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Abstract. In the winter-wet, summer-dry forests of the west-

ern United States, total annual evapotranspiration (ET) varies

with precipitation and temperature. Geologically mediated

drainage and storage properties, however, may strongly in-

fluence these relationships between climate and ET. We use

a physically based process model to evaluate how plant ac-

cessible water storage capacity (AWC) and rates of drainage

influence model estimates of ET–climate relationships for

three snow-dominated, mountainous catchments with differ-

ing precipitation regimes. Model estimates show that total

annual precipitation is a primary control on inter-annual vari-

ation in ET across all catchments and that the timing of

recharge is a second-order control. Low AWC, however, in-

creases the sensitivity of annual ET to these climate drivers

by 3 to 5 times in our two study basins with drier sum-

mers. ET–climate relationships in our Colorado basin receiv-

ing summer precipitation are more stable across subsurface

drainage and storage characteristics. Climate driver–ET re-

lationships are most sensitive to subsurface storage (AWC)

and drainage parameters related to lateral redistribution in the

relatively dry Sierra site that receives little summer precipi-

tation. Our results demonstrate that uncertainty in geophysi-

cally mediated storage and drainage properties can strongly

influence model estimates of watershed-scale ET responses

to climate variation and climate change. This sensitivity to

uncertainty in geophysical properties is particularly true for

sites receiving little summer precipitation. A parallel inter-

pretation of this parameter sensitivity is that spatial variation

in storage and drainage properties are likely to lead to sub-

stantial within-watershed plot-scale differences in forest wa-

ter use and drought stress.

1 Introduction

In high-elevation forested ecosystems in the western US, the

majority of precipitation falls during the winter; there is often

a disconnect between seasonal water availability and grow-

ing seasonal water demand. Consequently, forests in these re-

gions are frequently water-limited, even when annual precip-

itation totals are high (Boisvenue and Running, 2006; Han-

son and Weltzin, 2000). This disconnect between water in-

puts and energy demands also highlights the importance of

storage of winter recharge by both snowpack and by soils.

The importance of snowpack storage in these systems for

hydrologic fluxes has received significant attention, partic-

ularly given their vulnerability to climate warming. Warmer

temperatures are already shifting seasonal water availability

in the western US through reductions in snowpack accumu-

lation (Knowles et al., 2006) and earlier occurrence of peak

snowpack (Mote et al., 2005) and shifts in streamflow timing

(Stewart et al., 2005). Recently, field and modeling studies

have shown that the years with greater snowpack accumula-

tion can be a strong predictor of vegetation water use and pro-

ductivity for sites in the California Sierra (Tague and Peng,

2013; Trujillo et al., 2012).

Less attention, however, has been paid to the role of sub-

surface storage and drainage that can influence whether or

not winter precipitation or snowmelt is available for plant

water use during the summer months. Previous studies have

shown that plant access to stored water is a substantial con-

tributor to summer evapotranspiration in semi-arid regions

(Bales et al., 2011). Plant accessible storage includes both

water stored in soil and in saprolite and bedrock layers that

can be accessed by plant roots (McNamara et al., 2011). Like

snowpack, the storage of water in the subsurface has the po-
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tential to act as a water reservoir, storing winter precipitation

for use later in the growing season (Geroy et al., 2011). The

amount of water that can be stored varies substantially in

space with topography, geologic properties, and antecedent

moisture conditions (Famiglietti et al., 2008; McNamara et

al., 2005). If the rate of snowmelt allows for subsurface mois-

ture stores to be replenished later in the growing season, more

of the winter precipitation is made available for plant water

use. If storage capacity is too shallow to capture a signifi-

cant amount of runoff or if the rate of rain or snowmelt in-

puts exceeds the rate of infiltration, then subsurface storage

will not be physically able to extend water availability. While

field studies in the western US have shown that shallow soils

can limit how much snowmelt is available for ecological use

during the summer (Kampf et al., 2014; Smith et al., 2011),

these studies cannot fully characterize the relative impact of

subsurface storage on ET given inter-annual and cross-site

variation in climate drivers.

In this paper, we focus on the potential for plant acces-

sible subsurface water storage to mediate the sensitivity of

ET to inter-annual variation in climate drivers, precipitation

and temperature. Understanding how ET varies with climate

drivers is important, both from the perspective of how ET

influences downstream water supply and water availability

for forests and other vegetation (Grant et al., 2013). West-

ern US forests show substantial vulnerability to drought, with

declines in productivity and increases in mortality and distur-

bance in drought years (Allen et al., 2010; Hicke et al., 2012;

Williams et al., 2013). Understanding these ecosystems’ re-

sponses to primary climate drivers is of particular concern

given recent warming trends (Sterl et al., 2008) and multi-

year droughts (Cook et al., 2004; Dai et al., 2004) and that

these changes in water and energy demands are expected to

intensify (Ashfaq et al., 2013). Increased temperatures also

affect plant phenology, leading to earlier spring onset of plant

water use and productivity (Cayan et al., 2001), and thus

can influence water requirements and water use. However,

increases in early season water use, combined with higher at-

mospheric moisture demand, may lead to increased soil wa-

ter deficit later in the season.

Forest evapotranspiration is also a substantial component

of the water budget (Post and Jones, 2001) and thus any

change in forest water use will potentially have significant

impacts on downstream water use. Goulden et al. (2012), for

example, use flux tower and remote sensing data to argue that

warming may result in an increase of up to 60 % in vegetation

water use at high elevations in the Upper Kings River water-

shed in California’s southern Sierra watershed. We note how-

ever that these projected increases depend on how subsurface

storage capacity interacts with snowpack at high elevations.

This paper’s primary research objective is to quantify the

interaction between subsurface storage characteristics and

key climate-related metrics that influence forest water avail-

ability and use in snow-dominated environments receiving

a range of summer precipitation. Heterogeneity in subsur-

Table 1. Explanatory variables.

