Articles | Volume 15, issue 1
https://doi.org/10.5194/hess-15-91-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-15-91-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Evaluation of global continental hydrology as simulated by the Land-surface Processes and eXchanges Dynamic Global Vegetation Model
S. J. Murray
QUEST, School of Earth Sciences, Wills Memorial Building, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK
P. N. Foster
QUEST, School of Earth Sciences, Wills Memorial Building, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK
I. C. Prentice
QUEST, School of Earth Sciences, Wills Memorial Building, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK
Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
Grantham Institute of Climate Change, and Division of Biology, Imperial College, Silwood Park, Ascot, SL5 7PY, UK
Related subject area
Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Merging modelled and reported flood impacts in Europe in a combined flood event catalogue for 1950–2020
Global-scale evaluation of precipitation datasets for hydrological modelling
Influence of irrigation on root zone storage capacity estimation
River flow in the near future: a global perspective in the context of a high-emission climate change scenario
A high-resolution perspective of extreme rainfall and river flow under extreme climate change in Southeast Asia
Unveiling hydrological dynamics in data-scarce regions: experiences from the Ethiopian Rift Valley Lakes Basin
Changes in mean evapotranspiration dominate groundwater recharge in semi-arid regions
Technical note: Comparing three different methods for allocating river points to coarse-resolution hydrological modelling grid cells
Representing farmer irrigated crop area adaptation in a large-scale hydrological model
Combined impacts of climate and land-use change on future water resources in Africa
Deep learning for quality control of surface physiographic fields using satellite Earth observations
Global dryland aridity changes indicated by atmospheric, hydrological, and vegetation observations at meteorological stations
Root zone soil moisture in over 25 % of global land permanently beyond pre-industrial variability as early as 2050 without climate policy
Assessment of pluri-annual and decadal changes in terrestrial water storage predicted by global hydrological models in comparison with the GRACE satellite gravity mission
Improving the quantification of climate change hazards by hydrological models: a simple ensemble approach for considering the uncertain effect of vegetation response to climate change on potential evapotranspiration
Towards reducing the high cost of parameter sensitivity analysis in hydrologic modeling: a regional parameter sensitivity analysis approach
Point-scale multi-objective calibration of the Community Land Model (version 5.0) using in situ observations of water and energy fluxes and variables
Methodology for constructing a flood-hazard map for a future climate
Diagnosing modeling errors in global terrestrial water storage interannual variability
Hyper-resolution PCR-GLOBWB: opportunities and challenges from refining model spatial resolution to 1 km over the European continent
Poor correlation between large-scale environmental flow violations and freshwater biodiversity: implications for water resource management and the freshwater planetary boundary
Accuracy of five ground heat flux empirical simulation methods in the surface-energy-balance-based remote-sensing evapotranspiration models
Coupling a global glacier model to a global hydrological model prevents underestimation of glacier runoff
Revisiting large-scale interception patterns constrained by a synthesis of global experimental data
Investigating coastal backwater effects and flooding in the coastal zone using a global river transport model on an unstructured mesh
Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts over the western United States
Quantifying overlapping and differing information of global precipitation for GCM forecasts and El Niño–Southern Oscillation
Globally widespread and increasing violations of environmental flow envelopes
Inundation prediction in tropical wetlands from JULES-CaMa-Flood global land surface simulations
Soil moisture estimation in South Asia via assimilation of SMAP retrievals
Toward hyper-resolution global hydrological models including human activities: application to Kyushu island, Japan
Towards hybrid modeling of the global hydrological cycle
The importance of vegetation in understanding terrestrial water storage variations
Large-scale sensitivities of groundwater and surface water to groundwater withdrawal
A hydrography upscaling method for scale-invariant parametrization of distributed hydrological models
A novel method to identify sub-seasonal clustering episodes of extreme precipitation events and their contributions to large accumulation periods
Bright and blind spots of water research in Latin America and the Caribbean
Land surface modeling over the Dry Chaco: the impact of model structures, and soil, vegetation and land cover parameters
Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management
Robust historical evapotranspiration trends across climate regimes
A note on leveraging synergy in multiple meteorological data sets with deep learning for rainfall–runoff modeling
Global scenarios of irrigation water abstractions for bioenergy production: a systematic review
Coordination and control – limits in standard representations of multi-reservoir operations in hydrological modeling
Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble study
Ubiquitous increases in flood magnitude in the Columbia River basin under climate change
Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors
The role of household adaptation measures in reducing vulnerability to flooding: a coupled agent-based and flood modelling approach
Assessing global water mass transfers from continents to oceans over the period 1948–2016
Weak sensitivity of the terrestrial water budget to global soil texture maps in the ORCHIDEE land surface model
The influence of assimilating leaf area index in a land surface model on global water fluxes and storages
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024, https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary
Short summary
Long-term trends in flood losses are regulated by multiple factors, including climate variation, population and economic growth, land-use transitions, reservoir construction, and flood risk reduction measures. Here, we reconstruct the factual circumstances in which almost 15 000 potential riverine, coastal and compound floods in Europe occurred between 1950 and 2020. About 10 % of those events are reported to have caused significant socioeconomic impacts.
