Articles | Volume 17, issue 11
https://doi.org/10.5194/hess-17-4323-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-17-4323-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
On the importance of observational data properties when assessing regional climate model performance of extreme precipitation
M. A. Sunyer
Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
H. J. D. Sørup
Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
Danish Climate Centre, Danish Meteorological Institute, Copenhagen, Denmark
O. B. Christensen
Danish Climate Centre, Danish Meteorological Institute, Copenhagen, Denmark
H. Madsen
DHI, Hørsholm, Denmark
D. Rosbjerg
Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
P. S. Mikkelsen
Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
K. Arnbjerg-Nielsen
Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
Related authors
M. A. Sunyer, Y. Hundecha, D. Lawrence, H. Madsen, P. Willems, M. Martinkova, K. Vormoor, G. Bürger, M. Hanel, J. Kriaučiūnienė, A. Loukas, M. Osuch, and I. Yücel
Hydrol. Earth Syst. Sci., 19, 1827–1847, https://doi.org/10.5194/hess-19-1827-2015, https://doi.org/10.5194/hess-19-1827-2015, 2015
Dan Rosbjerg
Proc. IAHS, 385, 485–487, https://doi.org/10.5194/piahs-385-485-2024, https://doi.org/10.5194/piahs-385-485-2024, 2024
Dan Rosbjerg
Proc. IAHS, 385, 25–29, https://doi.org/10.5194/piahs-385-25-2024, https://doi.org/10.5194/piahs-385-25-2024, 2024
Short summary
Short summary
The paper provides a more precise and efficient method for calculation of the expected annual damage (EAD). Damage occurs when the current capacity is exceeded. An estimate of EAD is needed for the design of climate change adaptation measures based on economic optimisation, where future damages and maintenance costs are balanced against capital costs. The method is shown to be superior to estimation based on numerical integration, particularly in the case of sparse data availability.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Erika Médus, Emma D. Thomassen, Danijel Belušić, Petter Lind, Peter Berg, Jens H. Christensen, Ole B. Christensen, Andreas Dobler, Erik Kjellström, Jonas Olsson, and Wei Yang
Nat. Hazards Earth Syst. Sci., 22, 693–711, https://doi.org/10.5194/nhess-22-693-2022, https://doi.org/10.5194/nhess-22-693-2022, 2022
Short summary
Short summary
We evaluate the skill of a regional climate model, HARMONIE-Climate, to capture the present-day characteristics of heavy precipitation in the Nordic region and investigate the added value provided by a convection-permitting model version. The higher model resolution improves the representation of hourly heavy- and extreme-precipitation events and their diurnal cycle. The results indicate the benefits of convection-permitting models for constructing climate change projections over the region.
H. E. Markus Meier, Christian Dieterich, Matthias Gröger, Cyril Dutheil, Florian Börgel, Kseniia Safonova, Ole B. Christensen, and Erik Kjellström
Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, https://doi.org/10.5194/esd-13-159-2022, 2022
Short summary
Short summary
In addition to environmental pressures such as eutrophication, overfishing and contaminants, climate change is believed to have an important impact on the marine environment in the future, and marine management should consider the related risks. Hence, we have compared and assessed available scenario simulations for the Baltic Sea and found considerable uncertainties of the projections caused by the underlying assumptions and model biases, in particular for the water and biogeochemical cycles.
Ole Bøssing Christensen, Erik Kjellström, Christian Dieterich, Matthias Gröger, and Hans Eberhard Markus Meier
Earth Syst. Dynam., 13, 133–157, https://doi.org/10.5194/esd-13-133-2022, https://doi.org/10.5194/esd-13-133-2022, 2022
Short summary
Short summary
The Baltic Sea Region is very sensitive to climate change, whose impacts could easily exacerbate biodiversity stress from society and eutrophication of the Baltic Sea. Therefore, there has been a focus on estimations of future climate change and its impacts in recent research. Models show a strong warming, in particular in the north in winter. Precipitation is projected to increase in the whole region apart from the south during summer. New results improve estimates of future climate change.
Torben Schmith, Peter Thejll, Peter Berg, Fredrik Boberg, Ole Bøssing Christensen, Bo Christiansen, Jens Hesselbjerg Christensen, Marianne Sloth Madsen, and Christian Steger
Hydrol. Earth Syst. Sci., 25, 273–290, https://doi.org/10.5194/hess-25-273-2021, https://doi.org/10.5194/hess-25-273-2021, 2021
Short summary
Short summary
European extreme precipitation is expected to change in the future; this is based on climate model projections. But, since climate models have errors, projections are uncertain. We study this uncertainty in the projections by comparing results from an ensemble of 19 climate models. Results can be used to give improved estimates of future extreme precipitation for Europe.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
Dan Rosbjerg
Hydrol. Earth Syst. Sci., 24, 4575–4585, https://doi.org/10.5194/hess-24-4575-2020, https://doi.org/10.5194/hess-24-4575-2020, 2020
Short summary
Short summary
August Colding contributed the first law of thermodynamics, evaporation from water and grass, steady free surfaces in conduits, the cross-sectional velocity distribution in conduits, a complete theory for the Gulf Stream, air speed in cyclones, the piezometric surface in confined aquifers, the unconfined elliptic water table in soil between drain pipes, and the wind-induced set-up in the sea during storms.
Emma Dybro Thomassen, Hjalte Jomo Danielsen Sørup, Marc Scheibel, Thomas Einfalt, and Karsten Arnbjerg-Nielsen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-397, https://doi.org/10.5194/hess-2020-397, 2020
Preprint withdrawn
Short summary
Short summary
This study examines characteristics of extreme events of a 13 year long record of 1 × 1 km spatial resolution and durations ranging from 15-minute to daily durations by means of simple data driven methods. We found that these analyses enabled us to distinguish and characterise types of extreme events useful for urban hydrology applications. The result is useful e.g. for selecting events of particular interest when assessing performance of e.g. urban drainage systems.
Roland Löwe and Karsten Arnbjerg-Nielsen
Nat. Hazards Earth Syst. Sci., 20, 981–997, https://doi.org/10.5194/nhess-20-981-2020, https://doi.org/10.5194/nhess-20-981-2020, 2020
Short summary
Short summary
To consider potential future urban developments in pluvial flood risk assessment, we develop empirical relationships for imperviousness and flood damage based on an analysis of existing urban characteristics. Results suggest that (1) data resolutions must be carefully selected, (2) there are lower limits for the spatial scale at which predictions can be generated, and (3) depth-dependent damage estimates are challenging to reproduce empirically and can be vulnerable to simulation artifacts.
Peter Berg, Ole B. Christensen, Katharina Klehmet, Geert Lenderink, Jonas Olsson, Claas Teichmann, and Wei Yang
Nat. Hazards Earth Syst. Sci., 19, 957–971, https://doi.org/10.5194/nhess-19-957-2019, https://doi.org/10.5194/nhess-19-957-2019, 2019
Short summary
Short summary
A state-of-the-art regional climate model ensemble for Europe is investigated for extreme precipitation intensities. The models poorly reproduce short duration events of less than a few hours. Further, there is poor connection to some known hotspots for extreme cases. The model performance is much improved at 12 h durations. Projected future increases scale with seasonal mean temperature change, within a range from a few percent to over 10 percent per degree Celsius.
Dan Rosbjerg and John Rodda
Hist. Geo Space. Sci., 10, 109–118, https://doi.org/10.5194/hgss-10-109-2019, https://doi.org/10.5194/hgss-10-109-2019, 2019
Short summary
Short summary
After describing the hydrological cycle and defining hydrology in the introduction, the early historical development of hydrology is briefly presented. Then the incorporation of hydrology within the IUGG and the subsequent development of the association are described chronologically. Finally, in the conclusions, the present state of the association is discussed together with an outlook for the future.
Diana Lucatero, Henrik Madsen, Jens C. Refsgaard, Jacob Kidmose, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 22, 6591–6609, https://doi.org/10.5194/hess-22-6591-2018, https://doi.org/10.5194/hess-22-6591-2018, 2018
Short summary
Short summary
The present study evaluates the skill of a seasonal forecasting system for hydrological relevant variables in Denmark. Linear scaling and quantile mapping were used to correct the forecasts. Uncorrected forecasts tend to be more skillful than climatology, in general, for the first month lead time only. Corrected forecasts show a reduced bias in the mean; are more consistent; and show a level of accuracy that is closer to, although no higher than, that of ensemble climatology, in general.
Giuliano Di Baldassarre, Heidi Kreibich, Sergiy Vorogushyn, Jeroen Aerts, Karsten Arnbjerg-Nielsen, Marlies Barendrecht, Paul Bates, Marco Borga, Wouter Botzen, Philip Bubeck, Bruna De Marchi, Carmen Llasat, Maurizio Mazzoleni, Daniela Molinari, Elena Mondino, Johanna Mård, Olga Petrucci, Anna Scolobig, Alberto Viglione, and Philip J. Ward
Hydrol. Earth Syst. Sci., 22, 5629–5637, https://doi.org/10.5194/hess-22-5629-2018, https://doi.org/10.5194/hess-22-5629-2018, 2018
Short summary
Short summary
One common approach to cope with floods is the implementation of structural flood protection measures, such as levees. Numerous scholars have problematized this approach and shown that increasing levels of flood protection can generate a false sense of security and attract more people to the risky areas. We briefly review the literature on this topic and then propose a research agenda to explore the unintended consequences of structural flood protection.
