Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Download
Short summary
This study links an ecohydrological model with WRF (Weather Research and Forecasting Model) dynamically downscaled climate projections of the HadCM3 model under the IPCC SRES A2 emission scenario. Water yield and ecosystem productivity response to climate change were highly variable with an increasing trend across the 82 773 watersheds. Results are useful for policy-makers and land managers in formulating appropriate watershed-specific strategies for sustaining water and carbon sources.
Articles | Volume 20, issue 2
Hydrol. Earth Syst. Sci., 20, 935–952, 2016
https://doi.org/10.5194/hess-20-935-2016

Special issue: Vegetation changes under a changing environment and the impacts...

Hydrol. Earth Syst. Sci., 20, 935–952, 2016
https://doi.org/10.5194/hess-20-935-2016

Research article 01 Mar 2016

Research article | 01 Mar 2016

Projecting water yield and ecosystem productivity across the United States by linking an ecohydrological model to WRF dynamically downscaled climate data

Shanlei Sun et al.

Related authors

Future shift of the relative roles of precipitation and temperature in controlling annual runoff in the conterminous United States
Kai Duan, Ge Sun, Steven G. McNulty, Peter V. Caldwell, Erika C. Cohen, Shanlei Sun, Heather D. Aldridge, Decheng Zhou, Liangxia Zhang, and Yang Zhang
Hydrol. Earth Syst. Sci., 21, 5517–5529, https://doi.org/10.5194/hess-21-5517-2017,https://doi.org/10.5194/hess-21-5517-2017, 2017
Short summary
Future shift of the relative roles of precipitation and temperature in controlling annual runoff in the conterminous United States
Kai Duan, Ge Sun, Steven G. McNulty, Peter V. Caldwell, Erika C. Cohen, Shanlei Sun, Heather D. Aldridge, Decheng Zhou, Liangxia Zhang, and Yang Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-493,https://doi.org/10.5194/hess-2016-493, 2016
Revised manuscript not accepted
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks
Songyan Yu, Hong Xuan Do, Albert I. J. M. van Dijk, Nick R. Bond, Peirong Lin, and Mark J. Kennard
Hydrol. Earth Syst. Sci., 24, 5279–5295, https://doi.org/10.5194/hess-24-5279-2020,https://doi.org/10.5194/hess-24-5279-2020, 2020
Short summary
Testing water fluxes and storage from two hydrology configurations within the ORCHIDEE land surface model across US semi-arid sites
Natasha MacBean, Russell L. Scott, Joel A. Biederman, Catherine Ottlé, Nicolas Vuichard, Agnès Ducharne, Thomas Kolb, Sabina Dore, Marcy Litvak, and David J. P. Moore
Hydrol. Earth Syst. Sci., 24, 5203–5230, https://doi.org/10.5194/hess-24-5203-2020,https://doi.org/10.5194/hess-24-5203-2020, 2020
Novel Keeling-plot-based methods to estimate the isotopic composition of ambient water vapor
Yusen Yuan, Taisheng Du, Honglang Wang, and Lixin Wang
Hydrol. Earth Syst. Sci., 24, 4491–4501, https://doi.org/10.5194/hess-24-4491-2020,https://doi.org/10.5194/hess-24-4491-2020, 2020
Short summary
Disentangling temporal and population variability in plant root water uptake from stable isotopic analysis: when rooting depth matters in labeling studies
Valentin Couvreur, Youri Rothfuss, Félicien Meunier, Thierry Bariac, Philippe Biron, Jean-Louis Durand, Patricia Richard, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 24, 3057–3075, https://doi.org/10.5194/hess-24-3057-2020,https://doi.org/10.5194/hess-24-3057-2020, 2020
Short summary
Calibration of hydrological models for ecologically relevant streamflow predictions: a trade-off between fitting well to data and estimating consistent parameter sets?
Thibault Hallouin, Michael Bruen, and Fiachra E. O'Loughlin
Hydrol. Earth Syst. Sci., 24, 1031–1054, https://doi.org/10.5194/hess-24-1031-2020,https://doi.org/10.5194/hess-24-1031-2020, 2020
Short summary

Cited articles

Adams, H. D., Luce, C. H., Breshears, D. D., Allen, C. D., Weiler, M., Hale, V. C., Smith, A. M. S., and Huxman, T. E.: Ecohydrological consequences of drought- and infestation-triggered tree die-off: insights and hypotheses, Ecohydrology, 5, 145–159, 2012.
Aghakouchak, A., Cheng, L., Mazdiyasni, O., and Farahmand, A.: Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought, Geophys. Res. Lett., 41, 8847–8852, 2014.
Alig, R. J., Adams, D., Joyce, L., and Sohngen, B.: Climate change impacts and adaptation in forestry: responses by trees and markets, Choices, 19, 1–7, 2004.
Alkama, R., Marchand, L., Ribes, A., and Decharme, B.: Detection of global runoff changes: results from observations and CMIP5 experiments, Hydrol. Earth Syst. Sci., 17, 2967–2979, https://doi.org/10.5194/hess-17-2967-2013, 2013.
Publications Copernicus
Download
Short summary
This study links an ecohydrological model with WRF (Weather Research and Forecasting Model) dynamically downscaled climate projections of the HadCM3 model under the IPCC SRES A2 emission scenario. Water yield and ecosystem productivity response to climate change were highly variable with an increasing trend across the 82 773 watersheds. Results are useful for policy-makers and land managers in formulating appropriate watershed-specific strategies for sustaining water and carbon sources.
Citation