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Abstract. In recent years, there has been an increase in the
number of climate studies addressing changes in extreme
precipitation. A common step in these studies involves the
assessment of the climate model performance. This is often
measured by comparing climate model output with observa-
tional data. In the majority of such studies the characteristics
and uncertainties of the observational data are neglected.

This study addresses the influence of using different obser-
vational data sets to assess the climate model performance.
Four different data sets covering Denmark using different
gauge systems and comprising both networks of point mea-
surements and gridded data sets are considered. Addition-
ally, the influence of using different performance indices and
metrics is addressed. A set of indices ranging from mean to
extreme precipitation properties is calculated for all the data
sets. For each of the observational data sets, the regional cli-
mate models (RCMs) are ranked according to their perfor-
mance using two different metrics. These are based on the
error in representing the indices and the spatial pattern.

In comparison to the mean, extreme precipitation indices
are highly dependent on the spatial resolution of the observa-
tions. The spatial pattern also shows differences between the
observational data sets. These differences have a clear im-
pact on the ranking of the climate models, which is highly
dependent on the observational data set, the index and the
metric used. The results highlight the need to be aware of
the properties of observational data chosen in order to avoid
overconfident and misleading conclusions with respect to cli-
mate model performance.

1 Introduction

In recent years, a large number of studies have focused on
estimating the changes in extreme precipitation under cli-
mate change conditions. However, information on changes
in precipitation and, especially, in extreme precipitation is
subject to large uncertainties. The main sources of uncer-
tainty arise from the choice of emission scenario, climate
model, and downscaling method. Several studies have con-
cluded that the uncertainty in climate model projections is in
most cases larger than the natural variability and the emission
scenario uncertainty (Wilby and Harris, 2006; Déqué et al.,
2007; Dessai and Hulme, 2007; Hawkins and Sutton, 2011).
In an effort to account for this source of uncertainty, multi-
model ensembles are widely used in climate change impact
studies.

Several uncertainty quantification techniques based on
multi-model ensembles have been suggested in the litera-
ture. These range from simple methods considering the en-
semble average (Dai et al., 2001; Christensen and Letten-
maier, 2007; Pierce et al., 2009) to more complex proba-
bilistic methods like the Bayesian approaches suggested by
Tebaldi et al. (2005) and Leith and Chandler (2010). In gen-
eral, there are two main approaches for combining projec-
tions in multi-model ensembles: (i) assign the same weight to
all the models (e.g. Goodess et al., 2007), and (ii) assign dif-
ferential weights to the climate models based on their perfor-
mance (e.g. van der Linden and Mitchell, 2009; Lenderink,
2010; Taye et al., 2011; Boberg and Christensen, 2012). The
latter approach is often preferred as it is believed that not all
climate models perform equally well.
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However, there are many challenges in the assessment of
climate model performance (Knutti et al., 2010; Maraun et
al., 2010; Gómez-Navarro et al., 2012). Due to the lack of in-
formation about the future, climate model performance is of-
ten assessed by comparing climate model output for present
conditions to observations. The choice of, respectively, in-
dices used to characterise the properties of data and metrics
used to compare model output with observations poses an
important challenge (Gómez-Navarro et al., 2012). There is
lack of agreement on what is a good model, as different in-
dices and metrics may lead to different results (Kjellström
et al., 2010; Lenderink, 2010). As suggested by Tebaldi and
Knutti (2007), the best approach is probably to use multiple
indices and metrics.

In addition to these challenges, most climate change im-
pact studies consider observational data sets as the true
value and the associated uncertainty is not addressed. How-
ever, there are large uncertainties in precipitation measure-
ments. Gómez-Navarro et al. (2012) concluded that, for mean
precipitation, these uncertainties are notable and important
when observations are used for ranking of climate models.
In the following, the main aspects regarding precipitation ob-
servations, indices and metrics used in the evaluation of the
climate models’ skill to reproduce extreme precipitation are
reviewed.

1.1 Precipitation observations

Most often precipitation is measured as point observations
using rain gauges. These point measurements provide us with
useful data for hydrological modelling. Depending on the
purpose, point measurements can be good data sets for cal-
culating precipitation indices for a given area. Mean prop-
erties such as the mean annual precipitation can be esti-
mated fairly accurately from long time series of point mea-
surements, since this property of precipitation is expected to
change slowly in space unless topographical obstacles like
mountains interfere. Other indices are less well estimated
from point measurements. Extreme precipitation properties
from a single time series are less representative of a given
area than the mean annual precipitation. These properties are
often calculated from a small number of measurements, nor-
mally one or a few per year, which means that they are af-
fected by significant sampling error. Additionally, the fre-
quency, true mean intensity and spatial distribution of the
extreme events that are recorded are not accurately known.
Nonetheless, information on extreme events for a given area
is needed in hydrological modelling. Techniques such as the
areal reduction factor (ARF) (Wilson, 1990; Sivapalan and
Blöschl, 1998) have been introduced to extrapolate point pre-
cipitation properties to catchment scale. The ARF can be
calculated as a simple linear function of the area covered
(Wilson, 1990), or by using more advanced models based
on extensive analysis of observations (Sivapalan and Blöschl,
1998). In both cases the areal average precipitation index will

decrease, the larger the area considered. The concept of ARF
is especially useful in situations where point measurements
and gridded values are compared.