Diana Lucatero, Henrik Madsen, Jens C. Refsgaard, Jacob Kidmose, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 22, 3601–3617, https://doi.org/10.5194/hess-22-3601-2018, https://doi.org/10.5194/hess-22-3601-2018, 2018
Short summary
Short summary
The skill of an experimental streamflow forecast system in the Ahlergaarde catchment, Denmark, is analyzed. Inputs to generate the forecasts are taken from the ECMWF System 4 seasonal forecasting system and an ensemble of observations (ESP). Reduction of biases is achieved by processing the meteorological and/or streamflow forecasts. In general, this is not sufficient to ensure a higher level of accuracy than the ESP, indicating a modest added value of a seasonal meteorological system.
Erik Kjellström, Grigory Nikulin, Gustav Strandberg, Ole Bøssing Christensen, Daniela Jacob, Klaus Keuler, Geert Lenderink, Erik van Meijgaard, Christoph Schär, Samuel Somot, Silje Lund Sørland, Claas Teichmann, and Robert Vautard
Earth Syst. Dynam., 9, 459–478, https://doi.org/10.5194/esd-9-459-2018, https://doi.org/10.5194/esd-9-459-2018, 2018
Short summary
Short summary
Based on high-resolution regional climate models we investigate European climate change at 1.5 and 2 °C of global warming compared to pre-industrial levels. Considerable near-surface warming exceeding that of the global mean is found for most of Europe, already at the lower 1.5 °C of warming level. Changes in precipitation and near-surface wind speed are identified. The 1.5 °C of warming level shows significantly less change compared to the 2 °C level, indicating the importance of mitigation.
Emma Dybro Thomassen, Hjalte Jomo Danielsen Sørup, Marc Scheibel, Thomas Einfalt, and Karsten Arnbjerg-Nielsen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-184, https://doi.org/10.5194/hess-2018-184, 2018
Revised manuscript not accepted
Short summary
Short summary
This article takes the first steps in describing rainfall with spatio-temporal variations. A detailed description of rainfall will provide an improved planning tool for protecting cities against pluvial flooding. The article uses high resolution radar data from the catchment of the river Wupper, North Rhine-Westphalia, Germany. The spatio-temporal properties of extreme rain events was described with 16 variables. Three statistical methods were applied and four rainfall types were identified.
Per Skougaard Kaspersen, Nanna Høegh Ravn, Karsten Arnbjerg-Nielsen, Henrik Madsen, and Martin Drews
Hydrol. Earth Syst. Sci., 21, 4131–4147, https://doi.org/10.5194/hess-21-4131-2017, https://doi.org/10.5194/hess-21-4131-2017, 2017
Søren Thorndahl, Thomas Einfalt, Patrick Willems, Jesper Ellerbæk Nielsen, Marie-Claire ten Veldhuis, Karsten Arnbjerg-Nielsen, Michael R. Rasmussen, and Peter Molnar
Hydrol. Earth Syst. Sci., 21, 1359–1380, https://doi.org/10.5194/hess-21-1359-2017, https://doi.org/10.5194/hess-21-1359-2017, 2017
Short summary
Short summary
This paper reviews how weather radar data can be used in urban hydrological applications. It focuses on three areas of research: (1) temporal and spatial resolution of rainfall data, (2) rainfall estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Moreover, the paper provides examples of urban hydrological applications which can benefit from radar rainfall data in comparison to tradition rain gauge measurements of rainfall.
Raphael Schneider, Peter Nygaard Godiksen, Heidi Villadsen, Henrik Madsen, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 21, 751–764, https://doi.org/10.5194/hess-21-751-2017, https://doi.org/10.5194/hess-21-751-2017, 2017
Short summary
Short summary
We use water level observations from the CryoSat-2 satellite in combination with a river model of the Brahmaputra River, extracting satellite data over a dynamic river mask derived from Landsat imagery. The novelty of this work is the use of the CryoSat-2 water level observations, collected using a complex spatio-temporal sampling scheme, to calibrate a hydrodynamic river model. The resulting model accurately reproduces water levels, without precise knowledge of river bathymetry.
Hjalte Jomo Danielsen Sørup, Stylianos Georgiadis, Ida Bülow Gregersen, and Karsten Arnbjerg-Nielsen
Hydrol. Earth Syst. Sci., 21, 345–355, https://doi.org/10.5194/hess-21-345-2017, https://doi.org/10.5194/hess-21-345-2017, 2017
Short summary
Short summary
In this study we propose a methodology changing present-day precipitation time series to reflect future changed climate. Present-day time series have a much finer resolution than what is provided by climate models and thus have a much broader application range. The proposed methodology is able to replicate most expectations of climate change precipitation. These time series can be used to run fine-scale hydrological and hydraulic models and thereby assess the influence of climate change on them.
Donghua Zhang, Henrik Madsen, Marc E. Ridler, Jacob Kidmose, Karsten H. Jensen, and Jens C. Refsgaard
Hydrol. Earth Syst. Sci., 20, 4341–4357, https://doi.org/10.5194/hess-20-4341-2016, https://doi.org/10.5194/hess-20-4341-2016, 2016
Short summary
Short summary
We present a method to assimilate observed groundwater head and soil moisture profiles into an integrated hydrological model. The study uses the ensemble transform Kalman filter method and the MIKE SHE hydrological model code. The proposed method is shown to be more robust and provide better results for two cases in Denmark, and is also validated using real data. The hydrological model with assimilation overall improved performance compared to the model without assimilation.
Jørn Rasmussen, Henrik Madsen, Karsten Høgh Jensen, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 20, 2103–2118, https://doi.org/10.5194/hess-20-2103-2016, https://doi.org/10.5194/hess-20-2103-2016, 2016
Short summary
Short summary
In the paper, observations are assimilated into a hydrological model in order to improve the model performance. Two methods for detecting and correcting systematic errors (bias) in groundwater head observations are used leading to improved results compared to standard assimilation methods which ignores any bias. This is demonstrated using both synthetic (user generated) observations and real-world observations.
Hjalte Jomo Danielsen Sørup, Ole Bøssing Christensen, Karsten Arnbjerg-Nielsen, and Peter Steen Mikkelsen
Hydrol. Earth Syst. Sci., 20, 1387–1403, https://doi.org/10.5194/hess-20-1387-2016, https://doi.org/10.5194/hess-20-1387-2016, 2016
Short summary
Short summary
Fine-resolution spatio-temporal precipitation data are important as input to urban hydrological models to assess performance issues under all possible conditions. In the present study synthetic data at very fine spatial and temporal resolution are generated using a stochastic model. Data are generated for both present and future climate conditions. The results show that it is possible to generate spatially distributed data at resolutions relevant for urban hydrology.
Claus Davidsen, Suxia Liu, Xingguo Mo, Dan Rosbjerg, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 20, 771–785, https://doi.org/10.5194/hess-20-771-2016, https://doi.org/10.5194/hess-20-771-2016, 2016
Short summary
Short summary
In northern China, rivers run dry and groundwater tables drop, causing economic losses for all water use sectors. We present a groundwater-surface water allocation decision support tool for cost-effective long-term recovery of an overpumped aquifer. The tool is demonstrated for a part of the North China Plain and can support the implementation of the recent China No. 1 Document in a rational and economically efficient way.
J. Rasmussen, H. Madsen, K. H. Jensen, and J. C. Refsgaard
Hydrol. Earth Syst. Sci., 19, 2999–3013, https://doi.org/10.5194/hess-19-2999-2015, https://doi.org/10.5194/hess-19-2999-2015, 2015
P. Skougaard Kaspersen, N. Høegh Ravn, K. Arnbjerg-Nielsen, H. Madsen, and M. Drews
Proc. IAHS, 370, 21–27, https://doi.org/10.5194/piahs-370-21-2015, https://doi.org/10.5194/piahs-370-21-2015, 2015
Short summary
Short summary
A combined remote sensing and hydrological modelling approach is developed to examine the influence of urban land cover changes and climate change for the exposure of cities towards flooding. Results show that the past 30 years of urban development has increased the exposure to pluvial flooding by 6-26%. Corresponding estimates for a medium and high climate change scenario (2071-2100) are 40% and 100%, indicating that urban land cover changes are central for the exposure of cities to flooding.
M. A. Sunyer, Y. Hundecha, D. Lawrence, H. Madsen, P. Willems, M. Martinkova, K. Vormoor, G. Bürger, M. Hanel, J. Kriaučiūnienė, A. Loukas, M. Osuch, and I. Yücel
Hydrol. Earth Syst. Sci., 19, 1827–1847, https://doi.org/10.5194/hess-19-1827-2015, https://doi.org/10.5194/hess-19-1827-2015, 2015
M. A. D. Larsen, J. C. Refsgaard, M. Drews, M. B. Butts, K. H. Jensen, J. H. Christensen, and O. B. Christensen
Hydrol. Earth Syst. Sci., 18, 4733–4749, https://doi.org/10.5194/hess-18-4733-2014, https://doi.org/10.5194/hess-18-4733-2014, 2014
Short summary
Short summary
The paper presents results from a novel dynamical coupling between a hydrology model and a regional climate model developed to include a wider range of processes, land-surface/atmosphere interaction and finer spatio-temporal scales. The coupled performance was largely dependent on the data exchange frequency between the two model components, and longer-term precipitation was somewhat improved by the coupled system whereas the short-term dynamics for a range of variables was less accurate.
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer
Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, https://doi.org/10.5194/gmd-7-1297-2014, 2014
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Stochastic approaches
Scientific logic and spatio-temporal dependence in analyzing extreme-precipitation frequency: negligible or neglected?