Solomon H. Gebrechorkos, Julian Leyland, Simon J. Dadson, Sagy Cohen, Louise Slater, Michel Wortmann, Philip J. Ashworth, Georgina L. Bennett, Richard Boothroyd, Hannah Cloke, Pauline Delorme, Helen Griffith, Richard Hardy, Laurence Hawker, Stuart McLelland, Jeffrey Neal, Andrew Nicholas, Andrew J. Tatem, Ellie Vahidi, Yinxue Liu, Justin Sheffield, Daniel R. Parsons, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 28, 3099–3118, https://doi.org/10.5194/hess-28-3099-2024, https://doi.org/10.5194/hess-28-3099-2024, 2024
Short summary
Short summary
This study evaluated six high-resolution global precipitation datasets for hydrological modelling. MSWEP and ERA5 showed better performance, but spatial variability was high. The findings highlight the importance of careful dataset selection for river discharge modelling due to the lack of a universally superior dataset. Further improvements in global precipitation data products are needed.
Fransje van Oorschot, Ruud J. van der Ent, Andrea Alessandri, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 2313–2328, https://doi.org/10.5194/hess-28-2313-2024, https://doi.org/10.5194/hess-28-2313-2024, 2024
Short summary
Short summary
Vegetation plays a crucial role in regulating the water cycle by transporting water from the subsurface to the atmosphere via roots; this transport depends on the extent of the root system. In this study, we quantified the effect of irrigation on roots at a global scale. Our results emphasize the importance of accounting for irrigation in estimating the vegetation root extent, which is essential to adequately represent the water cycle in hydrological and climate models.
Omar V. Müller, Patrick C. McGuire, Pier Luigi Vidale, and Ed Hawkins
Hydrol. Earth Syst. Sci., 28, 2179–2201, https://doi.org/10.5194/hess-28-2179-2024, https://doi.org/10.5194/hess-28-2179-2024, 2024
Short summary
Short summary
This work evaluates how rivers are projected to change in the near future compared to the recent past in the context of a warming world. We show that important rivers of the world will notably change their flows, mainly during peaks, exceeding the variations that rivers used to exhibit. Such large changes may produce more frequent floods, alter hydropower generation, and potentially affect the ocean's circulation.
Mugni Hadi Hariadi, Gerard van der Schrier, Gert-Jan Steeneveld, Samuel J. Sutanto, Edwin Sutanudjaja, Dian Nur Ratri, Ardhasena Sopaheluwakan, and Albert Klein Tank
Hydrol. Earth Syst. Sci., 28, 1935–1956, https://doi.org/10.5194/hess-28-1935-2024, https://doi.org/10.5194/hess-28-1935-2024, 2024
Short summary
Short summary
We utilize the high-resolution CMIP6 for extreme rainfall and streamflow projection over Southeast Asia. This region will experience an increase in both dry and wet extremes in the near future. We found a more extreme low flow and high flow, along with an increasing probability of low-flow and high-flow events. We reveal that the changes in low-flow events and their probabilities are not only influenced by extremely dry climates but also by the catchment characteristics.