In climate change impact studies, the most commonly used
observational precipitation data are point measurement data
(Goodess et al., 2007; Beldring et al. 2008; Wetterhall et al.,
2009; Burton et al., 2010; Taye et al., 2011; Fatichi et al.,
2011;) and gridded data (Frei et al., 2003, 2006; Lenderink,
2010; Bárdossy and Pegram, 2011). In most studies in hy-
drology, precipitation is not interesting at a single point but
over the model area. A normal practise to overcome this is to
use the point measurement as the mean intensity over an area
and combine the areal representation of the available point
measurements over the catchments using Thiessen polygons.
While this might provide a good representation of precipita-
tion over small areas (Verhoest et al., 2010; Willems et al.,
2012) it is not a good representation over large areas (Wilby
et al., 1998; Wilks and Wilby, 1999; Frei et al., 2003; Coo-
ley and Sain, 2010). Therefore, a key issue to consider in
any given study is if the spatial resolution of data is suitable
for the temporal scale of the precipitation properties stud-
ied. If long temporal scales are analysed (e.g. mean annual
precipitation), a suitable distance for the spatial resolution
is probably in the order of several hundred kilometres (Ma-
raun et al., 2010). If sub-daily indices are studied, this dis-
tance is considerably shorter (Larsen et al., 2009; Kang and
Ramirez, 2010; Gregersen et al., 2013). Regional climate
models (RCMs) represent precipitation on grids of rather
coarse scale; the spatial resolution of these models is usually
around 10–50 km. Even the models with the finest resolution
have a grid size that is coarse with respect to precipitation
measurements (Maraun et al., 2010). Hence, there is a pro-
nounced scale problem when comparing climate model out-
puts to precipitation measurements at point scale. This issue
was addressed by Chen and Knutson (2008). Even so, ap-
proaches comparing climate model outputs with point obser-
vations have been followed in a number of climate change
impact studies, e.g. Taye et al. (2011), Gómez-Navarro et
al. (2012) and Gregersen et al. (2013).

Point measurements are known to be uncertain, and
this uncertainty tends to be higher for extreme events
(Fankhauser, 1998). Furthermore, when interpolating data
into gridded data other sources of uncertainty arise, e.g. the
interpolation method used, the homogeneity of the station
network, etc. Several studies have dealt with this aspect (e.g.
Hewitson and Crane, 2005; Haylock et al., 2008; Hofstra et
al., 2009). Chen and Knutson (2008) focused on the differ-
ences arising from interpreting climate model precipitation
as either point or mean areal values. From this, it is clear that
the interpretation has great influence on the conclusions to
be drawn from a given study. It is beyond this study to thor-
oughly assess these uncertainties and the reader is referred to
Hewitson and Crane (2005), Haylock et al. (2008), Hofstra et
al. (2009) and Chen and Knutson (2008) for further studies.
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1.2 Indices

Even though climate models are primarily constructed to
model climate at large scales (Maraun et al., 2010), extreme
precipitation at local scales is of great interest in climate
change impact studies. A large number of studies have fo-
cused on modelling precipitation extremes in relation to cli-
mate model output (e.g. Benestad, 2010; Burton et al., 2010;
Cooley and Sain, 2010; Nguyen et al., 2010; Schliep et al.,
2010; De Michele et al., 2011; Olsson et al., 2012; Gregersen
et al., 2013). These studies used different indices to charac-
terize the tail of the distribution of precipitation data. The
choice of indices is highly dependent on the application, e.g.
urban hydrology or agricultural hydrology. Several attempts
have been made to compile a list of indices suitable to charac-
terize extreme events. For example, in the STARDEX project
(Haylock and Goodess, 2004) a set of six core precipitation-
related indices was defined, and the “Expert Team on Cli-
mate Change Detection Indices” (ETCCDI) (Peterson, 2005)
defined a set of eleven precipitation indices, including those
from STARDEX. In the literature, some of the more com-
monly used indices are: percentiles, often the 95th or 99th
(Beldring et al., 2008; Hundecha and Bárdossy, 2008; Ben-
estad, 2010; Cooley and Sain, 2010; Iizumi et al., 2011);
the maximum precipitation in one day or a specific num-
ber of consecutive days (Segond et al., 2006; Beniston et
al., 2007; Sang and Gelfand, 2009a, b; Burton et al., 2010;
Schliep et al., 2010); precipitation amounts forT -year return
periods (Frei et al., 2006; Fowler and Ekström, 2009; Kys-
ley and Beranova, 2009); and the Intensity-Duration(-Area)-
Frequency (ID(A)F) relationship (De Michele et al., 2001,
2002, 2011; Nguyen et al., 2010; Olsson et al., 2012).

1.3 Metrics

As in the case of extreme precipitation indices, a range of dif-
ferent metrics have been used for quantifying climate model
performance. These can be categorized in two main groups:
(i) metrics focusing on the performance of climate models
at model grid level or averaged over a region (Giorgi and
Mearns, 2002; Boberg et al., 2010; Hanel and Buishand,
2010; Lenderink, 2010), and (ii) metrics focusing on the abil-
ity of models to represent the spatial distribution of the vari-
able of interest (Fowler and Ekström, 2009; Lenderink, 2010;
Bárdossy and Pegram, 2011). In the first group, the biases in
one or more indices are often analysed. Additionally, proper-
ties of empirical distributions (Boberg et al., 2010) and con-
fidence intervals of return levels (Frei et al., 2006) have also
been used. In the second group, semivariograms and prin-
cipal components analysis have been applied. Some studies
have compared and combined different metrics. For example,
Fowler and Ekström (2009) defined a metric that accounts for
both the spatial characteristics and the bias in the extreme
events intensity. Lenderink (2010) compared two different
metrics for extreme precipitation; one is a simple measure

of bias between RCM output and observations, and the other
metric measures the differences between the spatial patterns
simulated by the RCMs and the observations.

The influence of scaling a given data set into coarser scale
is well described in the literature (e.g Chen and Knutson,
2008; Tozer et al., 2012) but a more systematic assessment
of the influence of the quality of the underlying data is lack-
ing. Studies in this area have been performed for mean pre-
cipitation indices (Gómez-Navarro et al., 2012) but not for
extreme ones. This study attempts to add new knowledge
within this area. Several indices are considered from mean
precipitation to high percentiles in order to assess whether
the choice of the observational data used affects all the pre-
cipitation characteristics, or if it is only relevant for extremes.
Additionally, two different metrics are considered that can be
used to weight the climate models in the ensemble. The influ-
ence of the choice of observational data, indices and metrics
on the assessment of climate model performance is inves-
tigated. The purpose is not to weight the climate models or
finding the best or worst models, although a ranking of model
performance is part of the study.