Assessing downscaling techniques for frequency analysis, total precipitation and rainy day estimation in CMIP6 simulations over hydrological years
Simulating sub-hourly rainfall data for current and future periods using two statistical disaggregation models: case studies from Germany and South Korea
Synoptic weather patterns conducive to compound extreme rainfall–wave events in the NW Mediterranean
Exploring the joint probability of precipitation and soil moisture over Europe using copulas
Water cycle changes in Czechia: a multi-source water budget perspective
A statistical–dynamical approach for probabilistic prediction of sub-seasonal precipitation anomalies over 17 hydroclimatic regions in China
A gridded multi-site precipitation generator for complex terrain: an evaluation in the Austrian Alps
Technical note: A stochastic framework for identification and evaluation of flash drought
Stochastic simulation of reference rainfall scenarios for hydrological applications using a universal multi-fractal approach
Atmospheric conditions favouring extreme precipitation and flash floods in temperate regions of Europe
A storm-centered multivariate modeling of extreme precipitation frequency based on atmospheric water balance
Probabilistic subseasonal precipitation forecasts using preceding atmospheric intraseasonal signals in a Bayesian perspective
Stochastic daily rainfall generation on tropical islands with complex topography
Modeling seasonal variations of extreme rainfall on different timescales in Germany
Compound flood potential from storm surge and heavy precipitation in coastal China: dependence, drivers, and impacts
Influence of ENSO and tropical Atlantic climate variability on flood characteristics in the Amazon basin
Conditional simulation of spatial rainfall fields using random mixing: a study that implements full control over the stochastic process
Comparison of statistical downscaling methods for climate change impact analysis on precipitation-driven drought
Technical Note: Temporal disaggregation of spatial rainfall fields with generative adversarial networks
A standardized index for assessing sub-monthly compound dry and hot conditions with application in China
Assessment of meteorological extremes using a synoptic weather generator and a downscaling model based on analogues
A new discrete multiplicative random cascade model for downscaling intermittent rainfall fields
Modelling rainfall with a Bartlett–Lewis process: new developments
Nonstationary stochastic rain type generation: accounting for climate drivers
Conditional simulation of surface rainfall fields using modified phase annealing
Climate influences on flood probabilities across Europe
Flood-related extreme precipitation in southwestern Germany: development of a two-dimensional stochastic precipitation model
A hybrid stochastic rainfall model that reproduces some important rainfall characteristics at hourly to yearly timescales
Mapping rainfall hazard based on rain gauge data: an objective cross-validation framework for model selection
On the skill of raw and post-processed ensemble seasonal meteorological forecasts in Denmark
Estimating radar precipitation in cold climates: the role of air temperature within a non-parametric framework
Dealing with non-stationarity in sub-daily stochastic rainfall models
Rainfall disaggregation for hydrological modeling: is there a need for spatial consistence?
Design water demand of irrigation for a large region using a high-dimensional Gaussian copula
Modeling the changes in water balance components of the highly irrigated western part of Bangladesh
A classification algorithm for selective dynamical downscaling of precipitation extremes
Seasonal streamflow forecasts in the Ahlergaarde catchment, Denmark: the effect of preprocessing and post-processing on skill and statistical consistency
Evaluation of ensemble precipitation forecasts generated through post-processing in a Canadian catchment
A nonparametric statistical technique for combining global precipitation datasets: development and hydrological evaluation over the Iberian Peninsula
Censored rainfall modelling for estimation of fine-scale extremes
An adaptive two-stage analog/regression model for probabilistic prediction of small-scale precipitation in France
Precipitation extremes on multiple timescales – Bartlett–Lewis rectangular pulse model and intensity–duration–frequency curves
Does nonstationarity in rainfall require nonstationary intensity–duration–frequency curves?
A non-stationary stochastic ensemble generator for radar rainfall fields based on the short-space Fourier transform
Regionalizing nonparametric models of precipitation amounts on different temporal scales
A combined statistical bias correction and stochastic downscaling method for precipitation
Can local climate variability be explained by weather patterns? A multi-station evaluation for the Rhine basin
Precipitation ensembles conforming to natural variations derived from a regional climate model using a new bias correction scheme
Technical Note: The impact of spatial scale in bias correction of climate model output for hydrologic impact studies
Francesco Serinaldi
Hydrol. Earth Syst. Sci., 28, 3191–3218, https://doi.org/10.5194/hess-28-3191-2024, https://doi.org/10.5194/hess-28-3191-2024, 2024
Short summary
Short summary
Neglecting the scientific rationale behind statistical inference leads to logical fallacies and misinterpretations. This study contrasts a model-based approach, rooted in statistical logic, with a test-based approach, widely used in hydro-climatology but problematic. It reveals the impact of dependence in extreme-precipitation analysis and shows that trends in the frequency of extreme events over the past century in various geographic regions can be consistent with the stationary assumption.
David A. Jimenez, Andrea Menapace, Ariele Zanfei, Eber José de Andrade Pinto, and Bruno Brentan
Hydrol. Earth Syst. Sci., 28, 1981–1997, https://doi.org/10.5194/hess-28-1981-2024, https://doi.org/10.5194/hess-28-1981-2024, 2024
Short summary
Short summary
Most studies that aim to identify the impacts of climate change employ general circulation models. However, due to their low spatial resolution, it is necessary to apply downscaling techniques. This work assesses the performance of three methodologies in developing frequency analyses and estimating the number of rainy days and total precipitation per year. Quantile mapping and regression trees excelled in frequency analysis, and the delta method best estimated multiyear total precipitation.
Ivan Vorobevskii, Jeongha Park, Dongkyun Kim, Klemens Barfus, and Rico Kronenberg
Hydrol. Earth Syst. Sci., 28, 391–416, https://doi.org/10.5194/hess-28-391-2024, https://doi.org/10.5194/hess-28-391-2024, 2024
Short summary
Short summary
High-resolution precipitation data are often a “must” as input for hydrological and hydraulic models (i.e. urban drainage modelling). However, station or climate projection data usually do not provide the required (e.g. sub-hourly) resolution. In the work, we present two new statistical models of different types to disaggregate precipitation from a daily to a 10 min scale. Both models were validated using radar data and then applied to climate models for 10 stations in Germany and South Korea.
Marc Sanuy, Juan C. Peña, Sotiris Assimenidis, and José A. Jiménez
Hydrol. Earth Syst. Sci., 28, 283–302, https://doi.org/10.5194/hess-28-283-2024, https://doi.org/10.5194/hess-28-283-2024, 2024
Short summary
Short summary
The work presents the first classification of weather types associated to compound events of extreme rainfall and coastal storms. These are found to be characterized by upper-level lows and troughs in conjunction with Mediterranean cyclones, resulting in severe to extreme coastal storms combined with convective systems. We used objective classification methods coupled with a Bayesian Network, testing different variables, domains and number of weather types.
Carmelo Cammalleri, Carlo De Michele, and Andrea Toreti
Hydrol. Earth Syst. Sci., 28, 103–115, https://doi.org/10.5194/hess-28-103-2024, https://doi.org/10.5194/hess-28-103-2024, 2024
Short summary
Short summary
Precipitation and soil moisture have the potential to be jointly used for the modeling of drought conditions. In this research, we analysed how their statistical inter-relationship varies across Europe. We found some clear spatial patterns, especially in the so-called tail dependence (which measures the strength of the relationship for the extreme values). The results suggest that the tail dependence needs to be accounted for to correctly assess the value of joint modeling for drought.
Mijael Rodrigo Vargas Godoy, Yannis Markonis, Oldrich Rakovec, Michal Jenicek, Riya Dutta, Rajani Kumar Pradhan, Zuzana Bešťáková, Jan Kyselý, Roman Juras, Simon Michael Papalexiou, and Martin Hanel
Hydrol. Earth Syst. Sci., 28, 1–19, https://doi.org/10.5194/hess-28-1-2024, https://doi.org/10.5194/hess-28-1-2024, 2024
Short summary
Short summary
The study introduces a novel benchmarking method based on the water cycle budget for hydroclimate data fusion. Using this method and multiple state-of-the-art datasets to assess the spatiotemporal patterns of water cycle changes in Czechia, we found that differences in water availability distribution are dominated by evapotranspiration. Furthermore, while the most significant temporal changes in Czechia occur during spring, the median spatial patterns stem from summer changes in the water cycle.
Yuan Li, Kangning Xü, Zhiyong Wu, Zhiwei Zhu, and Quan J. Wang
Hydrol. Earth Syst. Sci., 27, 4187–4203, https://doi.org/10.5194/hess-27-4187-2023, https://doi.org/10.5194/hess-27-4187-2023, 2023
Short summary
Short summary
A spatial–temporal projection-based calibration, bridging, and merging (STP-CBaM) method is proposed. The calibration model is built by post-processing ECMWF raw forecasts, while the bridging models are built using atmospheric intraseasonal signals as predictors. The calibration model and bridging models are merged through a Bayesian modelling averaging (BMA) method. The results indicate that the newly developed method can generate skilful and reliable sub-seasonal precipitation forecasts.
Hetal P. Dabhi, Mathias W. Rotach, and Michael Oberguggenberger
Hydrol. Earth Syst. Sci., 27, 2123–2147, https://doi.org/10.5194/hess-27-2123-2023, https://doi.org/10.5194/hess-27-2123-2023, 2023
Short summary
Short summary
Spatiotemporally consistent high-resolution precipitation data on climate are needed for climate change impact assessments, but obtaining these data is challenging for areas with complex topography. We present a model that generates synthetic gridded daily precipitation data at a 1 km spatial resolution using observed meteorological station data as input, thereby providing data where historical observations are unavailable. We evaluate this model for a mountainous region in the European Alps.