Ayenew D. Ayalew, Paul D. Wagner, Dejene Sahlu, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 28, 1853–1872, https://doi.org/10.5194/hess-28-1853-2024, https://doi.org/10.5194/hess-28-1853-2024, 2024
Short summary
Short summary
The study presents a pioneering comprehensive integrated approach to unravel hydrological complexities in data-scarce regions. By integrating diverse data sources and advanced analytics, we offer a holistic understanding of water systems, unveiling hidden patterns and driving factors. This innovative method holds immense promise for informed decision-making and sustainable water resource management, addressing a critical need in hydrological science.
Tuvia Turkeltaub and Golan Bel
EGUsphere, https://doi.org/10.5194/egusphere-2024-433, https://doi.org/10.5194/egusphere-2024-433, 2024
Short summary
Short summary
Future climate projections suggest climate change will impact groundwater recharge, with its exact effects uncertain due to incomplete understanding of rainfall, evapotranspiration, and recharge relations. Here, we studied the effects of changes in the average, spread, and frequency of extreme events in the rainfall and evapotranspiration on groundwater recharge. We found that increasing or decreasing the potential evaporation has the most dominant effect on groundwater recharge.
Juliette Godet, Eric Gaume, Pierre Javelle, Pierre Nicolle, and Olivier Payrastre
Hydrol. Earth Syst. Sci., 28, 1403–1413, https://doi.org/10.5194/hess-28-1403-2024, https://doi.org/10.5194/hess-28-1403-2024, 2024
Short summary
Short summary
This work was performed in order to precisely address a point that is often neglected by hydrologists: the allocation of points located on a river network to grid cells, which is often a mandatory step for hydrological modelling.
Jim Yoon, Nathalie Voisin, Christian Klassert, Travis Thurber, and Wenwei Xu
Hydrol. Earth Syst. Sci., 28, 899–916, https://doi.org/10.5194/hess-28-899-2024, https://doi.org/10.5194/hess-28-899-2024, 2024
Short summary
Short summary
Global and regional models used to evaluate water shortages typically neglect the possibility that irrigated crop areas may change in response to future hydrological conditions, such as the fallowing of crops in response to drought. Here, we enhance a model used for water shortage analysis with farmer agents that dynamically adapt their irrigated crop areas based on simulated hydrological conditions. Results indicate that such cropping adaptation can strongly alter simulated water shortages.
Celray James Chawanda, Albert Nkwasa, Wim Thiery, and Ann van Griensven
Hydrol. Earth Syst. Sci., 28, 117–138, https://doi.org/10.5194/hess-28-117-2024, https://doi.org/10.5194/hess-28-117-2024, 2024
Short summary
Short summary
Africa's water resources are being negatively impacted by climate change and land-use change. The SWAT+ hydrological model was used to simulate the hydrological cycle in Africa, and results show likely decreases in river flows in the Zambezi and Congo rivers and highest flows in the Niger River basins due to climate change. Land cover change had the biggest impact in the Congo River basin, emphasizing the importance of including land-use change in studies.
Tom Kimpson, Margarita Choulga, Matthew Chantry, Gianpaolo Balsamo, Souhail Boussetta, Peter Dueben, and Tim Palmer
Hydrol. Earth Syst. Sci., 27, 4661–4685, https://doi.org/10.5194/hess-27-4661-2023, https://doi.org/10.5194/hess-27-4661-2023, 2023
Short summary
Short summary
Lakes play an important role when we try to explain and predict the weather. More accurate and up-to-date description of lakes all around the world for numerical models is a continuous task. However, it is difficult to assess the impact of updated lake description within a weather prediction system. In this work, we develop a method to quickly and automatically define how, where, and when updated lake description affects weather prediction.
Haiyang Shi, Geping Luo, Olaf Hellwich, Xiufeng He, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 27, 4551–4562, https://doi.org/10.5194/hess-27-4551-2023, https://doi.org/10.5194/hess-27-4551-2023, 2023
Short summary
Short summary
Using evidence from meteorological stations, this study assessed the climatic, hydrological, and ecological aridity changes in global drylands and their associated mechanisms. A decoupling between atmospheric, hydrological, and vegetation aridity was found. This highlights the added value of using station-scale data to assess dryland change as a complement to results based on coarse-resolution reanalysis data and land surface models.