The next section describes the four observational data sets
used as well as the climate models considered. The method-
ology applied to these data is then described in Sect. 3 fol-
lowed by the results and discussions in Sect. 4. Section 5
summarizes the main conclusions drawn from this study.

2 Data

Two kinds of data are used for this study: observational data,
and climate model output data. First the different observa-
tional data sets are presented and afterwards the different cli-
mate models.

2.1 Observational data

Four different observational data sets have been considered.
These comprise two national data sets (SVK and Climate
Grid Denmark (CGD)) and two freely available interna-
tional data sets (European Climate Assessment and Dataset
(ECA&D) and E-OBS). The SVK and ECA&D data are
point measurements, while the CGD and E-OBS are gridded
data sets. For this study all the data sets consist of daily pre-
cipitation covering Denmark, and they are used as provided.
Figure 1 shows the locations of the grid points and gauge lo-
cations of the different data sets. This figure highlights the
differences in the spatial distribution of the data available.

The SVK data set is owned by the Danish utility compa-
nies. It consists of one-minute temporal resolution precipi-
tation records for approximately 100 stations in Denmark.
This station network was designed to provide information
on extreme precipitation for design of urban infrastructure
(Mikkelsen et al., 1998; Madsen et al., 2002). The length of
the individual records ranges from 5 to 33 yr in the period
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Fig. 1.Location of grid points and gauges of the observational data
sets used.(a) Gauge locations of the Danish SVK gauge system,(b)
grid locations of the regular 10 km grid in the Climate Grid Den-
mark (CGD),(c) gauge locations included in the ECA&D and(d)
grid locations of the 25 km rotated grid used by the E-OBS and the
climate models.

1979 to 2012, and the spatial coverage is centred on the
most urbanized areas of Denmark. Due to its purpose, the
SVK data set is operated with a rather high threshold for dry
weather, i.e. hours with less than approximately 0.2–0.4 mm
of rain are considered dry (Jørgensen et al., 1998). For this
study the daily precipitation values are calculated from the
base data set. The SVK gauge locations are shown in Fig. 1a.

CGD is a gridded precipitation product created by the
Danish Meteorological Institute (DMI). It presents daily
precipitation based on approximately 300 stations covering
Denmark in an irregular but relatively homogeneous, dense
network (Scharling, 1999). The station data has been interpo-
lated in grids of 10× 10 km using an inverse distance weight-
ing method (Scharling, 1999, 2012). The data set has only
recently been released for research purposes, and the qual-
ity of both the station data and the resulting gridded data
has been extensively studied by DMI and found to be very
good (Scharling, 2000; Scharling and Kern-Hansen, 2002).
The data set is available for 1989 to 2010. The CGD grid
locations are shown in Fig. 1b.

ECA&D is a large pan-European station data set that con-
tains more than 2000 stations measuring daily precipitation
(Klein Tank et al., 2002; Klok and Klein Tank, 2009). In
Denmark, there are a total of 26 stations of which 17 are
available for downloading from the project website (http:
//www.ecad.eu). The period covered by the time series varies
depending on the station. The stations available in Denmark

cover a period of more than 30 yr and all of them are cur-
rently operational.

The ECA&D data is used as a basis to obtain the grid-
ded data set E-OBS (Haylock et al., 2008). This data set was
created as part of the ENSEMBLES project (van der Linden
and Mitchell, 2009) and covers the time period 1951–2012.
The means used to obtain the gridded data based on point
measurements is a kriging method presented by Haylock et
al. (2008). The E-OBS data set is available at a resolution of
0.22 and 0.44◦ (approximately 25 and 50 km, respectively)
both in a regular latitude-longitude grid and a rotated pole
grid. In this study we use version 5.0 of the rotated pole grid
data set at a resolution of 0.22◦. At this resolution there are
66 land grids over Denmark. Both ECA&D and E-OBS have
been widely used in climate change impact studies (Boberg
et al., 2009, 2010; Christensen et al., 2010; Kjellström et
al., 2010; Lenderink, 2010). E-OBS is regularly updated and
the number of stations included is increasing. However, the
number of stations in some regions is currently low com-
pared to the number of grid points. The low density of sta-
tions in some regions leads to an over-smoothing of precip-
itation intensities, and especially of extreme events (Hofstra
et al., 2009, 2010). The ECA&D gauge locations are shown
in Fig. 1c and the E-OBS grid locations in Fig. 1d.

2.2 Climate model data

The four observational data sets are compared with a multi-
model ensemble of RCMs from the European ENSEMBLES
project. The project aimed at developing an ensemble predic-
tion system to assess the uncertainty in climate projections
from seasonal to decadal and longer timescales (van der Lin-
den and Mitchell, 2009). A large data set of RCMs based
on several GCMs was set up as part of the ENSEMBLES
project. In this study we consider 15 RCMs driven by 6 dif-
ferent GCMs. Table 1 shows the RCMs considered, where
the number assigned to each of the RCMs will be used in the
results sections.

The models have a spatial resolution of 0.22◦ (approxi-
mately 25 km) and thirteen of them use the same rotated pole
grid as E-OBS. Two models use a Lambert conformal grid
system, RM5.1 and RegCM. The indices of these two mod-
els have been re-interpolated to the grid in E-OBS by using
the natural neighbour interpolation method suggested by Sib-
son (1980, 1981). Daily precipitation time series are avail-
able for the time period 1951–2100 for all the models. The
RCM outputs used in this study cover the time period from
1989 to 2010. This is the time period common to all the ob-
servational data sets.
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Table 1.List of RCMs used in this study, driving GCMs and source of the RCMs.