Abbreviation Definition

P Total annual precipitation

TAMJ Average daily temperature for April, May, June

R75 Day of water year by which 75 %

of soil water recharge occurs

AWC Available water capacity of soil

(field capacity–wilting point)

face properties in soil, sapprolite and bedrock layers makes

the characterization of subsurface storage difficult at the wa-

tershed scale. Here we use a spatially distributed process-

based model, the Regional Hydro-Ecologic Simulation Sys-

tem (RHESSys), to quantify how uncertainty or spatial varia-

tion in subsurface storage properties might be expected to in-

fluence watershed response to these climate-related drivers.

We apply RHESSys in three case study watersheds of dif-

fering precipitation regimes to investigate how climate and

subsurface storage combine to control inter-annual variation

in ET.

2 Methods

We apply our model at a daily time step to three watersheds

located in the western Oregon Cascades (OR-CAS), central

Colorado Rocky Mountains (CO-ROC) and central Califor-

nia Sierras (CA-SIER). All three watersheds receive a sub-

stantial fraction of precipitation as snowfall, but vary in their

precipitation and temperature regimes and amount of precip-

itation that falls as snow (Fig. 1). We compare a humid, sea-

sonally dry watershed (OR-CAS) to two catchments that re-

ceive half as much precipitation annually. The more water-

limited catchments differ in that CO-ROC receives a sig-

nificant amount of its precipitation budget during the sum-

mer growing season. We use these case studies to estimate

ET sensitivity to storage and drainage properties for several

different precipitation and temperature regimes common in

western US mountain watersheds. For each watershed, we

quantify how subsurface storage and drainage properties in-

teract with a combination of inter-annual variation in precip-

itation timing and magnitude, and shifts in snowpack stor-

age. We first establish how inter-annual variation in three pri-

mary climate-related metrics (precipitation, average spring

temperature, and timing of soil moisture recharge) influences

annual ET with average subsurface storage properties. We

then explore how these relationships change across physi-

cally plausible storage values.

2.1 RHESSys model description

We use a physically based model (RHESSys v.5.15) to cal-

culate vertical water, energy, and carbon fluxes in our three
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Figure 1. Locations and average daily water fluxes averaged from 1980 to 2000 for three case study watersheds located in (a) the western

Oregon Cascades (OR-CAS), (b) Colorado Rockies (CO-ROC), and (c) California Sierra Nevada (CA-SIER).

Table 2. Basin topography, geology, vegetation and climate characteristics. Climate descriptions are averaged over the total available climate

record (duration noted in table).

Watershed CO-ROC OR-CAS CA-SIER

Location Colorado Oregon California

US Geological Survey gage number 06733000 14161500 10343500

Geology Holocene glacial till, rock; Western Cascade basalt Sierra granite, with

Precambrian gneiss, granite Miocene andesite cap

Elevation range (m) 1470–4345 410–1630 1800–2650

Drainage area (km2) 350 64 26

Topographic wetness index – mean (SD) 7.0 (1.9) 6.6 (1.7) 7.9 (1.8)

Climate record 1980–2008 1958–2008 1960–2000

Mean annual precipitation (mm) 1000 2250 850

Annual precipitation as snow (%) 64 29 55

Precipitation received in growing season (%) 46 21 19

Min/max winter T (JFM) (oC) −12.1/−0.02 −0.9/5.2 −9.5/3.7

Min/max spring T (AMJ) (oC) −2.7/10.9 4.0/14.0 −2.5/13.8

P : PET 0.9 2.3 1.2

Vegetation Subalpine fir, aspen, Douglas fir, Mixed conifer, Jeffrey

meadows, shrub western hemlock and lodgepole pine

Mean basin LAI 3.5 9.0 4.1

Annual NPP range for calibration (gC m−2 yr−1) 280–520 620–1100 450–800

Literature sources used Arthur and Fahey (1992) Grier and Logan (1977) Hudiburg et al. (2009)

to bound annual NPP range Bradford et al. (2008) Gholz (1982) Goulden et al. (2012)∗

∗ Values reported as gross primary productivity, converted to NPP using RHESSys-calculated values of respiration.

watersheds (Tague and Band, 2004). RHESSys is a spatially

explicit model that partitions the landscape into units rep-

resentative of the different hydro-ecological processes mod-

eled (Band et al., 2000). RHESSys has been used to ad-

dress diverse eco-hydrologic questions across many water-

sheds (Baron et al., 2000; Shields and Tague, 2012; Tague

and Peng, 2013). Key model processes are described below

and a full account is provided in Tague and Band (2004).

RHESSys requires data describing spatial landscape char-

acteristics and climate forcing; a digital elevation model

www.hydrol-earth-syst-sci.net/19/4845/2015/ Hydrol. Earth Syst. Sci., 19, 4845–4858, 2015
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(DEM) and geologic and vegetation maps are used to rep-

resent the topographic, geologic, carbon and nitrogen char-

acteristics within a watershed. RHESSys accounts for vari-

ability of climate processes within the catchment using al-

gorithms developed for extrapolation of climate processes

from point station measurements over spatially variable ter-

rain (Running and Nemani, 1987). Hydrologic processes

modeled in RHESSys include interception, evapotranspira-

tion, infiltration, vertical and lateral subsurface drainage,

and snow accumulation and melt. The Penman–Monteith

formula (Monteith, 1965) is used to calculate evaporation

of canopy interception, snow sublimation, evaporation from

subsurface and litter stores, and transpiration by leaves. A

model of stomatal conductance allows transpiration to vary

with soil water availability, vapor pressure deficit, atmo-

spheric CO2 concentration, and radiation and temperature

(Jarvis, 1976). A radiation transfer scheme that accounts

for canopy overstory and understory, as well as sunlit and

shaded leaves, controls energy available for transpiration.

RHESSys accounts for changes in vapor pressure deficit for

fractions of days that rain occurs (wet versus dry periods).

Plant canopy interception and ET are also a function of leaf

area index (LAI) and gappiness of the canopy such that as

LAI increases and gap size decreases, plant interception ca-

pacity and transpiration potential increases. RHESSys parti-

tions rain to snow at a daily time step based on each patch’s

air temperature. Snowmelt is estimated using a combination

of an energy budget approach for radiation-driven melt and a

temperature index-based approach for latent heat-drive melt

processes. Subsurface water availability varies as a function

of infiltration and water loss through transpiration, evapora-

tion and drainage. RHESSys also routes water laterally and

thus patches can receive additional moisture inputs as ei-

ther re-infiltration of surface flow or through shallow sub-

surface flow from upslope contributing areas. Lateral subsur-

face drainage routes subsurface and surface water between

spatial units and it is a function of topography and soil and

saprolite drainage characteristics. Deep groundwater stores

are drained to the stream using a simple linear reservoir rep-

resentation.