En Ning Lai, Lan Wang-Erlandsson, Vili Virkki, Miina Porkka, and Ruud J. van der Ent
Hydrol. Earth Syst. Sci., 27, 3999–4018, https://doi.org/10.5194/hess-27-3999-2023, https://doi.org/10.5194/hess-27-3999-2023, 2023
Short summary
Short summary
This research scrutinized predicted changes in root zone soil moisture dynamics across different climate scenarios and different climate regions globally between 2021 and 2100. The Mediterranean and most of South America stood out as regions that will likely experience permanently drier conditions, with greater severity observed in the no-climate-policy scenarios. These findings underscore the impact that possible future climates can have on green water resources.
Julia Pfeffer, Anny Cazenave, Alejandro Blazquez, Bertrand Decharme, Simon Munier, and Anne Barnoud
Hydrol. Earth Syst. Sci., 27, 3743–3768, https://doi.org/10.5194/hess-27-3743-2023, https://doi.org/10.5194/hess-27-3743-2023, 2023
Short summary
Short summary
The GRACE (Gravity Recovery And Climate Experiment) satellite mission enabled the quantification of water mass redistributions from 2002 to 2017. The analysis of GRACE satellite data shows here that slow changes in terrestrial water storage occurring over a few years to a decade are severely underestimated by global hydrological models. Several sources of errors may explain such biases, likely including the inaccurate representation of groundwater storage changes.
Thedini Asali Peiris and Petra Döll
Hydrol. Earth Syst. Sci., 27, 3663–3686, https://doi.org/10.5194/hess-27-3663-2023, https://doi.org/10.5194/hess-27-3663-2023, 2023
Short summary
Short summary
Hydrological models often overlook vegetation's response to CO2 and climate, impairing their ability to forecast impacts on evapotranspiration and water resources. To address this, we suggest involving two model variants: (1) the standard method and (2) a modified approach (proposed here) based on the Priestley–Taylor equation (PT-MA). While not universally applicable, a dual approach helps consider uncertainties related to vegetation responses to climate change, enhancing model representation.
Samah Larabi, Juliane Mai, Markus Schnorbus, Bryan A. Tolson, and Francis Zwiers
Hydrol. Earth Syst. Sci., 27, 3241–3263, https://doi.org/10.5194/hess-27-3241-2023, https://doi.org/10.5194/hess-27-3241-2023, 2023
Short summary
Short summary
The computational cost of sensitivity analysis (SA) becomes prohibitive for large hydrologic modeling domains. Here, using a large-scale Variable Infiltration Capacity (VIC) deployment, we show that watershed classification helps identify the spatial pattern of parameter sensitivity within the domain at a reduced cost. Findings reveal the opportunity to leverage climate and land cover attributes to reduce the cost of SA and facilitate more rapid deployment of large-scale land surface models.
Tanja Denager, Torben O. Sonnenborg, Majken C. Looms, Heye Bogena, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 27, 2827–2845, https://doi.org/10.5194/hess-27-2827-2023, https://doi.org/10.5194/hess-27-2827-2023, 2023
Short summary
Short summary
This study contributes to improvements in the model characterization of water and energy fluxes. The results show that multi-objective autocalibration in combination with mathematical regularization is a powerful tool to improve land surface models. Using the direct measurement of turbulent fluxes as the target variable, parameter optimization matches simulations and observations of latent heat, whereas sensible heat is clearly biased.
Yuki Kimura, Yukiko Hirabayashi, Yuki Kita, Xudong Zhou, and Dai Yamazaki
Hydrol. Earth Syst. Sci., 27, 1627–1644, https://doi.org/10.5194/hess-27-1627-2023, https://doi.org/10.5194/hess-27-1627-2023, 2023
Short summary
Short summary
Since both the frequency and magnitude of flood will increase by climate change, information on spatial distributions of potential inundation depths (i.e., flood-hazard map) is required. We developed a method for constructing realistic future flood-hazard maps which addresses issues due to biases in climate models. A larger population is estimated to face risk in the future flood-hazard map, suggesting that only focusing on flood-frequency change could cause underestimation of future risk.
Hoontaek Lee, Martin Jung, Nuno Carvalhais, Tina Trautmann, Basil Kraft, Markus Reichstein, Matthias Forkel, and Sujan Koirala
Hydrol. Earth Syst. Sci., 27, 1531–1563, https://doi.org/10.5194/hess-27-1531-2023, https://doi.org/10.5194/hess-27-1531-2023, 2023
Short summary
Short summary
We spatially attribute the variance in global terrestrial water storage (TWS) interannual variability (IAV) and its modeling error with two data-driven hydrological models. We find error hotspot regions that show a disproportionately large significance in the global mismatch and the association of the error regions with a smaller-scale lateral convergence of water. Our findings imply that TWS IAV modeling can be efficiently improved by focusing on model representations for the error hotspots.
