. Earth Syst. Sci., 21, 6235–6251, https://doi.org/10.5194/hess-21-6235-2017, https://doi.org/10.5194/hess-21-6235-2017, 2017
Short summary
Short summary
Plants are shaping the landscape and controlling the hydrological cycle, particularly in arid and semi-arid ecosystems. Remote sensing data appears as an appealing source of information for vegetation monitoring, in particular in areas with a limited amount of available field data. Here, we present an example of how remote sensing data can be exploited in a data-scarce basin. We propose a mathematical methodology that can be used as a springboard for future applications.
Cited articles
Ainsworth, E. A., Leakey, A. D. B., Ort, D. R., and Long, S. P.: FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supply, New Phytol., 179, 5–9, 2008.
Alkama, R., Kageyama, M., and Ramstein, G.: Relative contributions of climate change, stomatal closure, and leaf area index changes to 20th and 21st century runoff change: A modelling approach using the ORCHIDEE land surface model, J. Geophys. Res., 115, D17112, https://doi.org/10.1029/2009JD013408, 2010.
Bai, H. Z., Tao, F. L., Xiao, D. P., Liu, F. S., and Zhang, H.: Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades, Climatic Change, 135, 539–553, 2016.
Baker, I. T., Denning, A. S., and Stockli, R.: North American gross primary productivity: regional characterization and interannual variability, Tellus B, 62, 533–549, 2010.
Banger, K., Tian, H., Tao, B., Ren, W., Pan, S., Dangal, S., and Yang, J.: Terrestrial net primary productivity in India during 1901–2010: contributions from multiple environmental changes, Climatic Change, 132, 575–588, 2015.
Betts, R. A., Boucher, O., Collins, M., Cox, P. M., Falloon, P. D., Gedney, N., Hemming, D. L., Huntingford, C., Jones, C. D., Sexton, D. M. H., and Webb, M. J.: Projected increase in continental runoff due to plant responses to increasing carbon dioxide, Nature, 448, 11037–1041, 2007.
Bonan, G. B.: Sensitivity of a GCM simulation to subgrid infiltration and surface runoff, Clim. Dynam., 12, 279–285, 1996.
Brutsaert, W. and Stricker, H.: An advection-aridity approach to estimate actual regional evapotranspiration, Water Resour. Res., 15, 443–450, 1979.
Brutsaert, W. B.: Indications of increasing land surface evaporation during the second half of the 20th century, Geophys. Res. Lett., 33, L20403, https://doi.org/10.1029/2006GL027532, 2006.
Buckley, T. N. and Mott, K.: Modelling stomatal conductance in response to environmental factors, Plant Cell Environ., 36, 1691–1699, 2013.
Burn, D. H. and Hesch, N. M.: Trends in evaporation for the Canadian Prairies, J. Hydrol., 336, 61–73, 2007.
Campbell, G. S. and Norman, J. M.: An introduction to environmental biophysics, Springer-Verlag, New York, 1998.
Cao, G., Han, D., and Song, X.: Evaluating actual evapotranspiration and impacts of groundwater storage change in the North China Plain, Hydrol. Process., 28, 1797–1808, 2014.
Che, H. Z., Shi, G. Y., Zhang, X. Y., Arimoto, R., Zhao, J. Q., Xu, L., Wang, B., and Chen, Z. H.: Analysis of 40 years of solar radiation data from China, 1961–2000, Geophys. Res. Lett., 32, L06803, https://doi.org/10.1029/2004GL022322, 2005.
Chen, L., Zhang, L., Wang Y., Yu, Q., Eamus, D., and O'Grady, A.: Impacts of elevated CO2, climate change and their interactions on water budgets in four different catchments in Australia, J. Hydrol., 519, 1350–1361, 2014.
Chen, X., Liu, X., Zhou, G., Han, L., Liu, W., and Liao, J.: 50-year evapotranspiration declining and potential causations in subtropical Guangdong province, southern China, Catena, 128, 185–194, 2015.
Collatz, G. J., Ribas-Carbo, M., and Berry, J. A.: Coupled photosynthesis-stomatal conductance model for leaves of C4 plants, Aust. J. Plant Physiol., 19, 519–538, 1992.
Douville, H., Ribes, A., Decharme, B., Alkama, R., and Sheffield, J.: Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration, Nature Climate Change, 3, 59–62, 2013.
