Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 21, issue 5
Hydrol. Earth Syst. Sci., 21, 2545–2557, 2017
https://doi.org/10.5194/hess-21-2545-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 21, 2545–2557, 2017
https://doi.org/10.5194/hess-21-2545-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 May 2017

Research article | 23 May 2017

Reviving the “Ganges Water Machine”: where and how much?

Lal Muthuwatta et al.

Related authors

Understanding the Impacts of Climate Change in the Tana River Basin, Kenya
Lal Muthuwatta, Aditya Sood, Matthew McCartney, Nishchitha Sandeepana Silva, and Alfred Opere
Proc. IAHS, 379, 37–42, https://doi.org/10.5194/piahs-379-37-2018,https://doi.org/10.5194/piahs-379-37-2018, 2018
Reviving the Ganges Water Machine: potential
Upali Ananda Amarasinghe, Lal Muthuwatta, Lagudu Surinaidu, Sumit Anand, and Sharad Kumar Jain
Hydrol. Earth Syst. Sci., 20, 1085–1101, https://doi.org/10.5194/hess-20-1085-2016,https://doi.org/10.5194/hess-20-1085-2016, 2016
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Comparison of generalized non-data-driven lake and reservoir routing models for global-scale hydrologic forecasting of reservoir outflow at diurnal time steps
Joseph L. Gutenson, Ahmad A. Tavakoly, Mark D. Wahl, and Michael L. Follum
Hydrol. Earth Syst. Sci., 24, 2711–2729, https://doi.org/10.5194/hess-24-2711-2020,https://doi.org/10.5194/hess-24-2711-2020, 2020
Short summary
The pantropical response of soil moisture to El Niño
Kurt C. Solander, Brent D. Newman, Alessandro Carioca de Araujo, Holly R. Barnard, Z. Carter Berry, Damien Bonal, Mario Bretfeld, Benoit Burban, Luiz Antonio Candido, Rolando Célleri, Jeffery Q. Chambers, Bradley O. Christoffersen, Matteo Detto, Wouter A. Dorigo, Brent E. Ewers, Savio José Filgueiras Ferreira, Alexander Knohl, L. Ruby Leung, Nate G. McDowell, Gretchen R. Miller, Maria Terezinha Ferreira Monteiro, Georgianne W. Moore, Robinson Negron-Juarez, Scott R. Saleska, Christian Stiegler, Javier Tomasella, and Chonggang Xu
Hydrol. Earth Syst. Sci., 24, 2303–2322, https://doi.org/10.5194/hess-24-2303-2020,https://doi.org/10.5194/hess-24-2303-2020, 2020
Short summary
HESS Opinions: Beyond the long-term water balance: evolving Budyko's supply–demand framework for the Anthropocene towards a global synthesis of land-surface fluxes under natural and human-altered watersheds
A. Sankarasubramanian, Dingbao Wang, Stacey Archfield, Meredith Reitz, Richard M. Vogel, Amirhossein Mazrooei, and Sudarshana Mukhopadhyay
Hydrol. Earth Syst. Sci., 24, 1975–1984, https://doi.org/10.5194/hess-24-1975-2020,https://doi.org/10.5194/hess-24-1975-2020, 2020
Short summary
Global assessment of how averaging over spatial heterogeneity in precipitation and potential evapotranspiration affects modeled evapotranspiration rates
Elham Rouholahnejad Freund, Ying Fan, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 1927–1938, https://doi.org/10.5194/hess-24-1927-2020,https://doi.org/10.5194/hess-24-1927-2020, 2020
Short summary
Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling
Shufen Pan, Naiqing Pan, Hanqin Tian, Pierre Friedlingstein, Stephen Sitch, Hao Shi, Vivek K. Arora, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Catherine Ottlé, Benjamin Poulter, Sönke Zaehle, and Steven W. Running
Hydrol. Earth Syst. Sci., 24, 1485–1509, https://doi.org/10.5194/hess-24-1485-2020,https://doi.org/10.5194/hess-24-1485-2020, 2020
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: guidelines for computing crop water requirements, FAO irrigation and drainage paper 56, FAO, Rome, 300 pp., 1999.
Amarasinghe, U. A., Muthuwatta, L., Surinaidu, L., Anand, S., and Jain, S. K.: Reviving the Ganges Water Machine: potential, Hydrol. Earth Syst. Sci., 20, 1085–1101, https://doi.org/10.5194/hess-20-1085-2016, 2016.
Amarnath, G., Ameer, M., Aggarwal, P., and Smakhtin, V.: Detecting spatio-temporal changes in the extent of seasonal and annual flooding in South Asia using multi-resolution satellite data, Proc. SPIE, 8538, 853818, https://doi.org/10.1117/12.974653, 2012.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment part 1: Model development, J. Am. Water Resour. Assoc., 34, 73–89, 1998.
Bouwer, H.: Integrated water management: Emerging issues and challenges, Agr. Water Manage., 45, 217–228, 2000.
Publications Copernicus
Download
Short summary
Agricultural production in the Ganges River basin is affected by the water shortage in the dry months, while the excess water during the rainy season causes floods in the downstream. Annual total surface runoff generated in the basin is about 298 ± 99 Bm3, and runoff in the monsoon months contributes up to 80 % of this total runoff. Comparison of sub-basin-wise surface runoff with the estimated unmet water demand indicated that capturing only a portion of the wet-season runoff would be sufficient.
Agricultural production in the Ganges River basin is affected by the water shortage in the dry...
Citation