Yuxin Li, Sisi Chen, Jun Yin, and Xing Yuan
Hydrol. Earth Syst. Sci., 27, 1077–1087, https://doi.org/10.5194/hess-27-1077-2023, https://doi.org/10.5194/hess-27-1077-2023, 2023
Short summary
Short summary
Flash drought is referred to the rapid development of drought events with a fast decline of soil moisture, which has serious impacts on agriculture, the ecosystem, human health, and society. While flash droughts have received much research attention, there is no consensus on its definition. Here we used a stochastic water balance framework to quantify the timing of soil moisture crossing different thresholds, providing an efficient tool for diagnosing and monitoring flash droughts.
Arun Ramanathan, Pierre-Antoine Versini, Daniel Schertzer, Remi Perrin, Lionel Sindt, and Ioulia Tchiguirinskaia
Hydrol. Earth Syst. Sci., 26, 6477–6491, https://doi.org/10.5194/hess-26-6477-2022, https://doi.org/10.5194/hess-26-6477-2022, 2022
Short summary
Short summary
Reference rainfall scenarios are indispensable for hydrological applications such as designing storm-water management infrastructure, including green roofs. Therefore, a new method is suggested for simulating rainfall scenarios of specified intensity, duration, and frequency, with realistic intermittency. Furthermore, novel comparison metrics are proposed to quantify the effectiveness of the presented simulation procedure.
Judith Meyer, Malte Neuper, Luca Mathias, Erwin Zehe, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 6163–6183, https://doi.org/10.5194/hess-26-6163-2022, https://doi.org/10.5194/hess-26-6163-2022, 2022
Short summary
Short summary
We identified and analysed the major atmospheric components of rain-intense thunderstorms that can eventually lead to flash floods: high atmospheric moisture, sufficient latent instability, and weak thunderstorm cell motion. Between 1981 and 2020, atmospheric conditions became likelier to support strong thunderstorms. However, the occurrence of extreme rainfall events as well as their rainfall intensity remained mostly unchanged.
Yuan Liu and Daniel B. Wright
Hydrol. Earth Syst. Sci., 26, 5241–5267, https://doi.org/10.5194/hess-26-5241-2022, https://doi.org/10.5194/hess-26-5241-2022, 2022
Short summary
Short summary
We present a new approach to estimate extreme rainfall probability and severity using the atmospheric water balance, where precipitation is the sum of water vapor components moving in and out of a storm. We apply our method to the Mississippi Basin and its five major subbasins. Our approach achieves a good fit to reference precipitation, indicating that the rainfall probability estimation can benefit from additional information from physical processes that control rainfall.
Yuan Li, Zhiyong Wu, Hai He, and Hao Yin
Hydrol. Earth Syst. Sci., 26, 4975–4994, https://doi.org/10.5194/hess-26-4975-2022, https://doi.org/10.5194/hess-26-4975-2022, 2022
Short summary
Short summary
The relationship between atmospheric intraseasonal signals and precipitation is highly uncertain and depends on the region and lead time. In this study, we develop a spatiotemporal projection, based on a Bayesian hierarchical model (STP-BHM), to address the above challenge. The results suggest that the STP-BHM model is skillful and reliable for probabilistic subseasonal precipitation forecasts over China during the boreal summer monsoon season.
Lionel Benoit, Lydie Sichoix, Alison D. Nugent, Matthew P. Lucas, and Thomas W. Giambelluca
Hydrol. Earth Syst. Sci., 26, 2113–2129, https://doi.org/10.5194/hess-26-2113-2022, https://doi.org/10.5194/hess-26-2113-2022, 2022
Short summary
Short summary
This study presents a probabilistic model able to reproduce the spatial patterns of rainfall on tropical islands with complex topography. It sheds new light on rainfall variability at the island scale, and explores the links between rainfall patterns and atmospheric circulation. The proposed model has been tested on two islands of the tropical Pacific, and demonstrates good skills in simulating both site-specific and island-scale rain behavior.
Jana Ulrich, Felix S. Fauer, and Henning W. Rust
Hydrol. Earth Syst. Sci., 25, 6133–6149, https://doi.org/10.5194/hess-25-6133-2021, https://doi.org/10.5194/hess-25-6133-2021, 2021
Short summary
Short summary
The characteristics of extreme precipitation on different timescales as well as in different seasons are relevant information, e.g., for designing hydrological structures or managing water supplies. Therefore, our aim is to describe these characteristics simultaneously within one model. We find similar characteristics for short extreme precipitation at all considered stations in Germany but pronounced regional differences with respect to the seasonality of long-lasting extreme events.
Jiayi Fang, Thomas Wahl, Jian Fang, Xun Sun, Feng Kong, and Min Liu
Hydrol. Earth Syst. Sci., 25, 4403–4416, https://doi.org/10.5194/hess-25-4403-2021, https://doi.org/10.5194/hess-25-4403-2021, 2021
Short summary
Short summary
A comprehensive assessment of compound flooding potential is missing for China. We investigate dependence, drivers, and impacts of storm surge and precipitation for coastal China. Strong dependence exists between driver combinations, with variations of seasons and thresholds. Sea level rise escalates compound flood potential. Meteorology patterns are pronounced for low and high compound flood potential. Joint impacts from surge and precipitation were much higher than from each individually.
Jamie Towner, Andrea Ficchí, Hannah L. Cloke, Juan Bazo, Erin Coughlan de Perez, and Elisabeth M. Stephens
Hydrol. Earth Syst. Sci., 25, 3875–3895, https://doi.org/10.5194/hess-25-3875-2021, https://doi.org/10.5194/hess-25-3875-2021, 2021
Short summary
Short summary
We examine whether several climate indices alter the magnitude, timing and duration of floods in the Amazon. We find significant changes in both flood magnitude and duration, particularly in the north-eastern Amazon for negative SST years in the central Pacific Ocean. This response is not repeated when the negative anomaly is positioned further east. These results have important implications for both social and physical sectors working towards the improvement of flood early warning systems.
Jieru Yan, Fei Li, András Bárdossy, and Tao Tao
Hydrol. Earth Syst. Sci., 25, 3819–3835, https://doi.org/10.5194/hess-25-3819-2021, https://doi.org/10.5194/hess-25-3819-2021, 2021
Short summary
Short summary
Accurate spatial precipitation estimates are important in various fields. An approach to simulate spatial rainfall fields conditioned on radar and rain gauge data is proposed. Unlike the commonly used Kriging methods, which provide a Kriged mean field, the output of the proposed approach is an ensemble of estimates that represents the estimation uncertainty. The approach is robust to nonlinear error in radar estimates and is shown to have some advantages, especially when estimating the extremes.
Hossein Tabari, Santiago Mendoza Paz, Daan Buekenhout, and Patrick Willems
Hydrol. Earth Syst. Sci., 25, 3493–3517, https://doi.org/10.5194/hess-25-3493-2021, https://doi.org/10.5194/hess-25-3493-2021, 2021
Sebastian Scher and Stefanie Peßenteiner
Hydrol. Earth Syst. Sci., 25, 3207–3225, https://doi.org/10.5194/hess-25-3207-2021, https://doi.org/10.5194/hess-25-3207-2021, 2021
Short summary
Short summary
In hydrology, it is often necessary to infer from a daily sum of precipitation a possible distribution over the day – for example how much it rained in each hour. In principle, for a given daily sum, there are endless possibilities. However, some are more likely than others. We show that a method from artificial intelligence called generative adversarial networks (GANs) can
learnwhat a typical distribution over the day looks like.
Jun Li, Zhaoli Wang, Xushu Wu, Jakob Zscheischler, Shenglian Guo, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 1587–1601, https://doi.org/10.5194/hess-25-1587-2021, https://doi.org/10.5194/hess-25-1587-2021, 2021
Short summary
Short summary
We introduce a daily-scale index, termed the standardized compound drought and heat index (SCDHI), to measure the key features of compound dry-hot conditions. SCDHI can not only monitor the long-term compound dry-hot events, but can also capture such events at sub-monthly scale and reflect the related vegetation activity impacts. The index can provide a new tool to quantify sub-monthly characteristics of compound dry-hot events, which are vital for releasing early and timely warning.
Damien Raynaud, Benoit Hingray, Guillaume Evin, Anne-Catherine Favre, and Jérémy Chardon
Hydrol. Earth Syst. Sci., 24, 4339–4352, https://doi.org/10.5194/hess-24-4339-2020, https://doi.org/10.5194/hess-24-4339-2020, 2020
Short summary
Short summary
This research paper proposes a weather generator combining two sampling approaches. A first generator recombines large-scale atmospheric situations. A second generator is applied to these atmospheric trajectories in order to simulate long time series of daily regional precipitation and temperature. The method is applied to daily time series in Switzerland. It reproduces adequately the observed climatology and improves the reproduction of extreme precipitation values.
Marc Schleiss
Hydrol. Earth Syst. Sci., 24, 3699–3723, https://doi.org/10.5194/hess-24-3699-2020, https://doi.org/10.5194/hess-24-3699-2020, 2020
Short summary
Short summary
A new way to downscale rainfall fields based on the notion of equal-volume areas (EVAs) is proposed. Experiments conducted on 100 rainfall events in the Netherlands show that the EVA method outperforms classical methods based on fixed grid cell sizes, producing fields with more realistic spatial structures. The main novelty of the method lies in its adaptive sampling strategy, which avoids many of the mathematical challenges associated with the presence of zero rainfall values.
