Articles | Volume 19, issue 12
https://doi.org/10.5194/hess-19-4845-2015
https://doi.org/10.5194/hess-19-4845-2015
Research article
 | 
18 Dec 2015
Research article |  | 18 Dec 2015

Subsurface storage capacity influences climate–evapotranspiration interactions in three western United States catchments

E. S. Garcia and C. L. Tague

Related authors

Climate regime and soil storage capacity interact to effect evapotranspiration in western United States mountain catchments
E. S. Garcia and C. L. Tague
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-2277-2014,https://doi.org/10.5194/hessd-11-2277-2014, 2014
Revised manuscript not accepted

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
A comprehensive assessment of in situ and remote sensing soil moisture data assimilation in the APSIM model for improving agricultural forecasting across the US Midwest
Marissa Kivi, Noemi Vergopolan, and Hamze Dokoohaki
Hydrol. Earth Syst. Sci., 27, 1173–1199, https://doi.org/10.5194/hess-27-1173-2023,https://doi.org/10.5194/hess-27-1173-2023, 2023
Short summary
Does non-stationarity induced by multiyear drought invalidate the paired-catchment method?
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, and Yanghe Liu
Hydrol. Earth Syst. Sci., 26, 6379–6397, https://doi.org/10.5194/hess-26-6379-2022,https://doi.org/10.5194/hess-26-6379-2022, 2022
Short summary
Improving predictions of land-atmosphere interactions based on a hybrid data assimilation and machine learning method
Xinlei He, Yanping Li, Shaomin Liu, Tongren Xu, Fei Chen, Zhenhua Li, Zhe Zhang, Rui Liu, Lisheng Song, Ziwei Xu, Zhixing Peng, and Chen Zheng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-379,https://doi.org/10.5194/hess-2022-379, 2022
Preprint under review for HESS
Short summary
Is the reputation of Eucalyptus plantations for using more water than Pinus plantations justified?
Don A. White, Shiqi Ren, Daniel S. Mendham, Francisco Balocchi-Contreras, Richard P. Silberstein, Dean Meason, Andrés Iroumé, and Pablo Ramirez de Arellano
Hydrol. Earth Syst. Sci., 26, 5357–5371, https://doi.org/10.5194/hess-26-5357-2022,https://doi.org/10.5194/hess-26-5357-2022, 2022
Short summary
Attributing trend in naturalized streamflow to temporally explicit vegetation change and climate variation in the Yellow River basin of China
Zhihui Wang, Qiuhong Tang, Daoxi Wang, Peiqing Xiao, Runliang Xia, Pengcheng Sun, and Feng Feng
Hydrol. Earth Syst. Sci., 26, 5291–5314, https://doi.org/10.5194/hess-26-5291-2022,https://doi.org/10.5194/hess-26-5291-2022, 2022
Short summary

Cited articles

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H. (Ted), Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S. W., Semerci, A., and Cobb, N.: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests, For. Ecol. Manage., 259, 660–684, https://doi.org/10.1016/j.foreco.2009.09.001, 2010.
Anderson, S. P., Bales, R. C., and Duffy, C. J.: Critical Zone Observatories: Building a network to advance interdisciplinary study of Earth surface processes, Mineral. Mag., 72, 7–10, https://doi.org/10.1180/minmag.2008.072.1.7, 2008.
Arthur, M. and Fahey, T.: Biomass and nutrients in an Engelmann spruce - subalpine fir forest in north central Colorado: pools, annual production, and internal cycling, Can. J. For. Res., 22, 315–325, https://doi.org/10.1139/x92-041, 1992.
Ashfaq, M., Ghosh, S., Kao, S.-C., Bowling, L. C., Mote, P., Touma, D., Rauscher, S. A., and Diffenbaugh, N. S.: Near-term acceleration of hydroclimatic change in the western US, J. Geophys. Res. Atmos., 118, 1–18, https://doi.org/10.1002/jgrd.50816, 2013.
Bales, R., Hopmans, J., O'Green, A., Meadows, M., Hartsough, P., Kirchner, P., Hunsaker, C., and Beaudette, D.: Soil Moisture Response to Snowmelt and Rainfall in a Sierra Nevada Mixed-Conifer Forest, Vadose Zo. J., 10, 786–799, https://doi.org/10.2136/vzj2011.0001, 2011.
Download
Short summary
In forests of the western United States, annual evapotranspiration (ET) varies with precipitation and temperature; geologically mediated drainage and storage properties may influence the relationship between climate and ET. A process-based model is used to evaluate how water storage capacity influences model estimates of ET-climate relationships for three snow-dominated basins. Results show that uncertainty in subsurface properties can strongly influence model estimates of watershed-scale ET.