Carbon and nitrogen cycling in RHESSys was modified

from BIOME-BGC (Thornton, 1998) to account for dynamic

rooting depth, sunlit and shaded leaves, multiple canopy

layers, variable carbon allocation strategies, and drought

stress mortality. The Farquhar equation is used to calculate

gross primary productivity (GPP) (Farquhar et al., 1980).

Plant respiration costs include both growth and mainte-

nance respiration and are influenced by temperature follow-

ing Ryan (1991). Net primary productivity (NPP) is calcu-

lated by subtracting total respiration costs from GPP.

In our three study sites, RHESSys is driven with daily

records of precipitation and maximum and minimum tem-

perature. Each basin is calibrated for seven parameters

that characterize subsurface storage and drainage properties.

Drainage rates are controlled by saturated hydraulic conduc-

tivity (K) and its decay with depth (m). Air-entry pressure

(φae), pore size index (b), and rooting depth (Zr) control sub-

surface water holding capacity (Brooks and Corey, 1964).

In all basins, we assume that geologic properties allow for

deeper groundwater stores that are inaccessible to vegeta-

tion (Table 2). Vegetation however can access more shallow

groundwater flow. These deep groundwater stores are con-

trolled by two parameters representing the percentage of wa-

ter that passes to the store (gw1) and the rate of its release

to streamflow (gw2). Calibration is conducted with a Monte

Carlo based approach, the generalized likelihood uncertainty

estimation (GLUE) method (Beven and Binley, 1992). Pa-

rameter sets (1000 in total) are generated by random sam-

pling from uniform distributions of literature-constrained es-

timates for the individual parameters; all calibration param-

eter sets are physically viable representations of soils within

each basin. In other words, though a single parameter set may

not meet streamflow and annual NPP calibration metrics, that

particular subsurface storage capacity may still exist within

the basin.

Model validation and drainage/storage parameter calibra-

tion were performed using two measures: daily streamflow

statistics and annual measures of NPP. Streamflow statistics

were set such that good parameters resulted in daily flow

magnitude errors of less than 15 %, Nash–Sutcliffe efficien-

cies (NSE, a measure of hydrograph shape) greater than 0.65,

and logged NSE values greater than 0.7 (a test of peak and

low flows) (Nash and Sutcliffe, 1970). We select all param-

eter sets from these acceptable values; the total number of

parameters equals 87, 246, and 47 for CA-SIER, CO-ROC,

and OR-CAS, respectively. Daily hydrologic fluxes are cal-

culated over 15 years for each soil parameter set in order

to account for variability due to parameters in establishing

relationships with our climate-related indices, the results of

which are presented in Figs. 2–4. We verify our annual ET

estimates against limited field estimates published in litera-

ture for subwatersheds of CO-ROC and OR-CAS (Baron and

Denning, 1992; Webb et al., 1978). The average of our model

estimated annual ET matches these limited field-based mea-

surements and also fall within the bounds of annual ET es-

timated through water balance by subtracting annual stream-

flow from our records of annual precipitation. We assess the

performance of the carbon-cycling model by comparing with

published forest field measurements of annual NPP (values

reported in Table 2). In our fully coupled eco-hydrologic

model, accurate estimates of NPP also suggest that ET es-

timates are reasonable. Finally we note that RHESSys esti-

mates of ET and NPP have been evaluated in a number of

previous studies by comparison with flux tower and tree ring

data, and these studies confirm that RHESSys provides rea-

sonable estimates of ET and its sensitivity to climate drivers

(Vicente-Serrano et al., 2015; Zierl et al., 2007). We quantify

the sensitivity of ET–climate relationships to geologic prop-

erties by varying subsurface storage parameters (Figs. 5–6).
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Figure 2. Total annual ET increases with total annual precipitation.

Lines indicate statistically significant relationships (p value < 0.05).
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Figure 3. Later occurrence of soil moisture recharge (R75) is signif-

icantly correlated with increased annual ET in all study watersheds.

2.2 Study sites

These analyses are conducted in three western US mountain

catchments: Big Thompson in Colorado’s Rocky Mountains

(CO-ROC), Lookout Creek in Oregon’s Western Cascades

(OR-CAS), and Sagehen Creek Experimental Forest in Cal-

ifornia’s northern Sierra Nevada (CA-SIER). Basin charac-

teristics pertinent to modeling annual ET are listed in Table 2

and we highlight important similarities and differences here.

All sites are located on steep, mountainous slopes and are

dominated by forest cover. All basins have climates typical

of the western US, on average receiving 54–81 % of their an-

nual precipitation during the winter, 29–64 % of the annual

P falls as snow, and they do not meet potential evaporative

demand during the growing season (Fig. 1, Table 2). On av-

erage, OR-CAS is a much wetter basin and receives more

than twice as much annual precipitation than CO-ROC and

CA-SIER. Despite OR-CAS receiving more precipitation, a

much lower fraction of that winter precipitation is received as
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Figure 4. (a) Warmer spring temperatures are correlated with lower

total annual ET in the two snow-dominated watersheds. (b) An ear-

lier occurrence of soil moisture recharge is correlated with warmer

temperatures in CO-ROC.

snow. On average, OR-CAS’s peak streamflow occurs in De-

cember, 4 to 5 months earlier than CO-ROC and CA-SIER

(Fig. 1). The drier watersheds, CO-ROC and CA-SIER, re-

ceive more than half of their annual precipitation as snow

(Table 2). CO-ROC also experiences a summer monsoonal

season and on average receives 46 % of its annual precipita-

tion from April to September. Landscape carbon (C) and ni-

trogen (N) stores in general vary with total annual P across

basins. For example, OR-CAS receives the most precipita-

tion and also supports stands of large, old-growth forests;

its LAI is more than twice that of either CO-ROC or CA-

SIER. As presented in the model description (Sect. 2.1), we

use a stable, climatic optimum for vegetation biomass for

all analyses in this paper. Garcia et al. (2013) and Tague

and Peng (2013) provide detailed descriptions of the geol-

ogy and climate data, model vegetation, and organic soil

carbon store spin-up and calibration used for model imple-

mentations of OR-CAS and CA-SIER, respectively. We note

that all precipitation and temperature data were derived from

daily measurements made at climate stations located within

the basins and extrapolated across the terrain using MT-CLM

algorithms (Running and Nemani, 1987) and 30 m resolution

DEMs. Though RHESSys has previously been used in CO-

ROC (Baron et al., 2000), we have made significant updates

in RHESSys since that time, so we re-implemented the model

as described in the next section.