Christian Onof and Li-Pen Wang
Hydrol. Earth Syst. Sci., 24, 2791–2815, https://doi.org/10.5194/hess-24-2791-2020, https://doi.org/10.5194/hess-24-2791-2020, 2020
Short summary
Short summary
The randomised Bartlett–Lewis (RBL) model is widely used to synthesise rainfall time series with realistic statistical features. However, it tended to underestimate rainfall extremes at sub-hourly and hourly timescales. In this paper, we revisit the derivation of equations that represent rainfall properties and compare statistical estimation methods that impact model calibration. These changes effectively improved the RBL model's capacity to reproduce sub-hourly and hourly rainfall extremes.
Lionel Benoit, Mathieu Vrac, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 24, 2841–2854, https://doi.org/10.5194/hess-24-2841-2020, https://doi.org/10.5194/hess-24-2841-2020, 2020
Short summary
Short summary
At subdaily resolution, rain intensity exhibits a strong variability in space and time due to the diversity of processes that produce rain (e.g., frontal storms, mesoscale convective systems and local convection). In this paper we explore a new method to simulate rain type time series conditional to meteorological covariates. Afterwards, we apply stochastic rain type simulation to the downscaling of precipitation of a regional climate model.
Jieru Yan, András Bárdossy, Sebastian Hörning, and Tao Tao
Hydrol. Earth Syst. Sci., 24, 2287–2301, https://doi.org/10.5194/hess-24-2287-2020, https://doi.org/10.5194/hess-24-2287-2020, 2020
Short summary
Short summary
For applications such as flood forecasting of urban- or town-scale distributed hydrological modeling, high-resolution quantitative precipitation estimation (QPE) with enough accuracy is the most important driving factor and thus the focus of this paper. Considering the fact that rain gauges are sparse but accurate and radar-based precipitation estimates are inaccurate but densely distributed, we are merging the two types of data intellectually to obtain accurate QPEs with high resolution.
Eva Steirou, Lars Gerlitz, Heiko Apel, Xun Sun, and Bruno Merz
Hydrol. Earth Syst. Sci., 23, 1305–1322, https://doi.org/10.5194/hess-23-1305-2019, https://doi.org/10.5194/hess-23-1305-2019, 2019
Short summary
Short summary
We investigate whether flood probabilities in Europe vary for different large-scale atmospheric circulation conditions. Maximum seasonal river flows from 600 gauges in Europe and five synchronous atmospheric circulation indices are analyzed. We find that a high percentage of stations is influenced by at least one of the climate indices, especially during winter. These results can be useful for preparedness and damage planning by (re-)insurance companies.
Florian Ehmele and Michael Kunz
Hydrol. Earth Syst. Sci., 23, 1083–1102, https://doi.org/10.5194/hess-23-1083-2019, https://doi.org/10.5194/hess-23-1083-2019, 2019
Short summary
Short summary
The risk estimation of precipitation events with high recurrence periods is difficult due to the limited timescale with meteorological observations and an inhomogeneous distribution of rain gauges, especially in mountainous terrains. In this study a spatially high resolved analytical model, designed for stochastic simulations of flood-related precipitation, is developed and applied to an investigation area in Germany but is transferable to other areas. High conformity with observations is found.
Jeongha Park, Christian Onof, and Dongkyun Kim
Hydrol. Earth Syst. Sci., 23, 989–1014, https://doi.org/10.5194/hess-23-989-2019, https://doi.org/10.5194/hess-23-989-2019, 2019
Short summary
Short summary
Rainfall data are often unavailable for the analysis of water-related problems such as floods and droughts. In such cases, researchers use rainfall generators to produce synthetic rainfall data. However, data from most rainfall generators can serve only one specific purpose; i.e. one rainfall generator cannot be applied to analyse both floods and droughts. To overcome this issue, we invented a multipurpose rainfall generator that can be applied to analyse most water-related problems.
Juliette Blanchet, Emmanuel Paquet, Pradeebane Vaittinada Ayar, and David Penot
Hydrol. Earth Syst. Sci., 23, 829–849, https://doi.org/10.5194/hess-23-829-2019, https://doi.org/10.5194/hess-23-829-2019, 2019
Short summary
Short summary
We propose an objective framework for estimating rainfall cumulative distribution functions in a region when data are only available at rain gauges. Our methodology allows us to assess goodness-of-fit of the full distribution, but with a particular focus on its tail. It is applied to daily rainfall in the Ardèche catchment in the south of France. Results show a preference for a mixture of Gamma distribution over seasons and weather patterns, with parameters interpolated with a thin plate spline.
Diana Lucatero, Henrik Madsen, Jens C. Refsgaard, Jacob Kidmose, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 22, 6591–6609, https://doi.org/10.5194/hess-22-6591-2018, https://doi.org/10.5194/hess-22-6591-2018, 2018
Short summary
Short summary
The present study evaluates the skill of a seasonal forecasting system for hydrological relevant variables in Denmark. Linear scaling and quantile mapping were used to correct the forecasts. Uncorrected forecasts tend to be more skillful than climatology, in general, for the first month lead time only. Corrected forecasts show a reduced bias in the mean; are more consistent; and show a level of accuracy that is closer to, although no higher than, that of ensemble climatology, in general.
Kuganesan Sivasubramaniam, Ashish Sharma, and Knut Alfredsen
Hydrol. Earth Syst. Sci., 22, 6533–6546, https://doi.org/10.5194/hess-22-6533-2018, https://doi.org/10.5194/hess-22-6533-2018, 2018
Short summary
Short summary
This study investigates the use of gauge precipitation and air temperature observations to ascertain radar precipitation in cold climates. The use of air temperature as an additional variable in a non-parametric model improved the estimation of radar precipitation significantly. Further, it was found that the temperature effects became insignificant when air temperature was above 10 °C. The findings from this study could be important for using radar precipitation for hydrological applications.
Lionel Benoit, Mathieu Vrac, and Gregoire Mariethoz
Hydrol. Earth Syst. Sci., 22, 5919–5933, https://doi.org/10.5194/hess-22-5919-2018, https://doi.org/10.5194/hess-22-5919-2018, 2018
Short summary
Short summary
We propose a method for unsupervised classification of the space–time–intensity structure of weather radar images. The resulting classes are interpreted as rain types, i.e. pools of rain fields with homogeneous statistical properties. Rain types can in turn be used to define stationary periods for further stochastic rainfall modelling. The application of rain typing to real data indicates that non-stationarity can be significant within meteorological seasons, and even within a single storm.
Hannes Müller-Thomy, Markus Wallner, and Kristian Förster
Hydrol. Earth Syst. Sci., 22, 5259–5280, https://doi.org/10.5194/hess-22-5259-2018, https://doi.org/10.5194/hess-22-5259-2018, 2018
Short summary
Short summary
Rainfall time series are disaggregated from daily to hourly values to be used for rainfall–runoff modeling of mesoscale catchments. Spatial rainfall consistency is implemented afterwards using simulated annealing. With the calibration process applied, observed runoff statistics (e.g., summer and winter peak flows) are represented well. However, rainfall datasets with under- or over-estimation of spatial consistency lead to similar results, so the need for a good representation can be questioned.
Xinjun Tu, Yiliang Du, Vijay P. Singh, Xiaohong Chen, Kairong Lin, and Haiou Wu
Hydrol. Earth Syst. Sci., 22, 5175–5189, https://doi.org/10.5194/hess-22-5175-2018, https://doi.org/10.5194/hess-22-5175-2018, 2018
Short summary
Short summary
For given frequencies of precipitation of a large region, design water demands of irrigation of the entire region among three methods, i.e., equalized frequency, typical year and most-likely weight function, slightly differed, but their alterations in sub-regions were complicated. A design procedure using the most-likely weight function in association with a high-dimensional copula, which built a linkage between regional frequency and sub-regional frequency of precipitation, is recommended.
A. T. M. Sakiur Rahman, M. Shakil Ahmed, Hasnat Mohammad Adnan, Mohammad Kamruzzaman, M. Abdul Khalek, Quamrul Hasan Mazumder, and Chowdhury Sarwar Jahan
Hydrol. Earth Syst. Sci., 22, 4213–4228, https://doi.org/10.5194/hess-22-4213-2018, https://doi.org/10.5194/hess-22-4213-2018, 2018
Edmund P. Meredith, Henning W. Rust, and Uwe Ulbrich
Hydrol. Earth Syst. Sci., 22, 4183–4200, https://doi.org/10.5194/hess-22-4183-2018, https://doi.org/10.5194/hess-22-4183-2018, 2018
Short summary
Short summary
Kilometre-scale climate-model data are of great benefit to both hydrologists and end users studying extreme precipitation, though often unavailable due to the computational expense associated with such high-resolution simulations. We develop a method which identifies days with enhanced risk of extreme rainfall over a catchment, so that high-resolution simulations can be performed only when such a risk exists, reducing computational expense by over 90 % while still well capturing the extremes.
Diana Lucatero, Henrik Madsen, Jens C. Refsgaard, Jacob Kidmose, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 22, 3601–3617, https://doi.org/10.5194/hess-22-3601-2018, https://doi.org/10.5194/hess-22-3601-2018, 2018
Short summary
Short summary
The skill of an experimental streamflow forecast system in the Ahlergaarde catchment, Denmark, is analyzed. Inputs to generate the forecasts are taken from the ECMWF System 4 seasonal forecasting system and an ensemble of observations (ESP). Reduction of biases is achieved by processing the meteorological and/or streamflow forecasts. In general, this is not sufficient to ensure a higher level of accuracy than the ESP, indicating a modest added value of a seasonal meteorological system.