Ewert, F., Rotter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., Olesen, J. E., van Ittersum, M. K., Janssen, S., Rivington, M., Semenov, M. A., Wallach, D., Porter, J. R., Stewart, D., Verhagen, J., Gaiser, T., Palosuo, T., Tao, F., Nendel, C., Roggero, P. P., Bartosova, L., and Asseng, S.: Crop modelling for integrated assessment of risk to food production from climate change, Environ. Modell. Softw., 72, 287–303, 2015.
Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78–90, 1980.
Field, C., Jackson, R., and Mooney, H.: Stomatal responses to increased CO2: Implications from the plant to the global scale, Plant Cell Environ., 18, 1214–1255, 1995.
Gao, G., Xu, C., Chen, D., and Singh, V. P.: Spatial and temporal characteristics of actual evapotranspiration over Haihe River basin in China, Stoch Env. Res. Risk A., 26, 655–669, 2012.
Gu, L. H., Baldocchi, D., Verma, S. B., Black, T. A., Vesala, T., Falge, E. M., and Dowty, P. R.: Advantages of diffuse radiation for terrestrial ecosystem productivity, J. Geophys. Res.-Atmos., 107, 4050, https://doi.org/10.1029/2001JD001242, 2002.
Guo, J., Zhao, J., Wu, D., Mu, J., and Xu, Y.: Attribution of Maize Yield Increase in China to Climate Change and Technological Advancement Between 1980 and 2010, J. Meteorol. Res., 28, 1168-1181, https://doi.org/10.1007/s13351-014-4002-x, 2014.
Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Florke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., Tessler, Z. D., Wada, Y., and Wisser, D.: Global water resources affected by human interventions and climate change, P. Natl. Acad. Sci. USA, 111, 3251–3256, 2014.
Hobbins, M. T., Ramırez, J. A., Brown, T. C., and Claessens, L. H. J. M.: The complementary relationship in estimation of regional evapotranspiration: The Complementary Relationship Areal Evapotranspiration and Advection-Aridity models, Water Resour. Res., 37, 1367–1387, 2001.
Hu, S., Mo, X., and Lin, Z.: Optimizing the photosynthetic parameter Vcmax by assimilating MODIS-fPAR and MODIS-NDVI with a process-based ecosystem model, Agr. Forest Meteorol., 198–199, 320–334, 2014.
Jia, Y., Yu, G., He, N., Zhan, X., Fang, H., Sheng, W., Zuo, Y., Zhang, D., and Wang, Q.: Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity, Sci. Rep., 4, 3763, https://doi.org/10.1038/srep03763, 2014.
Katul, G. G., Oren, R., Manzoni, S., Higgins, C., and Parlange, M. B.: Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system, Rev. Geophys., 50, RG3002, https://doi.org/10.1029/2011RG000366, 2012.
Liepert, B. G.: Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990, Geophys. Res. Lett., 29, 61-1–61-4, 2002.
Liu, M., Tian, H., Lu, C., Xu, X., Chen, G., and Ren, W.: Effects of multiple environment stresses on evapotranspiration and runoff over eastern China, J. Hydrol., 426–427, 39–54, 2012.
Liu, S. and Xu, Z.: Multi-scale surface flux and meteorological elements observation dataset in the Hai River Basin (Miyun site-automatic weather station), Cold and Arid Regions Science Data Center at Lanzhou, https://doi.org/10.3972/haihe.001.2013.db, 2013.
Liu, S. M., Xu, Z. W., Zhu, Z. L., Jia, Z. Z., and Zhu, M. J.: Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China, J. Hydrol., 487, 24–38, 2013.
Liu, Y., Wang, E., and Yang, X.: Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s, Glob. Change Biol., 16, 2287–2299, 2010.
Lobell, D. B. and Burke, M. B.: On the use of statistical models to predict crop yield responses to climate change, Agr. Forest Meteorol., 150, 1443–1452, 2010.
Lobell, D. B., Schlenker, W., and Costa-Roberts, J.: Climate trends and global crop production since 1980, Science, 333, 616–620, 2011.
Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nosberger, J., and Ort, D.: Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations, Science, 312, 1918–1921, 2006.
Mao, J., Shi, X., Thornton, P. E., Piao, S., and Wang, X.: Causes of spring vegetation growth trends in the northern mid–high latitudes from 1982 to 2004, Environ. Res. Lett., 7, 014010, https://doi.org/10.1088/1748-9326/7/1/014010, 2012.
Ministry of Water Resources of China (MWR): China water resources bulletin, Ministry of Water Res. of China, Beijing, available at: www.mwr.gov.cn/zwzc/hygb/szygb/qgszygb/201204/t20120426_319624.html (last access: 10 January 2017), 2010.
