Articles | Volume 21, issue 1
https://doi.org/10.5194/hess-21-295-2017
https://doi.org/10.5194/hess-21-295-2017
Research article
 | 
16 Jan 2017
Research article |  | 16 Jan 2017

Attributing regional trends of evapotranspiration and gross primary productivity with remote sensing: a case study in the North China Plain

Xingguo Mo, Xuejuan Chen, Shi Hu, Suxia Liu, and Jun Xia

Related authors

River hydraulic modeling with ICESat-2 land and water surface elevation
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023,https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
The cost of ending groundwater overdraft on the North China Plain
Claus Davidsen, Suxia Liu, Xingguo Mo, Dan Rosbjerg, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 20, 771–785, https://doi.org/10.5194/hess-20-771-2016,https://doi.org/10.5194/hess-20-771-2016, 2016
Short summary
The need of the change of the conceptualisation of hydrologic processes under extreme conditions – taking reference evapotranspiration as an example
S. Liu, L. Tan, X. Mo, and S. Zhang
Proc. IAHS, 371, 167–172, https://doi.org/10.5194/piahs-371-167-2015,https://doi.org/10.5194/piahs-371-167-2015, 2015
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023,https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Technical note: Seamless extraction and analysis of river networks in R
Luca Carraro
Hydrol. Earth Syst. Sci., 27, 3733–3742, https://doi.org/10.5194/hess-27-3733-2023,https://doi.org/10.5194/hess-27-3733-2023, 2023
Short summary
Advancing stream classification and hydrologic modeling of ungaged basins for environmental flow management in coastal southern California
Stephen K. Adams, Brian P. Bledsoe, and Eric D. Stein
Hydrol. Earth Syst. Sci., 27, 3021–3039, https://doi.org/10.5194/hess-27-3021-2023,https://doi.org/10.5194/hess-27-3021-2023, 2023
Short summary
Improving regional climate simulations based on a hybrid data assimilation and machine learning method
Xinlei He, Yanping Li, Shaomin Liu, Tongren Xu, Fei Chen, Zhenhua Li, Zhe Zhang, Rui Liu, Lisheng Song, Ziwei Xu, Zhixing Peng, and Chen Zheng
Hydrol. Earth Syst. Sci., 27, 1583–1606, https://doi.org/10.5194/hess-27-1583-2023,https://doi.org/10.5194/hess-27-1583-2023, 2023
Short summary
A comprehensive assessment of in situ and remote sensing soil moisture data assimilation in the APSIM model for improving agricultural forecasting across the US Midwest
Marissa Kivi, Noemi Vergopolan, and Hamze Dokoohaki
Hydrol. Earth Syst. Sci., 27, 1173–1199, https://doi.org/10.5194/hess-27-1173-2023,https://doi.org/10.5194/hess-27-1173-2023, 2023
Short summary

Cited articles

Ainsworth, E. A., Leakey, A. D. B., Ort, D. R., and Long, S. P.: FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supply, New Phytol., 179, 5–9, 2008.
Alkama, R., Kageyama, M., and Ramstein, G.: Relative contributions of climate change, stomatal closure, and leaf area index changes to 20th and 21st century runoff change: A modelling approach using the ORCHIDEE land surface model, J. Geophys. Res., 115, D17112, https://doi.org/10.1029/2009JD013408, 2010.
Bai, H. Z., Tao, F. L., Xiao, D. P., Liu, F. S., and Zhang, H.: Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades, Climatic Change, 135, 539–553, 2016.
Baker, I. T., Denning, A. S., and Stockli, R.: North American gross primary productivity: regional characterization and interannual variability, Tellus B, 62, 533–549, 2010.
Banger, K., Tian, H., Tao, B., Ren, W., Pan, S., Dangal, S., and Yang, J.: Terrestrial net primary productivity in India during 1901–2010: contributions from multiple environmental changes, Climatic Change, 132, 575–588, 2015.
Download
Short summary
Attributing changes in ET and GPP is crucial to impact and adaptation assessment of climate change over the NCP. Simulations with the VIP ecohydrological model illustrated relative contributions of climatic change, CO2 fertilization, and management to ET and GPP. Global radiation was the cause of GPP decline in summer, while air warming intensified the water cycle and advanced plant productivity in spring. Agronomical improvement was the main driver of crop productivity enhancement.