Articles | Volume 20, issue 2
https://doi.org/10.5194/hess-20-935-2016
https://doi.org/10.5194/hess-20-935-2016
Research article
 | 
01 Mar 2016
Research article |  | 01 Mar 2016

Projecting water yield and ecosystem productivity across the United States by linking an ecohydrological model to WRF dynamically downscaled climate data

Shanlei Sun, Ge Sun, Erika Cohen, Steven G. McNulty, Peter V. Caldwell, Kai Duan, and Yang Zhang

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish as is (14 Feb 2016) by Adam Wei
Download
Short summary
This study links an ecohydrological model with WRF (Weather Research and Forecasting Model) dynamically downscaled climate projections of the HadCM3 model under the IPCC SRES A2 emission scenario. Water yield and ecosystem productivity response to climate change were highly variable with an increasing trend across the 82 773 watersheds. Results are useful for policy-makers and land managers in formulating appropriate watershed-specific strategies for sustaining water and carbon sources.