No. RCM GCM Institute

1 HIRHAM5 ARPEGE Danish Meteorological Institute
2 HIRHAM5 ECHAM5
3 HIRHAM5 BCM
4 REMO ECHAM5 Max Planck Institute for Meteorology
5 RACMO2 ECHAM5 Royal Netherlands Meteorological Institute
6 RCA ECHAM5 Swedish Meteorological and Hydrological Institute
7 RCA BCM
8 RCA HadCM3Q3
9 CLM HadCM3Q0 Swiss Federal Institute of Technology, Zürich
10 HadRM3Q0 HadCM3Q0 UK Met Office
11 HadRM3Q3 HadCM3Q3
12 HadRM3Q16 HadCM3Q16
13 RCA3 HadCM3Q16 Community Climate Change Consortium for Ireland
14 RM5.1 ARPEGE National Centre for Meteorological Research in France
15 RegCM3 ECHAM5 International Centre for Theoretical Physics

3 Methodology

This study is divided into two main parts. The first part con-
sists of an inter-comparison of indices from the different ob-
servational data sets. The comparison is based on the abso-
lute value of the indices and their spatial pattern. The second
part compares the climate model performance estimated us-
ing each of the different observational data sets. The climate
model performance is assessed using two different metrics,
which are applied to all the indices. This section describes
the indices considered in the study and the metrics used to
assess the climate model performance.

3.1 Indices

3.1.1 Point and grid point

A set of indices is used to compare the different observa-
tional data sets and RCM outputs. The indices are chosen
to represent information often evaluated in climate studies.
They represent a range of temporal scales as well as mean
and extreme precipitation properties. The indices evaluated
are:

– The mean annual precipitation (Mean).

– The proportion of dry days (PDD).

– The simple daily intensity index (SDII) which is the
same as the mean precipitation amount per wet day.

– The 75th, 90th, 95th, 97.5th and 99th percentiles of the
wet days precipitation amount (Prec75p to Prec99p).

Both the SDII and Prec90p are in the list of core indices de-
fined by ETCCDI. Wet days are defined as days with precip-
itation higher or equal to 1 mm (Peterson, 2005; Seneviratne
et al., 2012). These indices are estimated separately for each

of the stations in the observational point measurement data
sets and for each grid point in the observational gridded data
sets and the RCMs.

3.1.2 Spatial pattern

The set of indices defined above are also used to investigate
the differences in the spatial pattern of the different data sets.
Empirical semivariograms are used for this purpose. Empir-
ical semivariograms use the value of the index at each point
to estimate the semivariance, i.e. how the similarity between
points changes with distance. This allows us to investigate
the spatial pattern of each of the indices described above.

Semivariograms show the value of the semivariance de-
pending on the distance (lag) between points. The semivari-
ance,γ (d), is a measure of dissimilarity between two points
separated in space by distanced. The semivariance increases
with distance until it levels off. The distance at which the
semivariogram levels off is known as the range. Two points
are considered to be uncorrelated if they are at a distance
equal to or higher than the range, also known as the decorre-
lation length. The semivariance at a distanced is estimated
by Wackernagel (2003) as:

2γ (d) = E
{
[Z(x) − Z(x + d)]2

}
(1)

whereZ(x) is the value of the index at the pointx, andZ(x+

d) is the value at a point located a distanced from x. The
semivariance is estimated by grouping all pairs of points into
a fixed number of bins. For each bin the average distance and
average semivariance of all pairs in the bin are calculated.
In this study the number of bins selected is 15, i.e. all the
points are grouped in 15 different bins. In order to be able to
compare the different semivariograms the value of the index
in each point is normalized by the average of all the points.
These values are then used to estimate the semivariance as

www.hydrol-earth-syst-sci.net/17/4323/2013/ Hydrol. Earth Syst. Sci., 17, 4323–4337, 2013
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shown in Eq. (1). Empirical semivariograms are constructed
for each of the observational data sets and for the RCMs.

Empirical semivariograms have been previously used in
climate studies to rank RCMs according to their performance
in reproducing spatial patterns (e.g. Fowler and Ekström,
2009). For this reason and due to their ability to represent the
spatial pattern of a specific index, they have been selected in
this study to assess the performance of the RCMs. Nonethe-
less, a more concise summary of the similarity between spa-
tial patterns can be graphically shown using Taylor diagrams
(see Taylor (2001) for details). The Taylor diagrams show
three metrics. They show the centred root mean square dif-
ference (RMSD) and the spatial correlation between model
data and observations. Additionally, they show the spatial
standard deviation of the model data and observations. Taylor
diagrams were specifically developed to summarize statisti-
cal information of how well patterns match. Hence, Taylor
diagrams have been used here to further compare the spatial
pattern of the RCMs with the observational data sets.

3.2 Metric

In the second part of the analysis, the performance of the
RCMs is assessed by comparing the indices estimated for
the observational data sets to the indices estimated from the
RCM outputs.

3.2.1 Point and grid point

The first metric used is based on the bias in reproducing the
precipitation indices. The bias is calculated individually for
each grid point in the RCMs for which observational data is
available. It is estimated by subtraction of observations from
the RCM output, i.e. a positive bias indicates that the RCM
output yields higher indices than the observations. The abso-
lute value of the median of the bias is then used to rank the
RCMs, i.e. the climate model with the smallest median of the
bias is ranked in first position.

3.2.2 Spatial pattern

The second metric used to assess the performance of the cli-
mate models is based on the representation of the spatial
pattern. The empirical semivariograms are used for this pur-
pose. The performance of the RCMs is assessed using the
root mean square error (RMSE). For each climate model, the
error at a specific lag is calculated as the difference between
the semivariance estimated from the climate model and the
observations. The RMSE for the modelm is then calculated
as

RMSEm =

√
1

N

∑N

i=1

(
γ m
i − γ Obs

i

)2
, (2)

whereγ Obs
i andγ m

i are the semivariance for the observations
and climate modelm at lagi, respectively.N is the number

of bins in the semivariogram. The model with the smallest
RMSE is ranked in first position. It must be highlighted that
the comparison of the climate models is carried out using the
empirical semivariance. We do not attempt to parameterise
the semivariogram, as often done in interpolation methods.
This would include additional uncertainties arising from both
the model selection and the parameter estimation.