Sanjeev K. Jha, Durga L. Shrestha, Tricia A. Stadnyk, and Paulin Coulibaly
Hydrol. Earth Syst. Sci., 22, 1957–1969, https://doi.org/10.5194/hess-22-1957-2018, https://doi.org/10.5194/hess-22-1957-2018, 2018
Short summary
Short summary
The output from numerical weather prediction (NWP) models is known to have errors. River forecast centers in Canada mostly use precipitation forecasts directly obtained from American and Canadian NWP models. In this study, we evaluate the forecast performance of ensembles generated by a Bayesian post-processing approach in cold climates. We demonstrate that the post-processing approach generates bias-free forecasts and provides a better picture of uncertainty in the case of an extreme event.
Md Abul Ehsan Bhuiyan, Efthymios I. Nikolopoulos, Emmanouil N. Anagnostou, Pere Quintana-Seguí, and Anaïs Barella-Ortiz
Hydrol. Earth Syst. Sci., 22, 1371–1389, https://doi.org/10.5194/hess-22-1371-2018, https://doi.org/10.5194/hess-22-1371-2018, 2018
Short summary
Short summary
This study investigates the use of a nonparametric model for combining multiple global precipitation datasets and characterizing estimation uncertainty. Inputs to the model included three satellite precipitation products, an atmospheric reanalysis precipitation dataset, satellite-derived near-surface daily soil moisture data, and terrain elevation. We evaluated the technique based on high-resolution reference precipitation data and further used generated ensembles to force a hydrological model.
David Cross, Christian Onof, Hugo Winter, and Pietro Bernardara
Hydrol. Earth Syst. Sci., 22, 727–756, https://doi.org/10.5194/hess-22-727-2018, https://doi.org/10.5194/hess-22-727-2018, 2018
Short summary
Short summary
Extreme rainfall is one of the most significant natural hazards. However, estimating very large events is highly uncertain. We present a new approach to construct intense rainfall using the structure of rainfall generation in clouds. The method is particularly effective at estimating short-duration extremes, which can be the most damaging. This is expected to have immediate impact for the estimation of very rare downpours, with the potential to improve climate resilience and hazard preparedness.
Jérémy Chardon, Benoit Hingray, and Anne-Catherine Favre
Hydrol. Earth Syst. Sci., 22, 265–286, https://doi.org/10.5194/hess-22-265-2018, https://doi.org/10.5194/hess-22-265-2018, 2018
Short summary
Short summary
We present a two-stage statistical downscaling model for the probabilistic prediction of local precipitation, where the downscaling statistical link is estimated from atmospheric circulation analogs of the current prediction day.
The model allows for a day-to-day adaptive and tailored downscaling. It can reveal specific predictors for peculiar and non-frequent weather configurations. This approach noticeably improves the skill of the prediction for both precipitation occurrence and quantity.
Christoph Ritschel, Uwe Ulbrich, Peter Névir, and Henning W. Rust
Hydrol. Earth Syst. Sci., 21, 6501–6517, https://doi.org/10.5194/hess-21-6501-2017, https://doi.org/10.5194/hess-21-6501-2017, 2017
Short summary
Short summary
A stochastic model for precipitation is used to simulate an observed precipitation series; it is compared to the original series in terms of intensity–duration frequency curves. Basis for the latter curves is a parametric model for the duration dependence of the underlying extreme value model allowing a consistent estimation of one single duration-dependent distribution using all duration series simultaneously. The stochastic model reproduces the curves except for very rare extreme events.
Poulomi Ganguli and Paulin Coulibaly
Hydrol. Earth Syst. Sci., 21, 6461–6483, https://doi.org/10.5194/hess-21-6461-2017, https://doi.org/10.5194/hess-21-6461-2017, 2017
Short summary
Short summary
Using statistical models, we test whether nonstationary versus stationary models show any significant differences in terms of design storm intensity at different durations across Southern Ontario. We find that detectable nonstationarity in rainfall extremes does not necessarily lead to significant differences in design storm intensity, especially for shorter return periods. An update of 2–44 % is required in current design standards to mitigate the risk of storm-induced urban flooding.
Daniele Nerini, Nikola Besic, Ioannis Sideris, Urs Germann, and Loris Foresti
Hydrol. Earth Syst. Sci., 21, 2777–2797, https://doi.org/10.5194/hess-21-2777-2017, https://doi.org/10.5194/hess-21-2777-2017, 2017
Short summary
Short summary
Stochastic generators are effective tools for the quantification of uncertainty in a number of applications with weather radar data, including quantitative precipitation estimation and very short-term forecasting. However, most of the current stochastic rainfall field generators cannot handle spatial non-stationarity. We propose an approach based on the short-space Fourier transform, which aims to reproduce the local spatial structure of the observed rainfall fields.
Tobias Mosthaf and András Bárdossy
Hydrol. Earth Syst. Sci., 21, 2463–2481, https://doi.org/10.5194/hess-21-2463-2017, https://doi.org/10.5194/hess-21-2463-2017, 2017
Short summary
Short summary
Parametric distribution functions are commonly used to model precipitation amounts at gauged and ungauged locations. Nonparametric distributions offer a more flexible way to model precipitation amounts. However, the nonparametric models do not exhibit parameters that can be easily regionalized for application at ungauged locations. To overcome this deficiency, we present a new interpolation scheme for nonparametric models and evaluate the usage of daily gauges for sub-daily resolutions.
Claudia Volosciuk, Douglas Maraun, Mathieu Vrac, and Martin Widmann
Hydrol. Earth Syst. Sci., 21, 1693–1719, https://doi.org/10.5194/hess-21-1693-2017, https://doi.org/10.5194/hess-21-1693-2017, 2017
Short summary
Short summary
For impact modeling, infrastructure design, or adaptation strategy planning, high-quality climate data on the point scale are often demanded. Due to the scale gap between gridbox and point scale and biases in climate models, we combine a statistical bias correction and a stochastic downscaling model and apply it to climate model-simulated precipitation. The method performs better in summer than in winter and in winter best for mild winter climate (Mediterranean) and worst for continental winter.
Aline Murawski, Gerd Bürger, Sergiy Vorogushyn, and Bruno Merz
Hydrol. Earth Syst. Sci., 20, 4283–4306, https://doi.org/10.5194/hess-20-4283-2016, https://doi.org/10.5194/hess-20-4283-2016, 2016
Short summary
Short summary
To understand past flood changes in the Rhine catchment and the role of anthropogenic climate change in extreme flows, an attribution study relying on a proper GCM (general circulation model) downscaling is needed. A downscaling based on conditioning a stochastic weather generator on weather patterns is a promising approach. Here the link between patterns and local climate is tested, and the skill of GCMs in reproducing these patterns is evaluated.
Kue Bum Kim, Hyun-Han Kwon, and Dawei Han
Hydrol. Earth Syst. Sci., 20, 2019–2034, https://doi.org/10.5194/hess-20-2019-2016, https://doi.org/10.5194/hess-20-2019-2016, 2016
Short summary
Short summary
A primary advantage of using model ensembles for climate change impact studies is to represent the uncertainties associated with models through the ensemble spread. Currently, most of the conventional bias correction methods adjust all the ensemble members to one reference observation. As a result, the ensemble spread is degraded during bias correction. However the proposed method is able to correct the bias and conform to the ensemble spread so that the ensemble information can be better used.
E. P. Maurer, D. L. Ficklin, and W. Wang
Hydrol. Earth Syst. Sci., 20, 685–696, https://doi.org/10.5194/hess-20-685-2016, https://doi.org/10.5194/hess-20-685-2016, 2016
Short summary
Short summary
To translate climate model output from its native coarse scale to a finer scale more representative of that at which societal impacts are experienced, a common method applied is statistical downscaling. A component of many statistical downscaling techniques is quantile mapping (QM). QM can be applied at different spatial scales, and here we study how skill varies with spatial scale. We find the highest skill is generally obtained when applying QM at approximately a 50 km spatial scale.
Cited articles
Bárdossy, A. and Pegram, G.: Downscaling precipitation using regional climate models and circulation patterns toward hydrology, Water Resour. Res., 47, W04505, https://doi.org/10.1029/2010WR009689, 2011.
Beldring, S., Engen-Skaugen, T., Forland, E. J., and Roald, L. A.: Climate change impacts on hydrological processes in Norway based on two methods for transferring regional climate model results to meteorological station sites, Tellus A, 60, 439–450, https://doi.org/10.1111/j.1600-0870.2008.00306.x, 2008.
Benestad, R. E.: Downscaling precipitation extremes, Theor. Appl. Climatol., 100, 1–21, https://doi.org/10.1007/s00704-009-0158-1, 2010.
Beniston, M., Stephenson, D., Christensen, O., Ferro, C., Frei, C., Goyette, S., Halsnaes, K., Holt, T., Jylhä, K., Koffi, B., Palutikof, J., Schöll, R., Semmler, T., and Woth, K.: Future extreme events in European climate: an exploration of regional climate model projections, Climatic Change, 81, 71–95, https://doi.org/10.1007/s10584-006-9226-z, 2007.
Boberg, F. and Christensen, J. H.: Overestimation of Mediterranean summer temperature projections due to model deficiencies, Nature Climate Change, 2, 433–436, https://doi.org/10.1038/NCLIMATE1454, 2012.
