Articles | Volume 19, issue 10
Hydrol. Earth Syst. Sci., 19, 4257–4274, 2015
https://doi.org/10.5194/hess-19-4257-2015

Special issue: Predictions under change: water, earth, and biota in the anthropocene...

Hydrol. Earth Syst. Sci., 19, 4257–4274, 2015
https://doi.org/10.5194/hess-19-4257-2015

Research article 22 Oct 2015

Research article | 22 Oct 2015

Reconstructing the natural hydrology of the San Francisco Bay–Delta watershed

P. Fox et al.

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks
Songyan Yu, Hong Xuan Do, Albert I. J. M. van Dijk, Nick R. Bond, Peirong Lin, and Mark J. Kennard
Hydrol. Earth Syst. Sci., 24, 5279–5295, https://doi.org/10.5194/hess-24-5279-2020,https://doi.org/10.5194/hess-24-5279-2020, 2020
Short summary
Testing water fluxes and storage from two hydrology configurations within the ORCHIDEE land surface model across US semi-arid sites
Natasha MacBean, Russell L. Scott, Joel A. Biederman, Catherine Ottlé, Nicolas Vuichard, Agnès Ducharne, Thomas Kolb, Sabina Dore, Marcy Litvak, and David J. P. Moore
Hydrol. Earth Syst. Sci., 24, 5203–5230, https://doi.org/10.5194/hess-24-5203-2020,https://doi.org/10.5194/hess-24-5203-2020, 2020
Canopy temperature and heat stress are increased by compound high air temperature and water stress, and reduced by irrigation – A modeling analysis
Xiangyu Luan and Giulia Vico
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-549,https://doi.org/10.5194/hess-2020-549, 2020
Revised manuscript accepted for HESS
Short summary
Novel Keeling-plot-based methods to estimate the isotopic composition of ambient water vapor
Yusen Yuan, Taisheng Du, Honglang Wang, and Lixin Wang
Hydrol. Earth Syst. Sci., 24, 4491–4501, https://doi.org/10.5194/hess-24-4491-2020,https://doi.org/10.5194/hess-24-4491-2020, 2020
Short summary
Disentangling temporal and population variability in plant root water uptake from stable isotopic analysis: when rooting depth matters in labeling studies
Valentin Couvreur, Youri Rothfuss, Félicien Meunier, Thierry Bariac, Philippe Biron, Jean-Louis Durand, Patricia Richard, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 24, 3057–3075, https://doi.org/10.5194/hess-24-3057-2020,https://doi.org/10.5194/hess-24-3057-2020, 2020
Short summary

Cited articles

Alexander, B. S., Mendell, G. H., and Davidson, G.: Report of the Board of Commissioners on the Irrigation of the San Joaquin, Tulare, and Sacramento Valleys of the State of California, 43rd Congress, 1st Session, House of Representation, Ex. Doc. No. 290, Government Printing Office, Washington, 1874.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop Evapotranspiration: guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper No. 56, Food and Agricultural Organization of the United Nations, Rome, Italy, 1998.
Allen, R. G., Walter, I. A., Elliott, R. L., Howell, T. A., Itenfisu, D., Jensen, M. E., and Snyder, R. L. (Eds.): The ASCE Standardized Reference Evapotranspiration Equation, ASCE, Reston, Virginia, 2005.
Anonymous: Commissioners and Surveyor-General's Instructions to the County Surveyors of California, California State Printing Office, Sacramento, CA, USA, 1861.
Armstrong, C. F. and Stidd, C. K.: A moisture–balance profile on the Sierra Nevada, J. Hydrol., 5, 258–268, 1967.
Download
Short summary
The development of California was facilitated by redistributing water from the natural landscape to other uses. This development was accompanied by declines in native aquatic species, which have been attributed to reductions in Delta outflow. By reconstructing the natural landscape and using water balances to estimate natural Delta outflow, this flow is shown to be consistent with current outflow on a long-term annual average basis.