In addition to using the spatial pattern for assessing the
performance of the RCMs, it is also used to assess the sim-
ilarities of the RCMs in the ensemble. This is of relevance
when using the ensemble of RCMs to quantify the uncer-
tainty in climate change projections. Most uncertainty quan-
tification techniques assume that the models are independent.
However, this assumption may not be valid as some models
may share part of code, parameterizations and/or are driven
by the same GCMs. The validity of this assumption is ad-
dressed in detail by Tebaldi and Knutti (2007), Knutti et
al. (2010), and Pennell and Reichler (2011). In a recent study
by Sunyer et al. (2013) the interdependency of the ENSEM-
BLES RCMs over Denmark is investigated using E-OBS as
the observational data set. The impact of the observational
data set chosen is investigated in this study.

The methodology followed here is the same as in Sunyer
et al. (2013). The first step is the estimation of the metric to
investigate the interdependency of RCMs. The metric used is
a measure of the model error. It is estimated by removing the
ensemble average error from the individual model error. The
ensemble average error represents the common biases. It is
calculated separately for each grid point as the average of the
model error of all the RCMs. For each index, the metric is
estimated separately for all the grid points for each RCM in
the ensemble.

The similarity of the RCMs can then be assessed using
a hierarchical cluster analysis (Wilks, 2006). This analysis
groups the RCMs into clusters depending on their similar-
ity. The similarity of the RCMs is expressed by means of the
correlation matrix,R, the elements of which are the correla-
tions between the metric estimated for all the RCMs. Den-
drograms are used to illustrate the results of the hierarchical
cluster analysis. The dendrograms show the dissimilarity of
the RCMs, estimated as the Pearson’s distance, i.e. 1− R.

4 Results and discussions

4.1 Comparison of observational data sets

4.1.1 Point and grid point

Figure 2 shows maps of mean precipitation for the two grid-
ded data sets. The overall pattern seems to be the same but
it is clear that there are some distinct differences. The finer
scale CGD data set shows a greater variation with higher pre-
cipitation in the western part of Denmark and with a clearer
marking of the coastal grid points. E-OBS is consistently
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Fig. 2. The mean precipitation (Mean) of Denmark for CGD (left)
and E-OBS (right).

drier than CGD in the eastern part and for most of the western
part, except for the most southern grid points. E-OBS is also
drier than CGD in the middle-eastern grid points of Jutland
and the most northern grid points.

The box plots in Fig. 3 summarize the indices estimated
for each point for all the data sets. The boxes represent the
25th, 50th and 75th percentiles, the whiskers represent the
5th and 95th percentile, and the circles show the outliers.
The box plot for the mean, Fig. 3a, shows a good agree-
ment among the data sets. The median ranges between 600
and 700 mm yr−1 (approximately 1.6 and 2 mm day−1 as pre-
sented by the mean), the total span is of a few hundred
mm yr−1 (approximately 1 to 1.2 mm day−1). This is the ex-
pected range of mean precipitation for Denmark as deter-
mined by historical investigations (Frich et al., 1997; Madsen
et al., 2009). The SVK data set has the lowest median of all
the data sets. This is expected to be an artefact mainly caused
by the relatively high threshold used in the processing (Jør-
gensen et al., 1998). The box plot of the other long temporal
scale index, PDD, shows larger differences between the data
sets (see Fig. 3b). In this case the SVK data set also stands
out with a considerably larger PDD than the other data sets.
The differences are likely to be due to the same phenomena
as in the mean. The high threshold for the SVK data should
result in absolutely no drizzling and an increased PDD.

As in the case of the mean and PDD, for the SDII and
Prec75p only the SVK data set stands notably out. It has a
considerably higher median value but comparable variation.
Again, this is most likely linked to the high threshold that
leads to fewer wet days. In the case of the higher percentiles,
there is a tendency to larger differences between the data
sets. Point measurement data sets show higher values than
the gridded data sets. Additionally, the gridded data set with
a higher spatial resolution (CGD) shows higher values than
the gridded data set with a lower spatial resolution (E-OBS).
This is in agreement with the general understanding that the
gridding of point measurements tends to smooth out extreme
precipitation (Chen and Knutson, 2008; Hofstra et al., 2010).
The difference between the ECA&D data set and the CGD
data set seems to be in the expected range of a 15–20 % re-
duction in intensity from point scale to a 100 km2 grid that
could be explained by the simple ARF (Wilson, 1990). The
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Fig. 3. Box plots summarising the mean precipitation (Mean)(a),
the proportion of dry days (PDD)(b), the mean precipitation
amount per wet day (SDII)(c), and different percentiles of extreme
precipitation (Prec75p to Prec99p)(d–h) for the four observational
data sets.

E-OBS data set on the other hand is lower than expected by
the ARF method (approximately 33 % reduction in intensity
from point scale to 625 km2 grid size) and the difference in-
creases for higher percentiles.

The difference between CGD and E-OBS increases as a
function of the percentile. This difference is believed to be
partly due to the different spatial resolution and partly due
to the amount of stations used in the gridding. CGD is cre-
ated from roughly one observational station per grid cell,
whereas E-OBS only has approximately one station available
per three grid cells. The same difference is observed between
the two point measurement observational data sets (SVK and
ECA&D). Again it is believed to be a product of the dif-
ference in the number and location of stations in the differ-
ent data sets. The differences can hence be explained mainly
by the quality of the underlying observational data, implying
that having more gauges increase the chance of monitoring
extremes.