Jannis M. Hoch, Edwin H. Sutanudjaja, Niko Wanders, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, https://doi.org/10.5194/hess-27-1383-2023, 2023
Short summary
Short summary
To facilitate locally relevant simulations over large areas, global hydrological models (GHMs) have moved towards ever finer spatial resolutions. After a decade-long quest for hyper-resolution (i.e. equal to or smaller than 1 km), the presented work is a first application of a GHM at 1 km resolution over Europe. This not only shows that hyper-resolution can be achieved but also allows for a thorough evaluation of model results at unprecedented detail and the formulation of future research.
Chinchu Mohan, Tom Gleeson, James S. Famiglietti, Vili Virkki, Matti Kummu, Miina Porkka, Lan Wang-Erlandsson, Xander Huggins, Dieter Gerten, and Sonja C. Jähnig
Hydrol. Earth Syst. Sci., 26, 6247–6262, https://doi.org/10.5194/hess-26-6247-2022, https://doi.org/10.5194/hess-26-6247-2022, 2022
Short summary
Short summary
The relationship between environmental flow violations and freshwater biodiversity at a large scale is not well explored. This study intended to carry out an exploratory evaluation of this relationship at a large scale. While our results suggest that streamflow and EF may not be the only determinants of freshwater biodiversity at large scales, they do not preclude the existence of relationships at smaller scales or with more holistic EF methods or with other biodiversity data or metrics.
Zhaofei Liu
Hydrol. Earth Syst. Sci., 26, 6207–6226, https://doi.org/10.5194/hess-26-6207-2022, https://doi.org/10.5194/hess-26-6207-2022, 2022
Short summary
Short summary
Ground heat flux (G) accounts for a significant fraction of the surface energy balance (SEB), but there is insufficient research on these models compared with other flux. The accuracy of G simulation methods in the SEB-based remote sensing evapotranspiration models is evaluated. Results show that the accuracy of each method varied significantly at different sites and at half-hour intervals. Further improvement of G simulations is recommended for the remote sensing evapotranspiration modelers.
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022, https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Short summary
We test whether coupling a global glacier model (GloGEM) with a global hydrological model (PCR-GLOBWB 2) leads to a more realistic glacier representation and to improved basin runoff simulations across 25 large-scale basins. The coupling does lead to improved glacier representation, mainly by accounting for glacier flow and net glacier mass loss, and to improved basin runoff simulations, mostly in strongly glacier-influenced basins, which is where the coupling has the most impact.
Feng Zhong, Shanhu Jiang, Albert I. J. M. van Dijk, Liliang Ren, Jaap Schellekens, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 26, 5647–5667, https://doi.org/10.5194/hess-26-5647-2022, https://doi.org/10.5194/hess-26-5647-2022, 2022
Short summary
Short summary
A synthesis of rainfall interception data from past field campaigns is performed, including 166 forests and 17 agricultural plots distributed worldwide. These site data are used to constrain and validate an interception model that considers sub-grid heterogeneity and vegetation dynamics. A global, 40-year (1980–2019) interception dataset is generated at a daily temporal and 0.1° spatial resolution. This dataset will serve as a benchmark for future investigations of the global hydrological cycle.
Dongyu Feng, Zeli Tan, Darren Engwirda, Chang Liao, Donghui Xu, Gautam Bisht, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 5473–5491, https://doi.org/10.5194/hess-26-5473-2022, https://doi.org/10.5194/hess-26-5473-2022, 2022
Short summary
Short summary
Sea level rise, storm surge and river discharge can cause coastal backwater effects in downstream sections of rivers, creating critical flood risks. This study simulates the backwater effects using a large-scale river model on a coastal-refined computational mesh. By decomposing the backwater drivers, we revealed their relative importance and long-term variations. Our analysis highlights the increasing strength of backwater effects due to sea level rise and more frequent storm surge.