2.2.1 RHESSys model development for CO-ROC

In CO-ROC, landscape topographic characteristics including

elevation, slope and aspect were derived from a digital eleva-

tion model (DEM) downloaded from the US Geologic Sur-

vey (USGS) National Elevation Dataset at 1/3 arcsec reso-

lution (http://datagateway.nrcs.usda.gov/). A stream network

was then derived to accumulate surface and subsurface flow

www.hydrol-earth-syst-sci.net/19/4845/2015/ Hydrol. Earth Syst. Sci., 19, 4845–4858, 2015
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Figure 5. Each point represents the 15-year average annual ET from

WY 1985 to 2000 for a physically viable mean basin soil available

water capacity (AWC). Vertical lines represent the calculated break

point in the nonlinear relationship between long-term ET and AWC

for each basin.

at USGS gage no. 06733000. Sub-catchments were delin-

eated using GRASS GIS’s watershed basin analysis program,

r.watershed. Terrestrial data were aggregated such that the

average size of the patch units, the smallest spatial units

for calculation of vertical model processes, was 3600 m2.

Soil classification data were downloaded from the Soil Sur-

vey Geographic database (SSURGO); http://sdmdataaccess.

nrcs.usda.gov/ and aggregated to four primary soil types:

gravelly loam, sandy loam, loamy sandy, and rock (http:

//datagateway.nrcs.usda.gov/). Parameter values associated

with these soil types are based on literature values (Ding-

man, 1994; Flock, 1978) and adjusted using model calibra-

tion, as described above. We note that these initial values are

approximate and calibration permits storage values that re-

flect plant access to water stored in both organic soil lay-

ers and in sapprolite and rock. Vegetation land cover from

the National Land Cover Database (NLCD) was aggregated

to four primary vegetation types: subalpine conifer, aspen,

shrubland, and meadow (Homer et al., 2007). Because a shift

in precipitation patterns occurs at approximately 2700 m, we

use daily records of precipitation, Tmax, and Tmin from two

points within the watershed. RHESSys then interpolates data

from these points based on MTN-CLM (Running and Ne-

mani, 1987) to provide spatial estimates of temperature, pre-

cipitation and other meteorologic drivers for each patch. Cli-

mate data from 1980 to 2008 were downloaded from the

DAYMET system for two locations – one at elevation 2460 m

(latitude 40.35389, longitude−105.58361) and the second at

3448 m (latitude 40.33769, longitude −105.70315) (Thorn-

ton et al., 2012).

Plant C and N stores were initialized by converting

remote-sensing-derived LAI to leaf, stem and woody car-

bon and nitrogen values using allometric equations appro-

priate to the vegetation type (http://daac.ornl.gov/MODIS/;
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Figure 6. The impact of soil AWC on the slope of a linear regression

model of annual ET as a function of climate predictors: (a) precipi-

tation, (b)R75, and (c) TAMJ. The slope of the ET–climate predictor

is plotted across a physically viable range of mean basin soil AWC

for each climate predictor and for each study basin: OR-CAS (left

column), CO-ROC (middle column), and CA-SIER (right column).

The slopes are normalized to facilitate inter-basin comparison.

MOD15A2 Collection 5). In order to stabilize organic soil C

and N stores relative to the LAI-derived plant C and N, we

run the model repeatedly over the basin’s climate record until

the change in stores stabilizes (Thornton and Rosenbloom,

2005). After stabilizing soil biogeochemical processes, we

remove vegetation C and N stores and then dynamically “re-

grow” them using daily allocation equations (Landsberg and

Waring, 1997) for 160 years in order to stabilize plant and

soil C and N stores with model climate drivers. For all three

basins, an optimum maximum size for each vegetation type

was determined using published, field-derived estimates of

LAI and aboveground and total annual NPP.

2.3 Framework for primary controls on ET

In these seasonally water-limited basins, we use total annual

precipitation (P ) as a metric of gross climatic water input.

Annual precipitation P is summed over a water year (1 Oc-
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tober to 30 September of the following calendar year) and

summer season P is summed over July, August, and Septem-

ber. For all climate metrics we use spatially averaged wa-

tershed values. To assess the impact of timing of soil mois-

ture recharge (as influenced either by year-to-year variation

in precipitation timing, snowmelt or rain–snow partitioning)

we calculate R75, the day of water year by which 75 % of the

total annual recharge has occurred. Recharge is defined as

liquid water (e.g., rain throughfall or snowmelt) that reaches

the soil surface. For this metric, we do not differentiate be-

tween water that, upon reaching the soil surface, becomes

runoff, and water that infiltrates into the soil. We treat this

variable as a temporal marker of potential water availability

that denotes the timing within the water year that either rain

throughfall or snowmelt may potentially infiltrate the soil. To

examine energy inputs, we identify a season when tempera-

ture most strongly influences estimates of annual ET mod-

eled using historic climate. We performed linear regressions

between model estimate of total annual ET and 1- and 3-

month averages of daily maximum (Tmax), minimum (Tmin)

and average temperatures (Tavg = (Tmax+Tmin)/2) for all wa-

tersheds and for all months of the year. We test the correlation

significance with a p value and set a significance threshold

at 0.05; i.e., a p value greater than 0.05 is not significant.