This initial analysis of the observational data sets shows,
as expected, differences between point observations and grid-
ded data. Additionally, it also shows that the quantity of data
used to create a data set seems to have an important influence
on the extreme properties and thereby the quality of the data
set in representing the region of interest.
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4.1.2 Spatial pattern

The spatial pattern of precipitation, which is of high impor-
tance in hydrological applications, is assessed by calculat-
ing empirical semivariograms for all the data sets. Figure 4
shows the semivariograms for the mean, SDII and the 95th
and 99th percentiles. The maximum distance considered in
the semivariograms is 250 km. This is due to the fact that
the number of grid points available for higher distances are
too few to obtain a reliable estimate of the semivariance. The
semivariograms show that for the SVK data there is basically
no spatial structure for all considered indices. Further, Fig. 4
shows that E-OBS has a marked increase in the semivari-
ance with distance and no apparent range when compared
with CGD. The difference in the spatial pattern of E-OBS
and CGD could be explained by the difference in the number
of stations used in these data sets. In E-OBS, precipitation
measured at stations in the neighbouring countries is proba-
bly assimilated into the grids for Denmark. Consequently, a
higher semivariance would be obtained for E-OBS at large
distances. The semivariograms of E-OBS and CGD do not
level off at the same distance. This phenomenon is not ex-
plicitly investigated further in the present study. It must also
be noted that the two gridded data sets use different inter-
polation methods; if the data basis is sufficient, this should
only have minor influence on the result. Furthermore, due to
Denmark’s flat topography daily precipitation values are ex-
pected to vary slowly in space, and the effect of the interpola-
tion method is expected to be small compared with the effect
of the number of stations. The large number of stations can
also explain the smoother semivariogram obtained for CGD.
The high variation in ECA&D is probably due to the limited
number of stations in this data set and along with the other
point data set, SVK, a nugget effect due to the pooling of data
is probably also influencing the semivariograms.

4.2 Climate model performance and ranking

The previous section has focused on comparing the absolute
value and the spatial pattern of the indices of different ob-
servational data sets. These data sets could all potentially
be used for defining the baseline climate in climate change
impact studies in Denmark, and in fact SVK, ECA&D and
E-OBS have been used for this purpose (e.g. Boberg et al.,
2009, 2010; Lenderink, 2010; Sunyer et al., 2012; Gregersen
et al., 2013). This section assesses the performance of the cli-
mate models using the four different observational data sets
analysed in the previous section. The bias in the point indices
and the RMSE in the empirical semivariograms are the met-
rics used to rank the climate models. The indices estimated
using CGD have been re-interpolated into the same grid sys-
tem as E-OBS and the RCMs. This is done to be able to
compare the results obtained using CGD and E-OBS with-
out the effect of the spatial resolution. The re-interpolation
method used is the same as the one used for the RM5.1 and
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Fig. 4. Semivariograms of the mean precipitation (mean)(a), the
mean precipitation amount per wet day (SDII)(b), and the differ-
ent percentiles of extreme precipitation (Prec95p and Prec99p)(c,
d) for all observational data sets showing the difference in spatial
patterns.

RegCM3 models. The re-interpolated CGD data is referred
to as CGD-25.

4.2.1 Point and grid point

Figure 5 shows the value of the median of the bias of each of
the 15 RCMs in the ensemble calculated using each of the ob-
servational data sets. For all the indices the bias estimated is
highly dependent on the observational data used. In the case
of the mean precipitation, the bias estimated using CGD-25
is lower than the bias estimated using the other observational
data sets. On the other hand, the highest biases are obtained
when using the SVK data as the observational data set. This
is in agreement with the lower values of the mean precipita-
tion found for this observational data set in Fig. 3. The biases
estimated using ECA&D and E-OBS are rather similar to the
bias estimated using CGD-25, the difference is smaller than
0.5 mm day−1. However, E-OBS leads to slightly higher bias
for most RCMs. Nonetheless, for most of the climate models
the observational data sets agree on the positive sign of the
bias, i.e. the RCMs overestimate the mean precipitation.

For the other indices (SDII, Prec95p and Prec99p) the ob-
servational data sets disagree on both the sign and the magni-
tude of the bias. The largest difference is found between the
negative bias shown by SVK and the positive bias estimated
using E-OBS. The biases estimated using both CGD-25 and
ECA&D lie in between the other two observational data sets.
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In general, the SVK, CGD-25, and ECA&D point to an un-
derestimation of SDII, Prec95p, and Prec99p by the RCMs,
while E-OBS points to an overestimation. For these three in-
dices, the bias estimated using the gridded observational data
sets is, in most cases, higher than the bias estimate using the
point observational data sets. This is due to the lower value
of these indices found for the gridded observational data sets
(see Fig. 3). As expected, and in agreement with the results
from the previous section, the difference between the biases
is higher for higher percentiles.

Table 2 shows the ranking of the 15 RCMs according to
the metric based on the bias and for four of the indices
(mean, SDII, Prec95p and Prec99p). In this table the num-
ber assigned to each RCM corresponds to the enumeration
used in Table 1. The differences observed in Fig. 5 stand
out in the ranking of the models. In the case of the mean,
the same models are ranked in the highest positions for all
the observational data sets. The five models with the high-
est ranking for the SVK data set (models highlighted in ro-
man in Table 2) are among the seven best models for CGD-
25, ECA&D and E-OBS. A similar pattern is observed for
the models with the lowest ranking (models highlighted in
bold). However, for the other three indices (SDII, Prec95p
and Prec99p) the rankings are more dissimilar. For example,
for Prec95p, model 2 has rank 1 in the SVK data but rank 5,
7 and 15 for the CGD-25, ECA&D and E-OBS, respectively.
In general, the SVK, CGD-25 and ECA&D data sets lead to
more similar model rankings, whereas E-OBS tends to have
a reverse ranking. This can be explained by the difference
in the sign of the bias when using E-OBS and when using
SVK, ECA&D, and CGD-25. In general, the values of SDII,
Prec95p and Prec99p of the RCMs lay between the values
estimated using E-OBS and SVK, ECA&D, and CGD. This
implies that when the absolute value of the bias of an RCM
is small according to E-OBS it is found large according to
SVK, ECA&D, and CGD.

