Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 20, issue 4
Hydrol. Earth Syst. Sci., 20, 1561–1572, 2016
https://doi.org/10.5194/hess-20-1561-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 20, 1561–1572, 2016
https://doi.org/10.5194/hess-20-1561-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Apr 2016

Research article | 22 Apr 2016

Impacts of land use change and climate variations on annual inflow into the Miyun Reservoir, Beijing, China

Jiangkun Zheng1,3, Ge Sun2, Wenhong Li3, Xinxiao Yu4, Chi Zhang3, Yuanbo Gong1, and Lihua Tu1 Jiangkun Zheng et al.
  • 1College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
  • 2Eastern Forest Environmental Threat Assessment Center, USDA Forest Service, 920 Main Campus, Venture II, Suite 300, Raleigh, NC 27606, USA
  • 3Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
  • 4School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China

Abstract. The Miyun Reservoir, the only surface water source for Beijing city, has experienced water supply decline in recent decades. Previous studies suggest that both land use change and climate contribute to the changes of water supply in this critical watershed. However, the specific causes of the decline in the Miyun Reservoir are debatable under a non-stationary climate in the past 4 decades. The central objective of this study was to quantify the separate and collective contributions of land use change and climate variability to the decreasing inflow into the Miyun Reservoir during 1961–2008. Different from previous studies on this watershed, we used a comprehensive approach to quantify the timing of changes in hydrology and associated environmental variables using the long-term historical hydrometeorology and remote-sensing-based land use records. To effectively quantify the different impacts of the climate variation and land use change on streamflow during different sub-periods, an annual water balance model (AWB), the climate elasticity model (CEM), and a rainfall–runoff model (RRM) were employed to conduct attribution analysis synthetically. We found a significant (p  <  0.01) decrease in annual streamflow, a significant positive trend in annual potential evapotranspiration (p  <  0.01), and an insignificant (p  >  0.1) negative trend in annual precipitation during 1961–2008. We identified two streamflow breakpoints, 1983 and 1999, by the sequential Mann–Kendall test and double-mass curve. Climate variability alone did not explain the decrease in inflow to the Miyun Reservoir. Reduction of water yield was closely related to increase in actual evapotranspiration due to the expansion of forestland and reduction in cropland and grassland, and was likely exacerbated by increased water consumption for domestic and industrial uses in the basin. The contribution to the observed streamflow decline from land use change fell from 64–92 % during 1984–1999 to 36–58 % during 2000–2008, whereas the contribution from climate variation climbed from 8–36 % during the 1984–1999 to 42–64 % during 2000–2008. Model uncertainty analysis further demonstrated that climate warming played a dominant role in streamflow reduction in the most recent decade (i.e., 2000s). We conclude that future climate change and variability will further challenge the water supply capacity of the Miyun Reservoir to meet water demand. A comprehensive watershed management strategy needs to consider the climate variations besides vegetation management in the study basin.

Publications Copernicus
Download
Short summary
Our study represents the most comprehensive study on the combined effects of environmental change in streamflow using three different hydrological models. It revealed that climate change impacts exceeded land cover change in the 2000s. Considering the effect of climate changes on water supply, some active land management and water resources management options are discussed.
Our study represents the most comprehensive study on the combined effects of environmental...
Citation