Our analysis found a 3-month average of daily Tavg in April,

May and June (TAMJ) to have the greatest explanatory power

as a temperature variable for estimating inter-annual varia-

tion in annual ET under historic climate variability across

our three study watersheds (results not shown). We note that

the p value for TAMJ in CA-SIER was greater than 0.05, so

it is not reported as a significant result. The growing season

is assumed to extend from 1 May to 30 September in all wa-

tersheds. For all climate metrics we use spatially averaged

watershed values.

We examine the role of storage through AWC. As noted

above, plants access water organic soils as well as water

stored in sapprolite and rock (Schwinning, 2010). We con-

sider an aggregate storage and do not distinguish between

these layers. AWC represents the water stored after gravity

drainage (field capacity) that can be extracted by plant root

suction (wilting point) and is thus still viable for plant water

use (Dingman, 1994, p. 236). We calculate AWC as

AWC= (θfc− θwp)Zr. (1)

Where θfc represents the average field capacity per unit

depth, θwp the average characteristic wilting point also per

unit depth, and AWC is scaled by vegetation rooting depth,

Zr, a model calibration parameter. The field capacity and

wilting point are calculated, respectively, as

θfc = ϕ(φae / 0.033)b, (2)

θwp = ϕ(φae /ψv)
1/b, (3)

Where ϕ is average subsurface porosity, φae represents the

air-entry pressure (in meters), b is a pore size distribution

Table 3. Statistics for ET predictors based on linear regression mod-

els.

Watershed CO-ROC OR-CAS CA-SIER

Precipitation p value < 0.001 < 0.05 < 0.001

(P ) r2 0.9 0.1 0.75

Slope 0.4 0.1 0.2

Timing (R75) p value < 0.001 < 0.01 < 0.001

r2 0.2 0.2 0.4

Slope 3.8 1.2 4.6

Temperature p value < 0.001 < 0.05 > 0.1

TAMJ r2 0.4 0.1 −0.01

Slope −26.3 −25.7 15

Soil capacity p value 0.001 0.001 0.001

(AWC) r2 0.43 0.53 0.11

Slope 0.1 0.2 0.1

index that describes the moisture-characteristic curve, and

ψv describes the pressure at which the plants’ stomata close.

Variables φae and b are also model calibration parameters.

Larger AWC indicates that more water can be held in the

subsurface and potentially interacts with climate to extend

plant water availability by capturing snowmelt, one of the

primary sources of water for forest ET. Our results present

each watershed’s average AWC; watersheds are represented

by one (OR-CAS), two (CA-SIER), and five (CO-ROC) soil

types and their characterizations are described in Table 2. All

values of AWC calculated in the calibration represent physi-

cally feasible values for each watershed.

We use RHESSys to calculate total annual ET over the

entire available climate record in each basin (28–50 years;

Table 2) and use linear regression to quantify how much of

the inter-annual variation in ET is related to each of the three

climate metrics – P , TAMJ, and R75. We set a limit of less

than 0.05 for p values to determine significance. We then

investigate how long-term mean ET and its relationship with

these climate-related indicators are influenced by AWC.

To examine how subsurface storage capacity may influ-

ence long-term average ET, we calculate average annual ET

over a 15-year period (1985–2000) for a range of 1000 AWC

values and linearly regress the long-term averaged ET val-

ues against AWC. We then characterize the interacting influ-

ences of AWC and each climate driver. For the 1000 values

of AWC, we calculate the slope of annual ET estimates to

each climate predictor (P , TAMJ, R75).

3 Results

3.1 Annual P vs. ET

In all watersheds higher P results in greater total annual ET

(Fig. 2). This is a statistically significant relationship in all
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watersheds (CO-ROC and CA-SIER, correlations and p val-

ues reported in Table 3) where the years of highest annual

P are correlated with the years of greatest annual ET. Of

the three basins, CO-ROC’s annual ET shows the greatest

sensitivity to P , having the steepest slope. Annual P is the

strongest explanatory variable of annual ET in both CO-ROC

(r2
= 0.9) and CA-SIER (r2

= 0.75) (Table 3). For CO-ROC,

annual P has a greater influence (steeper slope) in the drier

years when P is less than 1000 mm (Fig. 2). OR-CAS has

the least significant relationship between P and ET on an

annual scale. OR-CAS is a relatively wet basin and on aver-

age receives more than twice the amount of winter (January–

March) precipitation than CA-SIER or CO-ROC receives.

High annual P in OR-CAS in most years likely diminishes

the sensitivity of ET to the magnitude of P .

3.2 Timing of recharge vs. ET

For all three catchments, later R75 has a significant positive

correlation with ET (Fig. 3). In OR-CAS and CA-SIER, R75

occurs between February and May. There is more scatter in

the predictive power ofR75 for annual ET whenR75 is earlier

in the water year. The earliest R75 is in OR-CAS, where a

greater fraction of winter precipitation falls as rain. CA-SIER

and CO-ROC are more sensitive to the timing of recharge

than OR-CAS. Summer monsoonal pulses in CO-ROC push

R75 to later in the water year as compared to OR-CAS or

CA-SIER. The explanatory power of R75 for ET is greatest

in CA-SIER where greater accumulation of snowpack and

warmer spring temperatures can interact to increase forest

water use earlier in the growing season.

3.3 Spring temperature vs. ET

Warmer spring temperature (TAMJ) in all basins generally

reduces annual ET (Fig. 4a) and is significantly correlated

with lower ET in CO-ROC and OR-CAS. CA-SIER does

not show a significant relationship between TAMJ and ET. In

CO-ROC and OR-CAS, increasing TAMJ leads to a reduction

in water availability and a decline in later season ET. The

relationship between spring air temperature and snowmelt

timing is demonstrated by significant correlations between

TAMJ and R75 for CO-ROC (Fig. 4b). The colder tempera-

tures and more persistent snowpack in the CO-ROC basin

are more sensitive, relative to OR-CAS, in ET response to

earlier snowmelt due to temperature increases.