Mo, X., Liu, S., and Lin, Z.: Evaluation of an ecosystem model for wheat-maize double cropping system over the North China Plain, Environ. Modell. Softw., 32, 61–73, 2012.
Mo, X., Guo, R., Liu, S., Lin, Z., and Hu, S.: Impacts of climate change on crop evapotranspiration with ensemble GCM projections in the North China Plain, Climatic Change, 120, 299–312, https://doi.org/10.1007/s10584-013-0823-3, 2013.
Mo, X., Liu, S., and Meng, D.: Climate variability impacts on evapotranspiration and primary productivity by assimilating remotely sensed data with a process-based model over Songhua River Basin, Int. J. Climatol., 34, 1945–1963, https://doi.org/10.1002/joc.3813, 2014.
Mo, X. G., Liu, S. X., Lin, Z. H., and Guo, R. P.: Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain, Agr. Ecosyst. Environ., 134, 67–78, 2009.
Nalder, I. A. and Wein, R. W.: Spatial interpolation of climatic Normals: test of a new method in the Canadian boreal forest, Agr. Forest Meteorol., 92, 211–225, 1998.
Nayak, R. K., Patel, N. R., and Dadhwal, V. K.: Inter-annual variability and climate control of terrestrial net primary productivity over India, Int. J. Climatol., 33, 132–142, 2013.
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., and Running, S. W.: Climate-driven increases in global terrestrial net primary production from 1982 to 1999, Science, 300, 1560–1563, 2003.
Ozdogan, M. and Salvucci, G. D.: Irrigation-induced changes in potential evapotranspiration in southeastern Turkey: Test and application of Bouchet's complementary hypothesis, Water Resour. Res., 40, W04301, https://doi.org/10.1029/2003WR002822, 2004.
Piao, S., Friedlingstein, P., Ciais, P., de Noblet-Ducoudré, N., Labat, D., and Zaehle, S.: Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends, P. Natl. Acad. Sci. USA, 104, 15242–15247, 2007.
Piao, S. L., Yin, G. D., Tan, J. G., Cheng, L., Huang, M. T., Li, Y., Liu, R. G., Mao, J. F., Myneni, R. B., Peng, S. S., Poulter, B., Shi, X. Y., Xiao, Z. Q., Zeng, N., Zeng, Z. Z., and Wang, Y. P.: Detection and attribution of vegetation greening trend in China over the last 30 years, Glob. Change Biol., 21, 1601–1609, https://doi.org/10.1111/gcb.12795, 2015.
Pinzon, J. E. and Tucker, C. J.: A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series, Remote Sens., 6, 6929–6960, 2014.
Qian, T., Dai, A., and Trenberth, K. E.: Hydroclimatic trends in the Mississippi River from 1948 to 2004, J. Climate, 20, 4599–4614, 2007.
Ren, X. L., He, H. L., Zhang, L., Zhou, L., Yu, G. R., and Fan, J. W.: Spatiotemporal variability analysis of diffuse radiation in China during 1981–2010, Ann. Geophys., 31, 277–289, https://doi.org/10.5194/angeo-31-277-2013, 2013.
Sacks, W. J. and Kucharik, C. J.: Crop management and phenology trends in the U.S. Corn Belt: Impacts on yields, evapotranspiration and energy balance, Agr. Forest Meteorol., 151, 882–894, 2011.
Savitzky, A. and Golay, M. J. E.: Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem., 36, 1627–1639, 1964.
Shi, X., Mao, J., Thornton, P. E., Hoffman, F. M., and Post, W. M.: The impact of climate, CO2, nitrogen deposition and land use change on simulated contemporary global river flow, Geophys. Res. Lett., 38, L08704, https://doi.org/10.1029/2011GL046773, 2011.
Song, Y., Wang, C., and Ren, G.: The relative contribution of climate and cultivar renewal to shaping rice yields in China since 1981, Theor. Appl. Climatol., 120, 1–9, https://doi.org/10.1007/s00704-014-1089-z, 2014.
Song, Z. W., Zhang, H. L., Snyder, R. L., Anderson, F. E., and Chen, F.: Distribution and Trends in Reference Evapotranspiration in the North China Plain, J. Irrig. Drain. E-ASCE, 136, 240–247, 2009.
Stein, U. and Alpert, P.: Factor separation in numerical simulations, J. Atmos. Sci., 50, 2105–2115, 1993.
Tang, B., Tong, L., Kang, S., and Zhang, L.: Impacts of climate variability on reference evapotranspiration over 58 years in the Haihe river basin of north China, Agr. Water Manage., 98, 1660–1670, 2011.