Kieran M. R. Hunt, Gwyneth R. Matthews, Florian Pappenberger, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 5449–5472, https://doi.org/10.5194/hess-26-5449-2022, https://doi.org/10.5194/hess-26-5449-2022, 2022
Short summary
Short summary
In this study, we use three models to forecast river streamflow operationally for 13 months (September 2020 to October 2021) at 10 gauges in the western US. The first model is a state-of-the-art physics-based streamflow model (GloFAS). The second applies a bias-correction technique to GloFAS. The third is a type of neural network (an LSTM). We find that all three are capable of producing skilful forecasts but that the LSTM performs the best, with skilful 5 d forecasts at nine stations.
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022, https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Short summary
This paper develops a novel set operations of coefficients of determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information for GCM forecasts and the Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts (Niño3.4 index) from the Niño3.4 index (GCM forecasts).
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022, https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Short summary
Direct and indirect human actions have altered streamflow across the world since pre-industrial times. Here, we apply a method of environmental flow envelopes (EFEs) that develops the existing global environmental flow assessments by methodological advances and better consideration of uncertainty. By assessing the violations of the EFE, we comprehensively quantify the frequency, severity, and trends of flow alteration during the past decades, illustrating anthropogenic effects on streamflow.
Toby R. Marthews, Simon J. Dadson, Douglas B. Clark, Eleanor M. Blyth, Garry D. Hayman, Dai Yamazaki, Olivia R. E. Becher, Alberto Martínez-de la Torre, Catherine Prigent, and Carlos Jiménez
Hydrol. Earth Syst. Sci., 26, 3151–3175, https://doi.org/10.5194/hess-26-3151-2022, https://doi.org/10.5194/hess-26-3151-2022, 2022
Short summary
Short summary
Reliable data on global inundated areas remain uncertain. By matching a leading global data product on inundation extents (GIEMS) against predictions from a global hydrodynamic model (CaMa-Flood), we found small but consistent and non-random biases in well-known tropical wetlands (Sudd, Pantanal, Amazon and Congo). These result from known limitations in the data and the models used, which shows us how to improve our ability to make critical predictions of inundation events in the future.
Jawairia A. Ahmad, Barton A. Forman, and Sujay V. Kumar
Hydrol. Earth Syst. Sci., 26, 2221–2243, https://doi.org/10.5194/hess-26-2221-2022, https://doi.org/10.5194/hess-26-2221-2022, 2022
Short summary
Short summary
Assimilation of remotely sensed data into a land surface model to improve the spatiotemporal estimation of soil moisture across South Asia exhibits potential. Satellite retrieval assimilation corrects biases that are generated due to an unmodeled hydrologic phenomenon, i.e., irrigation. The improvements in fine-scale, modeled soil moisture estimates by assimilating coarse-scale retrievals indicates the utility of the described methodology for data-scarce regions.
Naota Hanasaki, Hikari Matsuda, Masashi Fujiwara, Yukiko Hirabayashi, Shinta Seto, Shinjiro Kanae, and Taikan Oki
Hydrol. Earth Syst. Sci., 26, 1953–1975, https://doi.org/10.5194/hess-26-1953-2022, https://doi.org/10.5194/hess-26-1953-2022, 2022
Short summary
Short summary
Global hydrological models (GHMs) are usually applied with a spatial resolution of about 50 km, but this time we applied the H08 model, one of the most advanced GHMs, with a high resolution of 2 km to Kyushu island, Japan. Since the model was not accurate as it was, we incorporated local information and improved the model, which revealed detailed water stress in subregions that were not visible with the previous resolution.
Basil Kraft, Martin Jung, Marco Körner, Sujan Koirala, and Markus Reichstein
Hydrol. Earth Syst. Sci., 26, 1579–1614, https://doi.org/10.5194/hess-26-1579-2022, https://doi.org/10.5194/hess-26-1579-2022, 2022
Short summary
Short summary
We present a physics-aware machine learning model of the global hydrological cycle. As the model uses neural networks under the hood, the simulations of the water cycle are learned from data, and yet they are informed and constrained by physical knowledge. The simulated patterns lie within the range of existing hydrological models and are plausible. The hybrid modeling approach has the potential to tackle key environmental questions from a novel perspective.