3.4 AWC vs. ET

Increased AWC increases the long-term average ET in all

basins. Figure 5 shows a nonlinear relationship between

long-term mean ET and AWC, suggesting that the effect of

increasing storage diminishes for higher AWC values. Each

basin reaches an approximate storage capacity above which

a further increase in storage (AWC) is less important and

climate (i.e., P and energy) variables limit ET. Following

Muggeo (2003), for each basin, we calculate that breakpoint

value of AWC where ET is less sensitive to AWC. We find

that the threshold value of AWC varies across basins and

is substantially higher in CO-ROC (265 mm) as compared

to CA-SIER (195 mm) and OR-CAS (190 mm) (Fig. 5). Re-

gression of AWC against annual ET shows that a significant

relationship exists in OR-CAS and CO-ROC (Table 3).

The effect of varying lateral redistribution or lateral

drainage parameters can be seen in the range of slopes for a

given AWC (e.g., the scatter in the slope–AWC relationship).

All three watersheds show some sensitivity of climate–ET

relationships to lateral redistribution parameters for a given

AWC. CA-SIER shows the greatest sensitivity, followed by

OR-CAS and CO-ROC. The greater sensitivity of CA-SIER

to lateral drainage parameters may reflect the strong contri-

bution of snowmelt recharge in its drier and winter precipita-

tion dominated climate. The topography of CA-SIER is also

distinctive and includes many swale-like features that con-

centrate drainage from upslope areas. We calculate the topo-

graphic wetness index (TWI) using a 30 m resolution DEM

for each watershed (Moore et al., 1991) (Table 2). The TWI

reflects the propensity of a location to develop saturated con-

ditions under the assumption that topography controls water

flow. Higher TWI values represent flatter, converging terrain

and lower values reflect steep topography. The mean TWI

for CA-SIER is greater than and significantly different from

(Welch’s t test) the mean TWI for CO-ROC and OR-CAS.

Particularly for CA-SIER, changing storage parameters as-

sociated with drainage rates can alter the timing of flow into

areas that concentrate flow and subsequently alter their ET

rates.

3.5 Sensitivity of ET to climate drivers with AWC

We analyze the sensitivity of ET relationships with climate

drivers to subsurface storage properties by plotting the slope

of linear regressions between ET and P , R75, and TAMJ,

across all storage parameter sets in Fig. 6. We note that the

slope of the relationships between climate drivers and ET

has been normalized by the watersheds’ mean AWC in these

plots to facilitate cross-site comparison.

3.5.1 Sensitivity to P with AWC

Of the climate drivers explored, ET relationships with an-

nual precipitation P have the greatest robustness across sub-

surface storage parameter sets, as suggested by the number

of sets that show a statistically significant relationship be-

tween annual P and annual ET (Fig. 6a). As expected, slopes

are positive between P and ET across all basins. Only the

drier basins CO-ROC and CA-SIER have p values less than

0.001, highlighting the strength of P as a climatic driver in

these drier basins, as discussed above. The response in slope

sensitivity across AWC is similar in OR-CAS and CA-SIER,

where ET’s sensitivity to P is highest at low AWC and de-
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creases with increased AWC. OR-CAS has a much smaller

range in sensitivities (slope varies from 0.2 to 0.6) compared

to CA-SIER (slope varies from 0.0 to 0.8). Thus in CA-SIER

for low values of AWC, year-to-year variation in P becomes

a greater control on year-to-year variation in ET. For both

OR-CAS and CA-SIER, increasing AWC becomes less im-

portant at higher values of AWC. Higher scatter in slope of

annual P versus ET relationship for CA-SIER also reflects

the greater sensitivity of ET to subsurface parameters that in-

fluence lateral drainage as discussed above (Sect. 3.4).

The variation of ET response to P across AWC in CO-

ROC is noteworthy for two reasons. First, CO-ROC has the

highest slope values (0.6–0.8), which again reflects the con-

sistency of annual P as a control on inter-annual variation in

ET in this basin. Second, unlike OR-CAS and CA-SIER, in-

creasing AWC does not substantially reduce that sensitivity

(i.e., slope) to P . Though CO-ROC’s sensitivity to P does

not change with AWC, the scatter in slopes (0.6–0.8) sug-

gests that lateral drainage has a strong effect on this climate–

ET relationship. We note that CO-ROC has a seasonal pre-

cipitation regime where a significant fraction of its annual

precipitation is received later in the growing season as sum-

mer monsoonal pulses. When precipitation occurs during the

growing season, the water available for ET is less likely to

be limited by storage capacity. Instead ET is limited by the

amount or intensity of precipitation. Water that does recharge

the system is used relatively quickly, making variation in

storage (or AWC) less important as a control on how much

P can be used in CO-ROC.

3.5.2 Sensitivity to R75 with AWC

After precipitation, the timing of recharge (R75) most signif-

icantly correlates with increased ET across all AWC and all

basins (Fig. 6b). There are several similarities in the response

of ET’s sensitivity to R75 across AWC when compared to

sensitivity to P (Fig. 6a). For example, the dry basins CO-

ROC and CA-SIER have the highest degree of sensitivity

(significant slopes > 1.0) as compared to OR-CAS (slopes

< 1.0) and CA-SIER has the greatest variability in its sen-

sitivity to AWC, with slopes ranging from 1.0 to 3.0 across

variation in storage parameters. CO-ROC once again has the

least variability in the ET versus R75 relationship, with con-

sistently high (2.0–2.5) slopes unaffected by AWC.

3.5.3 Sensitivity to TAMJ with AWC

Finally, TAMJ has the fewest subsurface storage/drainage pa-

rameter sets with significant correlation with ET. None of the

linear regressions of ET on TAMJ have statistical significance

less than 0.001 (Fig. 6c). The slopes are always negative be-

cause earlier occurrence of snowmelt results in less ET. For

all basins, the sensitivity of ET to TAMJ is greatest at the

lowest values of AWC, though CO-ROC once again demon-

strates the least variability in slopes across the entire range

of AWC (−0.2 –−0.3). At OR-CAS, TAMJ is only signifi-

cant for the lower AWC values. We suggest this is in part due

to the small fraction of P that falls as snow. Because TAMJ’s

largest effect is through timing of snowmelt (Fig. 4), AWC

interacts with TAMJ to modulate the melt response. With rel-

atively less snowmelt in OR-CAS, only the systems with the

smallest capacities will have a significant negative interaction

effect with AWC.

4 Discussion

Our model estimates show differences in the response of

ET to climate-related drivers across the three watersheds,

primarily due to differences in their precipitation regimes.