Tian, H., Lu, C., Chen, G., Xu, X., Liu, M., Ren, W., Tao, B., Sun, G., Pan, S., and Liu, J.: Climate and land use controls over terrestrial water use efficiency in monsoon Asia, Ecohydrology, 4, 322–340, 2011.
Wang, J., Wang, E., Yang, X., Zhang, F., and Yin, H.: Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation, Climatic Change, 113, 825–840, 2012.
Wang, S., Mo, X., Liu, S., Lin, Z., and Hu, S.: Validation and trend analysis of ECV soil moisture data on cropland in North China Plain during 1981–2010, Int. J. Appl. Earth Obs., 48, 110–121, 2016.
Wang, Y. W. and Yang, Y. H.: China's dimming and brightening: evidence, causes and hydrological implications, Ann. Geophys., 32, 41–55, https://doi.org/10.5194/angeo-32-41-2014, 2014.
Wang, Z., Ye, T., Wang, J., Cheng, Z., and Shi, P. J.: Contribution of climatic and technological factors to crop yield: empirical evidence from late paddy rice in Hunan Province, China, Stoch. Environ. Res. Risk Assess., 30, 2019–2030, https://doi.org/10.1007/s00477-016-1215-9, 2016.
Weiss, A. and Norman, J. M.: Partitioning Solar-Radiation into Direct and Diffuse, Visible and near-Infrared Components, Agr. Forest Meteorol., 34, 205–213, 1985.
Xiao, D. and Tao, F.: Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades, Eur. J. Agron., 52, 112–122, 2014.
Xin, Q., Broich, M., Suyker, A. E., Yu, L., and Gong, P.: Multi-scale evaluation of light use efficiency in MODIS gross primaryproductivity for croplands in the Midwestern United States, Agr. Forest Meteorol., 201, 111–119, 2015.
Xiong, W., Holman, I., Lin, E., Conway, D., Li, Y., and Wu, W. B.: Untangling relative contributions of recent climate and CO2 trends to national cereal production in China, Environ. Res. Lett., 7, 044014, https://doi.org/10.1088/1748-9326/7/4/044014, 2012.
Xu, Y., Mo, X., Cai, Y., and Li, X.: Analysis on groundwater table drawdown by land use and the quest for sustainable water use in the Hebei Plain in China, Agr. Water Manage., 75, 38–53, 2005.
Yan, H., Yu, Q., Zhu, Z.-C., Myneni, R. B., Yan, H.-M., Wang, S. Q., and Shugart, H. H.: Diagnostic analysis of interannual variation of global land evapotranspiration over 1982–2011: Assessing the impact of ENSO, J. Geophys. Res.-Atmos., 118, 8969–8983, https://doi.org/10.1002/jgrd.50693, 2013.
Yu, Y., Huang, Y., and Zhang, W.: Changes in rice yields in China since 1980 associated with cultivar improvement, climate and crop management. Changes in rice yields in China since 1980 associated with cultivar improvement, climate and crop management, Field Crop. Res., 136, 65–75, 2012.
Yuan, Z. and Shen, Y.: Estimationn of agricultural water consumption from meteorological and yield data: A case study of Hebei, North China, PloS ONE, 8, e558685, https://doi.org/10.1371/journal.pone.0058685, 2013.
Zeng, Z. Z., Wang, T., Zhou, F., Ciais, P., Mao, J. F., Shi, X. Y., and Piao, S. L.: A worldwide analysis of spatiotemporal changes in water balance-based evapotranspiration from 1982 to 2009, J. Geophys. Res.-Atmos., 119, 1186–1202, https://doi.org/10.1002/2013JD020941, 2014.
Zhang, X., Chen, S., Sun, H., Shao, L., and Wang, Y.: Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades, Agr. Water Manage., 98, 1097–1104, 2011.
Zhang, X., Wang, S., Sun, H., Chen, S., Shao, L., and Liu, X.: Contribution of cultivar, fertilizer and weather to yield variation of winter wheat over three decades: A case study in the North China Plain, Eur. J. Agron., 50, 52–59, 2013.
Short summary
Attributing changes in ET and GPP is crucial to impact and adaptation assessment of climate change over the NCP. Simulations with the VIP ecohydrological model illustrated relative contributions of climatic change, CO2 fertilization, and management to ET and GPP. Global radiation was the cause of GPP decline in summer, while air warming intensified the water cycle and advanced plant productivity in spring. Agronomical improvement was the main driver of crop productivity enhancement.
Attributing changes in ET and GPP is crucial to impact and adaptation assessment of climate...