Boberg, F., Berg, P., Thejll, P., Gutowski, W., and Christensen, J. H.: Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble, Clim. Dynam., 32, 1097–1106, https://doi.org/10.1007/s00382-008-0446-y, 2009.
Boberg, F., Berg, P., Thejll, P., Gutowski, W., and Christensen, J. H.: Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ensembles models, Clim. Dynam., 35, 1509–1520, https://doi.org/10.1007/s00382-009-0683-8, 2010.
Burton, A., Fowler, H. J., Blenkinsop, S., and Kilsby, C. G.: Downscaling transient climate change using a Neyman–Scott Rectangular Pulses stochastic rainfall model, J. Hydrol., 381, 18–32, https://doi.org/10.1016/j.jhydrol.2009.10.031, 2010.
Chen, C.-T. and Knutson, T.: On the Verification and Comparison of Extreme Rainfall Indices from Climate Models, J. Climate, 21, 1605–1621, https://doi.org/10.1175/2007JCLI1494.1, 2008.
Christensen, N. S. and Lettenmaier, D. P.: A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin, Hydrol. Earth Syst. Sci., 11, 1417–1434, https://doi.org/10.5194/hess-11-1417-2007, 2007.
Christensen, J. H., Kjellström, E., Giorgi, F., Lenderink, G., and Rummukainen, M.: Weight assignment in regional climate models, Clim. Res., 44, 179–194, https://doi.org/10.3354/cr00916, 2010.
Cooley, D. and Sain, S. R.: Spatial Hierarchical Modeling of Precipitation Extremes From a Regional Climate Model, J. Agric. Biol. Envir. S., 15, 381–402, https://doi.org/10.1007/s13253-010-0023-9, 2010.
Dai, A., Meehl, G. A., Washington, W. M., Wigley, T. M., and Arblaster, J. M.: Ensemble simulation of twenty-first century climate changes: Bussiness-as-usual versu CO2 Stabilization, B. Am. Meteorol. Soc., 82, 2377–2388, 2001.
De Michele, C., Kottegoda, N. T., and Rosso, R.: The derivation of areal reduction factor of storm rainfall from its scaling properties, Water Resour. Res., 37, 3247–3252, https://doi.org/10.1029/2001WR000346, 2001.
De Michele, C., Kottegoda, N. T., and Rosso, R.: IDAF (intensity-duration-area frequency) curves of extreme storm rainfall: a scaling approach, Water Sci. Technol., 45, 83–90, 2002.
De Michele, C., Zenoni, E., Pecora, S., and Rosso, R.: Analytical derivation of rain intensity-duration-area-frequency relationships from event maxima, J. Hydrol, 399, 385–393, https://doi.org/10.1016/j.jhydrol.2011.01.018, 2011.
Déqué, M., Rowell, D., Lüthi, D., Giorgi, F., Christensen, J., Rockel, B., Jacob, D., Kjellström, E., de Castro, M., and van den Hurk, B.: An intercomparison of regional climate simulations for europe: assessing uncertainties in model projections, Climatic Change, 81, 53–70, https://doi.org/10.1007/s10584-006-9228-x, 2007.
Dessai, S. and Hulme, M.: Assessing the robustness of adaptation decisions to climate change uncertainties: A case study on water resources management in the east of England, Global Environ. Chang., 17, 59–72, https://doi.org/10.1016/j.gloenvcha.2006.11.005, 2007.
Fankhauser, R.: Influence of systematic errors from tipping bucket rain gauges on recorded rainfall data, Water Sci. Technol., 37, 121–129, https://doi.org/10.1016/S0273-1223(98)00324-2, 1998.
Fatichi, S., Ivanov, V. Y., and Caporali, E.: Simulation of future climate scenarios with a weather generator, Adv. Water Resour., 34, 448–467, 2011.
Fowler, H. J. and Ekström, M.: Multi-model ensemble estimates of climate change impacts on UK seasonal precipitation extremes, Int. J. Climatol., 29, 385–416, https://doi.org/10.1002/joc.1827, 2009.
Frei, C., Christensen, J. H., Déqué, M., Jacob, D., Jones, R. G., and Vidale, P. L.: Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps, J. Geophys. Res., 108, 4124, https://doi.org/10.1029/2002JD002287, 2003.
Frei, C., Schöll, R., Fukutome, S., Schmidli, J., and Vidale, P. L.: Future change of precipitation extremes in europe: Intercomparison of scenarios from regional climate models, J. Geophys. Res., 111, D06105, https://doi.org/10.1029/2005JD005965, 2006.
Frich, P., Rosenørn, S., Madsen, H., and Jensen, J. J.: Observed Precipitation in Denmark 1961–90, Technical Report number 97-8 available at www.dmi.dk, Danish Meteorological Institute, Denmark, 1997.
Giorgi, F. and Mearns, L. O.: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the "reliability ensemble averaging" (rea) method, J. Climate, 15, 1141–1158, https://doi.org/10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2, 2002.
Gómez-Navarro, J. J., Montávez, J. P., Jerez, S., Jiménes-Guerrero, P., and Zorita, E.: What is the role of the observational dataset in the evaluation and scoring of climate models?, Geophys. Res. Lett., 39, L24701, https://doi.org/10.1029/2012GL054206, 2012.
Goodess, C., Hall, J., Best, M., Betts, R., Cabantous, L., Jones, P., Kilsby, C., Pearman, A., and Wallace, C.: Climate scenarios and decision making under uncertainty, Built Environment, 33, 10–30, 2007.
Gregersen, I. B., Sørup, H. J. D., Madsen, H., Rosbjerg, D., Mikkelsen, P. S., and Arnbjerg-Nielsen, K.: Assessing future climatic changes of rainfall extremes at small spatio-temporal scales, Climatic Change, 118, 783–797, https://doi.org/10.1007/s10584-012-0669-0, 2013.
Hanel, M. and Buishand, T. A.: On the value of hourly precipitation extremes in regional climate model simulations, J. Hydrol., 393, 265–273, https://doi.org/10.1016/j.jhydrol.2010.08.024, 2010.
Hawkins, E. and Sutton, R.: The potential to narrow uncertainty in projections of regional precipitation change, Clim. Dynam., 37, 407–418, https://doi.org/10.1007/s00382-010-0810-6, 2011.
Haylock, M. R. and Goodess, C. M.: Interannual variability of European extreme winter rainfall and links with mean large-scale circulation, Int. J. Climatol., 24, 759–776, https://doi.org/10.1002/joc.1033, 2004.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., and New, M.: A European daily high-resolution gridded dataset of surface temperature and precipitation, J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008JD010201, 2008.
Hewitson, B. C. and Crane, R. G.: Gridded Area-Averaged Daily Precipitation via Conditional Interpolation, J. Climate, 18, 41–57, https://doi.org/10.1175/JCLI3246.1, 2005.
Hofstra, N., Haylock, M., New, M., and Jones, P. D.: Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature, J. Geophys. Res., 144, D21101, https://doi.org/10.1029/2009JD011799, 2009.
Hofstra, N., New, M., and McSweeney, C.: The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data, Clim. Dynam, 35, 841–858, https://doi.org/10.1007/s00382-009-0698-1, 2010.
Hundecha, Y. and Bárdossy, A.: Statistical downscaling of extremes of daily precipitation and temperature and construction of their future scenarios, Int. J. Climatol., 28, 589–610, https://doi.org/10.1002/joc.1563, 2008.
Iizumi, T., Nishimori, M., Dairaku, K., Adachi, S. A., and Yokozawa, M.: Evaluation and intercomparison of downscaled daily precipitation indices over Japan in present-day climate: Strengths and weaknesses of dynamical and bias correction-type statistical downscaling methods, J. Geophys. Res., 116, D01111, https://doi.org/10.1029/2010JD014513, 2011.
Jørgensen, H. K., Rosenørn, S., Madsen, H., and Mikkelsen, P. S.: Quality control of rain data used for urban runoff systems, Water Sci. Technol., 37, 113–120, https://doi.org/10.1016/S0273-1223(98)00323-0, 1998.
Kang, B. and Ramirez, J. A.: A coupled stochastic space-time intermittent random cascade model for rainfall downscaling, Water Resour. Res., 46, W10534, https://doi.org/10.1029/2008WR007692, 2010.
Kjellström, E., Boberg, F., Castro, M., Christensen, J. H., Nikulin, G., and Sánchez, E.: Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models, Clim. Res., 44, 135–150, https://doi.org/10.3354/cr00932, 2010.
Klein Tank, A. M. G., Wijngaard, J. B., Können, G. P., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., Heino, R., Bessemoulin, P., Müller-Westermeier, G., Tzanakou, M., Szalai, S., Pálsdóttir, T., Fitzgerald, D., Rubin, S., Capaldo, M., Maugeri, M., Leitass, A., Bukantis, A., Aberfeld, R., van Engelen, A. F. V., Forland, E., Mietus, M., Coelho, F., Mares, C., Razuvaev, V., Nieplova, E., Cegnar, T., Antonio López J., Dahlström, B., Moberg, A., Kirchhofer, W., Ceylan, A., Pachaliuk, O., Alexander, L. V., and Petrovic, P.: Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment, Int. J. Climatol., 22, 1441–1453, https://doi.org/10.1002/joc.773, 2002.
Klok, E. J. and Klein Tank, A. M. G.: Updated and extended European dataset of daily climate observations, Int. J. Climatol., 29, 1182–1191, https://doi.org/10.1002/joc.1779, 2009.
Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. A.: Challenges in combining projections from multiple climate models, J. Climate, 23, 2739–2758, https://doi.org/10.1175/2009JCLI3361.1, 2010.
Kysely, J. and Beranova, R.: Climate-change effects on extreme precipitation in central europe: uncertainties of scenarios based on regional climate models, Theor. Appl. Climatol, 95, 361–374, https://doi.org/10.1007/s00704-008-0014-8, 2009.
Larsen, A. N., Gregersen, I. B., Linde, J. J., Mikkelsen, P. S., and Christensen, O. B.: Potential future increase in extreme one-hour precipitation events over Europe due to climate change, Water Sci. Technol., 60, 2205–2216. https://doi.org/10.2166/wst.2009.650, 2009.
Leith, N. A. and Chandler, R. E.: A framework for interpreting climate model outputs, Appl. Statist., 59, 279–296, https://doi.org/10.1111/j.1467-9876.2009.00694.x, 2010.
Lenderink, G.: Exploring metrics of extreme daily precipitation in a large ensemble of regional climate model simulations, Clim. Res., 44, 151–166, https://doi.org/10.3354/cr00946, 2010.
Madsen, H., Mikkelsen, P. S., Rosbjerg, D., and Harremoes, P.: Regional estimation of rainfall intensity-duration-frequency curves using generalized least squares regression of partial duration series statistics, Water Resour. Res., 38, 1239, https://doi.org/10.1029/2001WR001125, 2002.
Madsen, H., Arnbjerg-Nielsen, K., and Mikkelsen, P. S.: Update of regional intensity-duration-frequency curves in Denmark: Tendency towards increased storm intensities, Atmos. Res., 92, 343–349, https://doi.org/10.1016/j.atmosres.2009.01.013, 2009.
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I.: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user, Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314, 2010.
Mikkelsen, P. S., Madsen, H., Arnbjerg-Nielsen, K., Jørgensen, H. K., Rosbjerg, D., and Harremoës, P.: A rationale for using local and regional point rainfall data for design and analysis of urban storm drainage systems, Water Sci. Technol., 37, 7–14, 1998.
Nguyen, V. T-.V-., Desramaut, N., and Nguyen, T.: Optimal rainfall temporal patterns for urban drainage design in the context of climate change, Water Sci. Technol., 62, 1170–1176, https://doi.org/10.2166/wst.2010.295, 2010.
Olsson, J., Willén, U., and Kawamura, A.: Downscaling extreme short-term regional climate model precipitation for urban hydrological applications, Hydrol. Res., 43, 341–351, https://doi.org/10.2166/nh.2012.135, 2012.
Pennell, C. and Reichler, T.: On the effective number of climate models, J. Climate, 24, 2358–2367, https://doi.org/10.1175/2010JCLI3814.1, 2011.
Peterson, T. C.: Climate Change Indices, WMO Bulletin, 54, 83–86, 2005.
Pierce, D. W., Barnett, T. P., Santer, B. D., and Gleckler, P. J.: Selecting global climate models for regional climate change studies, P. Natl. Acad. Sci. USA, 106, 8441–8446, https://doi.org/10.1073/pnas.0900094106, 2009.
Sang, H. and Gelfand, A. E.: Hierarchical modeling for extreme values observed over space and time, Environ. Ecol. Stat., 16, 407–426, https://doi.org/10.1007/s10651-007-0078-0, 2009a.
Sang, H. and Gelfand A. E.: Continuous Spatial Process Models for Spatial Extreme Values, J. Agric. Biol. Envir. S., 15, 49–65, https://doi.org/10.1007/s13253-009-0010-1, 2009b.
Scharling, M.: Klimagrid Danmark nedbør 10 $\ast$ 10 km (ver.2), Technical Report number 99-15 available in Danish at www.dmi.dk (last access: 28 October 2013), Danish Metereological Institute, Denmark, 1999.
Scharling, M.: Klimagrid – Danmark, normaler 1961–90, måneds- og årsværdier, Nedbør 10*10, 20*20 & 40*40 km, temperatur og potentiel fordampning 20*20 & 40*40 km, Technical Report number 00-11 available in Danish at www.dmi.dk (last access: 28 October 2013), Danish Meteorological Institute, Denmark, 2000.
Scharling, M.: Climate Grid Denmark, Technical Report no 12-10 available in Danish at www.dmi.dk (last access: 28 October 2013), Danish Meteorological Institute, Denmark, 2012.
Scharling, M. and Kern-Hansen, C.: Klimagrid – Danmark – Nedbør og fordampning 1990–2000 Beregningsresultater til belysning af vandbalancen i Danmark, Technical Report 02-03 available in Danish at www.dmi.dk (last access: 28 October 2013), Danish Meteorological Institute, Denmark, 2002.
Schliep, E. M., Cooley, D., Sain, S. R., and Hoeting, J. A.: A comparison study of extreme precipitation from six different regional climate models via spatial hierarchical modelling, Extremes, 13, 219–239, https://doi.org/10.1007/s10687-009-0098-2, 2010.
Segond, M., Onof, C., and Wheater, H. S.: Spatiat-temporal disaggregation of daily rainfall from a generalized linear model, J. Hydrol., 331, 674–689, https://doi.org/10.1016/j.jhydrol.2006.06.019, 2006.
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., and Zhang, X.: Appendix 3.A – Notes and technical details on Chapter 3 figures, in: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), http://www.ipcc.ch (last access: 31 May 2013), 2012.
Sibson, R.: A vector identity for the dirichlet tessellation, Math. Proc. Cambridge, 87, 151–155, https://doi.org/10.1017/S0305004100056589, 1980.
Sibson R.: Interpreting Multivariate Data, Wiley, New York, 1981.
Sivapalan, M. and Blöschl, G.: Transformation of point rainfall to areal rainfall: Intensity-duration-frequency curves, J. Hydrol., 204, 150–167, https://doi.org/10.1016/S0022-1694(97)00117-0, 1998.
Sunyer, M. A., Madsen, H., and Ang, P. H.: A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change, Atmos. Res., 103, 119–128, https://doi.org/10.1016/j.atmosres.2011.06.011, 2012.
Sunyer, M. A., Madsen, H., Rosbjerg, D., and Arnbjerg-Nielsen, K: Regional interdependency of precipitation indices across Denmark in two ensembles of high resolution RCMs, J. Climate, https://doi.org/10.1175/JCLI-D-12-00707.1, 2013.
Taye, M. T., Ntegeka, V., Ogiramoi, N. P., and Willems, P.: Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin, Hydrol. Earth Syst. Sci., 15, 209–222, https://doi.org/10.5194/hess-15-209-2011, 2011.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 7183–7192, https://doi.org/10.1029/2000JD900719, 2001
Tebaldi, C. and Knutti, R.: The use of the multi-model ensemble in probabilistic climate projections, Philos. T. R. Soc. A, 365, 2053–2075, https://doi.org/10.1098/rsta.2007.2076, 2007.
Tebaldi, C., Smith, R., Nychka, D., and Mearns, L.: Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multi-model ensembles, J. Climate, 18, 1524–1540, https://doi.org/10.1175/JCLI3363.1, 2005.
Tozer, C. R., Kiem, A. S., and Verdon-Kidd, D. C.: On the uncertainties associated with using gridded rainfall data as a proxy for observed, Hydrol. Earth Syst. Sci., 16, 1481–1499, https://doi.org/10.5194/hess-16-1481-2012, 2012.
van der Linden, P. and Mitchell, J. F.: Ensembles: Climate change and its impacts: Summary of research and results from the ensembles project, Technical Report, Met Office Hadley Centre, Exeter, UK, 2009.
Verhoest, N. E. C., Vandenberghe, S., Cabus, P., Onof, C., Meca-Figueras, T., and Jameleddine, S.: Are stochastic point rainfall models able to preserve extreme flood statistics?, Hydrol. Process., 24, 3439–3445, https://doi.org/10.1002/hyp.7867, 2010.
Wackernagel, H.: Multivariate Geostatistics: An Introduction With Applications, Springer, Berlin, 2003.
Wetterhall, F., Bárdossy, A., Chen, D., Halldin, S., and Xu, C.: Statistical downscaling of daily precipitation over Sweden using GCM output, Theor. Appl. Climatol., 96, 95–103, https://doi.org/10.1007/s00704-008-0038-0, 2009.
Wilby, R. L. and Harris, I.: A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the river Thames, UK, Water Resour. Res., 42, 1–10, https://doi.org/10.1029/2005WR004065, 2006.
Wilby, R. L., Wigley, T. M. L., Conway, D., Jones, P. D., Hewitson, B. C., Main, J., and Wilks, D. S.: Statistical downscaling of general circulation model output: A comparison of methods, Water Resour. Res., 34, 2995–3008, https://doi.org/10.1029/98WR02577, 1998.
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, 2nd ed, International Geophysics Series, 91, Academic Press, USA, 627 pp., 2006.
Wilks, D. S. and Wilby, R. L.: The weather generation game: a review of stochastic weather models, Prog. Phys. Geog., 23, 329–359, https://doi.org/10.1177/030913339902300302, 1999.
Willems, P., Arnbjerg-Nielsen, K., Olsson, J., and Nguyen, V.-T.-V.: Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings, Atmos. Res., 103, 106–118, https://doi.org/10.1016/j.atmosres.2011.04.003, 2012.
Wilson, E. M.: Engineering Hydrology, 4, MACMILLAN EDUCATION LTD, London, 1990.