Spatial heterogeneity in soil and geology, both within and

between watersheds, substantially alters these relationships.

Our model-based study provides a simplified representation

of these interactions, ignoring many additional complexi-

ties. In particular, we assume no adaptation of the ecosys-

tem structure and composition that would influence produc-

tivity, evapotranspiration and their relationship with climate

(Loudermilk et al., 2013). Future work will investigate these

coupled carbon cycling–hydrology interactions. In this study

we focus on the energy and moisture drivers of ET and how

subsurface properties influence their interaction.

The degree to which climate drivers affect ET varies with

the magnitude and seasonality of basin precipitation. Total

annual P is the first-order control of ET in the two drier

watersheds, CO-ROC and CA-SIER. In OR-CAS, most of

the inter-annual variation in precipitation is reflected in inter-

annual variation in runoff rather than ET. In most years, sub-

surface storage is filled by this annual precipitation during

the winter and spring, asynchronously to late growing sea-

son demands (Fig. 1). Our results extend findings by previous

studies demonstrating that vegetation productivity and water

use relate to the fraction of regional precipitation available to

plants (Brooks et al., 2011; Thompson et al., 2011). The frac-

tion of water available to plants tends to decrease with larger

rainfall (given saturated soil stores, a greater proportion is

lost) and with synchronicity between the timing of recharge

and growing season water demands.

Our analysis highlights the timing of water availability

(R75) as a key predictor of total annual ET; annual ET in-

creases when recharge occurs later in the water year, during

the growing season and period of highest water demand. Pre-

vious research has shown how delayed soil moisture recharge

(Tague and Peng, 2013) and snowpack dynamics (Tague and

Heyn, 2009; Trujillo et al., 2012) are able to increase ET in

the Sierra Nevada. In these mountain basins, the sensitiv-

ity of ET to timing of recharge is related to the fraction of

precipitation received as snow. The climate metrics related

to snowmelt, R75 and TAMJ, are important secondary con-

trols of ET, especially in the colder, snow-dominated water-

sheds, CA-SIER and CO-ROC. We note that CA-SIER does
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not show a significant relationship between TAMJ and ET

because the effect of temperature is strongly dependent on

the amount of snowpack the basin receives in a year (Tague

and Peng, 2013), which is more variable than the amount of

snowpack received in CO-ROC or OR-CAS. In OR-CAS and

CO-ROC, spring temperature TAMJ is more strongly related

to ET through its effect on snowmelt, and correlates nega-

tively with ET. These results suggest that the dominant effect

of warmer spring temperatures is earlier meltout of snow-

pack, which leads to more snowmelt lost as runoff and results

in less net recharge. This greater loss of runoff occurs when

storage capacity is exceeded. Later in the growing season,

increased ET demands will have depleted subsurface stores

and throughfall/snowmelt will enter the soil matrix and be

available for plant water use. Previous work has shown sea-

sonal increases in spring ET with warmer spring tempera-

tures (Hamlet et al., 2007) that may be related to an earlier

start to the vegetation growing season (Cayan et al., 2001)

and an increase in vapor pressure deficits and water demand

(Isaac and van Wijngaarden, 2012). Our work suggests that

though early season ET may increase with warming temper-

atures, warmer spring temperatures may in some cases de-

crease total annual ET by melting the snowpack stores earlier

in the water year and reducing soil moisture recharge later in

the spring when energy demand is high.

The range of sensitivities of ET to climate in this study is a

direct function of climatic and physical characteristics of the

catchments presented in this study. For example, OR-CAS

receives twice as much precipitation and spans a much lower

elevation range than either CA-SIER or CO-ROC (Table 2).

Because OR-CAS is considerably wetter, its sensitivity of

ET to the magnitude of annual P is lessened considerably.

OR-CAS’ lower elevations, and related mean winter temper-

atures, also result in smaller average snowpacks reducing the

strength of spring temperature as an explanatory variable for

ET. Differences between CA-SIER and CO-ROC largely re-

flect seasonal distribution of precipitation, and reflect the im-

portance of summer precipitation in CO-ROC. While climate

is the dominant factor, topographic differences are also im-

portant. As discussed above, topographically driven flowpath

convergence in CA-SIER tends to increase sensitivity of ET

to parameters that influence lateral drainage. This effect is

less evident in the other two watersheds.

Over a range of physically realistic storage characteris-

tics, long-term averages of ET increase with greater storage

(AWC) in all basins. Our analysis found the greatest sensi-

tivity of long-term average annual ET to variation in AWC

in OR-CAS (Table 3). In CO-ROC, ET ranges from 380 to

600 mm across annual P variation, and across all calibrated

subsurface parameters long-term average ET ranges from

450 to 600 mm. This variation in CO-ROC’s ET associated

with subsurface storage characteristics is on the same order

of magnitude as inter-annual variation in ET with P . Simi-

larly, in CA-SIER, ET ranges from 400 to 800 mm across the

P record and across all storage parameters, and ranges from

700 to 1000 mm long-term. There is a nonlinear relationship

between ET and AWC in each basin. We suggest that below

a threshold point in each basin (195–265 mm of AWC), long-

term average ET is more sensitive to AWC, and above these

threshold values, the effect of climate on ET is greater than

an increase in subsurface storage.

The sensitivity of ET to year-to-year variability of climate

drivers is also influenced by AWC. The sensitivity of ET es-

timates to climate drivers varies by 2 to 5 magnitudes in CA-

SIER and OR-CAS across the range of plausible storage pa-

rameters. These basins receive the smallest fraction of annual

P in the summer, and their annual ET estimates are most sen-

sitive to P , R75, and TAMJ at low water capacity (AWC). CO-

ROC has a high sensitivity to climate drivers, but this sensi-

tivity does not change with AWC. We suggest that a strong

summer P signal in CO-ROC explains the negligible change

in ET’s sensitivity to climate drivers across values of AWC,

similar to other studies that show that summer P can offset

the dependence of ET on soil replenishment or winter snow-

pack (Hamlet et al., 2007; Litaor et al., 2008). The relative

importance of AWC to regional climate differences is appar-

ent if we consider that a similar sensitivity to P and TAMJ can

be achieved for all basins by varying AWC. For example, ET

at the smallest AWC values in OR-CAS is similarly sensi-

tive (slope of 0.6) to inter-annual variation in precipitation as

CO-ROC (Fig. 6a).