4.2.2 Spatial pattern

The previous results compare the RCMs with the observa-
tional data sets based on the value of the indices at point
measurements and grid points. This section focuses on the
ability of the RCMs to reproduce the spatial pattern in the
observational data sets.

Figure 6 shows the Taylor diagrams for the mean, SDII,
Prec95p and Prec99p indices. For all the indices and in most
cases, the standard deviation of the RCMs is lower than the
standard deviation of the observational data sets. The larger
differences between the spatial variability of the RCMs in the
ensemble are found when using ECA-D as the observational
data set. Similarly, the larger difference between RCMs and
the observational data set are found for the SVK data. This
observational data set leads to higher spatial standard devi-
ation than the other observational data sets. As previously
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Fig. 5. Bias of each of the RCMs in the ensemble estimated using
the four observational data sets. Model numbers are shown in Ta-
ble 1.

mentioned, this is probably due to the heterogeneity of this
data set.

The correlation of the RCMs with the different obser-
vational data sets is slightly higher when comparing the
RCMs with CGD-25. The RMSD estimated using CGD-25
is also slightly lower than the RMSD estimated using the
other observational data sets. Nonetheless, both the correla-
tion and RMSD of the RCMs are similar when using E-OBS
and CGD-25. The RCMs show the smallest correlation and
largest RMSD when compared with the SVK data set.

The Taylor diagrams show that performance of a specific
model depends on the observational data set used. For exam-
ple, the model represented with the filled square symbol has
one of the highest correlations and lowest RMSD for all the
indices for CGD-25 but not for the other observational data
sets.

Figure 7 shows the semivariograms comparing CGD-25,
E-OBS and the RCMs for the Mean, SDII, Prec95p and
Prec99p indices. The semivariograms of the point measure-
ments data sets are not included in this comparison. This is
due to the fact that the number of gauges at a specific dis-
tance differs considerably from the number of grid points in
the RCMs and in the observational gridded data sets. Fig-
ure 7 also shows the RCM with the smallest RMSE for each
of the observational data sets. Lags up to 250 km have been
considered to estimate the semivariograms and calculate the
RMSE.
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Table 2. Ranking of the RCMs depending on their bias for the observational data sets. Model numbers are shown in Table 1. The models
highlighted in roman, italic and bold refer to the models with rank 1 to 5, 6 to 10 and 11 to 15 for SVK, respectively.

Mean SDII Prec95p Prec99p

Ranking SVK CGD-25 ECA&D E-OBS SVK CGD-25 ECA&D E-OBS SVK CGD-25 ECA&D E-OBS SVK CGD-25 ECA&D E-OBS

1 11 1 11 11 2 9 9 14 2 9 1 11 9 10 9 5
2 10 10 10 1 15 5 4 8 1 15 9 14 10 1 1 8
3 1 9 12 10 1 1 5 11 15 1 3 8 2 2 2 6
4 9 11 8 9 9 4 1 13 9 5 15 7 1 15 10 7
5 12 3 9 3 5 15 15 7 4 2 5 13 15 5 4 4
6 3 12 14 12 4 10 2 6 5 4 4 12 4 3 15 11
7 8 8 1 8 3 3 3 3 3 3 2 6 5 9 3 14
8 14 14 7 14 10 2 12 12 10 10 10 10 3 4 5 12
9 7 4 13 4 12 12 10 10 13 13 12 3 13 12 7 15
10 5 7 3 7 6 6 11 4 12 6 11 4 12 6 6 3
11 13 13 4 13 13 13 6 9 6 12 14 5 6 13 8 13
12 4 5 6 5 11 7 14 5 7 7 6 9 7 7 12 2
13 15 15 5 15 7 11 13 1 8 8 13 15 14 8 13 1
14 6 6 15 6 14 8 7 15 11 11 7 1 11 11 11 9
15 2 2 2 2 8 14 8 2 14 14 8 2 8 14 14 10
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In the case of the mean, the model with the smallest
RMSE is the same for the two observational data sets (model
RACMO2 driven by ECHAM5, model 5 in Table 1). How-
ever, for SDII, Prec95p and Prec99p the model with the
smallest RMSE depends on the observational data set used.
In agreement with spatial standard deviation shown in the
Taylor diagrams, in general, the RCMs show a smaller semi-
variance than the observational data sets for all the indices.

The difference in the spatial pattern of the gridded obser-
vational data sets also has an effect on the interpretation of
the information available in the ensemble of RCMs. Figure 8
shows the ensemble average error and the dendrograms for
Prec95p estimated using E-OBS and CGD-25. They axis in
the dendrograms is the Pearson’s distance, which is a mea-

sure of dissimilarity of the RCMs. All the RCMs included in
the ensemble are shown in thex axis. The ensemble average
error represents the common biases in the ensemble, while
the dendrograms show the clustering of the RCMs.

In agreement with results shown in Fig. 5, the compari-
son of the ensemble average error shows a higher error of the
RCMs when the observational data set used is E-OBS. Addi-
tionally, the spatial pattern of the error also shows some dif-
ferences. The error estimated using E-OBS shows the largest
error in north and south-west of Jutland (Danish peninsula),
while the error estimated using CGD-25 shows the largest
error in the west part of Jutland. The differences in the en-
semble average error lead to differences in the spatial pattern
of the metric used to estimate the similarities of the RCMs,
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which in turn lead to differences in the correlation matrix,R.
This is reflected in the dendrograms. For example, in the den-
drogram using E-OBS, the RACMO2 model (model 5) forms
a cluster with the three HIRHAM models (models 1, 2, and
3), while in the dendrogram using CGD-25 this model forms
a cluster with the models from the Hadley Centre (models 10,
11, and 12). Nonetheless, there are also some common re-
sults in the dendrograms. The most relevant one being that
the same RCM driven by different GCMs (i.e. HIRHAM,
RCA and HadRM models) are more similar than different
RCMs driven by the same GCM.