The two more water-limited basins demonstrate similarly

high sensitivities of ET to climate drivers, but differ in the

response of their sensitivity to climate across AWCs. Despite

CO-ROC and CA-SIER showing similarly strong sensitivi-

ties to climate, their response across AWC differs consider-

ably. CA-SIER’s sensitivity to climate drivers is highly vari-

able across all AWC, but still demonstrates slightly higher

sensitivity at lower AWC values. Its lack of summer precip-

itation, like OR-CAS, gives water storage a more significant

role in mediating late summer water stress. With lower AWC

values there is less potential for water storage and ET be-

comes more sensitive to climate drivers.

In addition to the sensitivity to AWC, our results show that

lateral redistribution strongly influences the sensitivity of ET

to climate drivers in the drier basins; in CA-SIER and CO-

ROC there is considerable scatter in the slopes for P and

R75 across a single AWC (e.g., for an AWC of 400 mm, the

P : ET ranges from 0.6 to 0.8 and 0.2 to 0.7 for CO-ROC

and CA-SIER, respectively, in Fig. 6). We note that this ad-

ditional sensitivity of ET–climate relationships to drainage

rates, even given similar AWC or storage conditions, empha-

sizes the role played by lateral connections. In other words,

results suggest that for the two more water-limited sites, the

timing of upslope contributions to downslope areas can me-

diate the sensitivity of watershed-scale vegetation water use.

Our results have general implications for model-based es-

timates of ET in this region. Because there is substantial het-

erogeneity in subsurface storage characteristics within each

basin (Dahlgren et al., 1997; Denning et al., 1991; McGuire
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et al., 2007), we might expect that the full range of AWCs

can be observed when we look across individual forest stands

within a basin. Thus, our estimates that show substantial

changes in climate–ET relationships across subsurface pa-

rameters suggest that there may be substantial within-basin

spatial heterogeneity in vegetation responses to climate vari-

ation and change. Even if model estimates are focused on

basin aggregate responses such as streamflow, our results

point to the importance of calibration data for defining sub-

surface storage and drainage properties. Estimates of sub-

surface parameters are often derived from readily available

products such as STATSGO and SSURGO (Natural Re-

sources Conservation Service) that provide relatively coarse-

scale and imperfect information about hydrologic properties.

Consequently, hydrologic models are typically calibrated to

obtain estimates of storage and drainage parameters (Beven,

2011). Our results suggest that in areas where streamflow

data are not available for calibration, watershed-scale esti-

mates of ET responses to climate drivers may have substan-

tial errors.

5 Conclusions

We demonstrate how subsurface storage and drainage prop-

erties (AWC and parameters that control lateral redistribu-

tion) interact with climate-related drivers to influence ET in

three western US mountain watersheds with distinctive pre-

cipitation regimes. These watersheds reflect conditions found

in many other western US snow-dominated systems, where

summer water availability is influenced by the magnitude

of precipitation, timing of soil moisture recharge and spring

temperature and its effect on snowmelt. We found that, for

our three watersheds, estimates of longer-term average (15-

year) watershed-scale ET vary across a range of physically

realistic storage/drainage parameters. For all watersheds, the

range in long-term mean ET estimates across AWC estimates

(e.g., mean ET at a high AWC versus mean ET at a low

AWC) may be as large as inter-annual variation in ET, sug-

gesting that the influence of AWC and drainage can be sub-

stantial.

Our results also point to the importance of lateral redistri-

bution as a control on ET, particularly for CA-SIER. Only a

few studies have emphasized the role of lateral redistribution

in plot- to watershed-scale climate responses in the western

US (Barnard et al., 2010; Tague and Peng, 2013). For the CA-

SIER site, our model results suggest that there can also be

interactions between AWC and hillslope to watershed-scale

redistribution as controls on ET. Lateral redistribution was

less important for the CO-ROC, where summer precipitation

was a more important contributor to annual ET values and

the least important for the wetter OR-CAS site. Results em-

phasize that the role of subsurface properties, including both

storage and drainage, will be different for different climate

regimes.

These results have important implications both for predict-

ing ET in basins where data are not available for calibration

and for understanding and predicting the spatial variability

of ET within a basin. AWC also affects the sensitivity of

annual ET to climate drivers, particularly in the two more

seasonally water-limited basins. Although the three water-

sheds show different responses of annual ET to these climate

drivers, there are values of AWC that would eliminate these

cross-basin differences. These sensitivities highlight the need

for improved information on spatial patterns of subsurface

properties to contribute to the development of science-based

information on forest vulnerabilities to climate change. Im-

proved accounting for plant accessibility to moisture has im-

proved model–data ET comparisons in previous modeling

studies on regional and global scales (Hwang et al., 2009;

Tang et al., 2013; Thompson et al., 2011). With expected

decreases in fractional precipitation received as snow with

climate change (Diffenbaugh et al., 2013; Knowles et al.,

2006), we might expect soil storage to play a more important

role in providing water for forests in the future. Improved un-

derstanding of how climate and subsurface storage/drainage

combine to control ET can enhance our understanding of for-

est water stress related to increased mortality (van Mantgem

et al., 2009). Western US forests show substantial vulnera-

bility to drought, with declines in productivity and increases

in mortality and disturbance in drought years (Allen et al.,

2010; Hicke et al., 2012; Williams et al., 2013). Understand-

ing these ecosystems’ responses to primary climate drivers

is of particular concern given recent warming trends (Sterl et

al., 2008) and multi-year droughts (Cook et al., 2004; Dai et

al., 2004). Identifying the physical conditions in which our

ability to estimate ET is most sensitive or limited by knowl-

edge of subsurface geologic properties helps to prioritize re-

gional data acquisition agendas. Integrating results from re-

cent advances in geophysical measurements and models such

as those emerging from critical zone observatories in the US

and elsewhere (Anderson et al., 2008) will be essential for

analysis of climate ET interactions.
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