Table 3 shows the ranking of the climate models accord-
ing to the RMSE of the semivariograms. As seen in Table 3,
the model with the highest ranking in mean precipitation is
the same for both observational data sets (model 5). For this
index the RCMs have virtually similar ranking for the two
observational data sets. The difference between the rankings
increases from SDII to Prec99p. It must be noted that the
ranking of the RCMs based on the semivariograms obtained
for CGD-25 and E-OBS is more similar than the ranking ob-
tained using the bias at the grid points for these two observa-
tional data sets.

It must also be noted that the ranking of the models us-
ing the same observational data set varies depending on the
index. This is observed both in Table 2 and Table 3. Simi-
larly, for the same observational data set the ranking of the
model also varies depending on the metric used. For exam-
ple in the case of E-OBS, the best model at representing the
spatial pattern (model 5) for Prec95p is ranked in eleventh
position regarding the bias. These results show that the per-
formance of the models depends on the index and metric of
interest. Therefore, it is not possible to generally classify the
models as good or bad models. This is in agreement with the

Fig. 8. Ensemble average error(a, b) and dendrograms(c, d) for
Prec95p estimated using CGD-25(a, c) and E-OBS(b, d). They

axis in the dendrograms shows the dissimilarity of the climate mod-
els. Model numbers are shown in Table 1.

results from previous studies, e.g. Lenderink (2010), Kjelll-
ström et al. (2010). The dependency of the ranking on the
index and the metric highlights the importance of using an
ensemble of RCMs to obtain robust climate projections for
future climate conditions.

5 Conclusions

This study investigates the influence of the choice of obser-
vational data set in the assessment of climate model per-
formance. Four different observational data sets have been
analysed. These represent the common type of observations
used in climate change impact studies (point measurement
and gridded data). A set of indices (ranging from the mean to
high percentiles) and two different metrics (based on bias and
root mean square error of spatial patterns) are used to analyse
and compare daily precipitation data from observational data
sets and from an ensemble of RCMs.

Indices calculated for each of the four observational data
sets show similar results for the mean precipitation but dif-
fer substantially when considering more extreme properties
such as high percentiles of precipitation. As expected, the
two data sets of point measurements (SVK and ECA&D)
show higher values for extreme precipitation. The difference
between the point measurement data sets is related to a dif-
ferent number of stations, the spatial distribution of the sta-
tions and the precipitation threshold used in the data prod-
ucts. The gridded data set with a higher spatial resolution,
CGD, also shows higher extremes than the other gridded data
set, E-OBS. The difference between the two gridded data sets
is higher than what can be explained due to the change in
spatial resolution as explained by the areal reduction factor
approach. The results from this study confirm the findings
from previous studies regarding the E-OBS data set, i.e. that
it over-smoothes precipitation intensities at the grid cell level,
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Table 3.Ranking of the RCMs depending on the RMSE of the semivariograms for the observational data sets. Model numbers are shown in
Table 1. The models highlighted in roman, italic and bold correspond to the models with rank 1 to 5, 6 to 10 and 11 to 15 for SVK in Table
2, respectively.

Mean SDII Prec95p Prec99p

Ranking CGD-25 E-OBS CGD-25 E-OBS CGD-25 E-OBS CGD-25 E-OBS

1 5 5 5 4 12 5 1 5
2 1 1 2 5 3 2 2 10
3 12 2 11 2 1 6 3 12
4 2 12 12 6 11 4 11 1
5 11 4 15 7 15 3 7 2
6 3 11 6 12 10 12 9 7
7 4 3 7 15 14 15 12 11
8 15 15 9 11 9 14 13 3
9 7 7 1 3 2 11 15 15
10 10 10 3 9 5 9 14 9
11 6 6 14 1 6 10 6 14
12 9 9 10 14 7 1 5 13
13 14 13 13 10 8 7 8 6
14 13 14 8 13 13 8 10 8
15 8 8 4 8 4 13 4 4

especially extreme precipitation, resulting in less intense ex-
tremes in comparison to the other observational data sets.
The different data sets also show different spatial patterns.
Even though it over-smoothes the precipitation intensities,
E-OBS shows a lower correlation of the grid points at large
distances than the CGD data.

The differences identified between the observational data
sets are important when assessing climate model perfor-
mance. This is clearly shown in the analysis of the bias,
where the sign of the bias for high percentiles is different
when comparing the RCMs to E-OBS or to SVK, CGD-25
and ECA-D. Furthermore, the ranking of the climate models
is almost opposite when considering E-OBS vs. SVK, CGD-
25 and ECA-D data sets. In the case of the mean precipita-
tion, the ranking is less dependent on the observational data
set considered, probably because it is an index that is robust
to spatial and temporal averaging.

Similar conclusions can be drawn from the analysis of the
spatial pattern. The ranking of the climate models depends
both on the observational data set used and on the index.
Higher differences between the rankings are observed for ex-
treme precipitation. The differences in the spatial pattern of
the gridded observational data sets also affect the conclusions
regarding the similarity of the RCM biases. Additionally, as
other studies have also stressed, when considering only one
of the observational data sets, the ranking of the climate mod-
els depends on the index and metric used to rank the models.

The results of this study illustrate and highlight the need
to be aware of the different characteristics of observational
data sets, as this has a high influence on the performance es-
timated for each of the RCMs. RCMs should be compared to
quality-checked observational data that represents the same

precipitation characteristics. In this study the data set that
better fits these requirements is the CGD data re-interpolated
to the same grid resolution as the RCMs, i.e. CGD-25. Fur-
ther work should focus on addressing the possible errors and
uncertainty (e.g. measurement and interpolation uncertainty)
in the observations, especially if the interest of the study is
mainly in extreme precipitation.
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