Tina Trautmann, Sujan Koirala, Nuno Carvalhais, Andreas Güntner, and Martin Jung
Hydrol. Earth Syst. Sci., 26, 1089–1109, https://doi.org/10.5194/hess-26-1089-2022, https://doi.org/10.5194/hess-26-1089-2022, 2022
Short summary
Short summary
We assess the effect of how vegetation is defined in a global hydrological model on the composition of total water storage (TWS). We compare two experiments, one with globally uniform and one with vegetation parameters that vary in space and time. While both experiments are constrained against observational data, we found a drastic change in the partitioning of TWS, highlighting the important role of the interaction between groundwater–soil moisture–vegetation in understanding TWS variations.
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci., 25, 5859–5878, https://doi.org/10.5194/hess-25-5859-2021, https://doi.org/10.5194/hess-25-5859-2021, 2021
Short summary
Short summary
We introduce a simple analytical framework that allows us to estimate to what extent large-scale groundwater withdrawal affects groundwater levels and streamflow. It also calculates which part of the groundwater withdrawal comes out of groundwater storage and which part from a reduction in streamflow. Global depletion rates obtained with the framework are compared with estimates from satellites, from global- and continental-scale groundwater models, and from in situ datasets.
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.
Jérôme Kopp, Pauline Rivoire, S. Mubashshir Ali, Yannick Barton, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 5153–5174, https://doi.org/10.5194/hess-25-5153-2021, https://doi.org/10.5194/hess-25-5153-2021, 2021
Short summary
Short summary
Episodes of extreme rainfall events happening in close temporal succession can lead to floods with dramatic impacts. We developed a novel method to individually identify those episodes and deduced the regions where they occur frequently and where their impact is substantial. Those regions are the east and northeast of the Asian continent, central Canada and the south of California, Afghanistan, Pakistan, the southwest of the Iberian Peninsula, and north of Argentina and south of Bolivia.
Alyssa J. DeVincentis, Hervé Guillon, Romina Díaz Gómez, Noelle K. Patterson, Francine van den Brandeler, Arthur Koehl, J. Pablo Ortiz-Partida, Laura E. Garza-Díaz, Jennifer Gamez-Rodríguez, Erfan Goharian, and Samuel Sandoval Solis
Hydrol. Earth Syst. Sci., 25, 4631–4650, https://doi.org/10.5194/hess-25-4631-2021, https://doi.org/10.5194/hess-25-4631-2021, 2021
Short summary
Short summary
Latin America and the Caribbean face many water-related stresses which are expected to worsen with climate change. To assess the vulnerability, we reviewed over 20 000 multilingual research articles using machine learning and an understanding of the regional landscape. Results reveal that the region’s inherent vulnerability is compounded by research blind spots in niche topics (reservoirs and risk assessment) and subregions (Caribbean nations), as well as by its reliance on one country (Brazil).
Michiel Maertens, Gabriëlle J. M. De Lannoy, Sebastian Apers, Sujay V. Kumar, and Sarith P. P. Mahanama
Hydrol. Earth Syst. Sci., 25, 4099–4125, https://doi.org/10.5194/hess-25-4099-2021, https://doi.org/10.5194/hess-25-4099-2021, 2021
Short summary
Short summary
In this study, we simulated the water balance over the South American Dry Chaco and assessed the impact of land cover changes thereon using three different land surface models. Our simulations indicated that different models result in a different partitioning of the total water budget, but all showed an increase in soil moisture and percolation over the deforested areas. We also found that, relative to independent data, no specific land surface model is significantly better than another.
Louise J. Slater, Bailey Anderson, Marcus Buechel, Simon Dadson, Shasha Han, Shaun Harrigan, Timo Kelder, Katie Kowal, Thomas Lees, Tom Matthews, Conor Murphy, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 3897–3935, https://doi.org/10.5194/hess-25-3897-2021, https://doi.org/10.5194/hess-25-3897-2021, 2021
Short summary
Short summary
Weather and water extremes have devastating effects each year. One of the principal challenges for society is understanding how extremes are likely to evolve under the influence of changes in climate, land cover, and other human impacts. This paper provides a review of the methods and challenges associated with the detection, attribution, management, and projection of nonstationary weather and water extremes.
Sanaa Hobeichi, Gab Abramowitz, and Jason P. Evans
Hydrol. Earth Syst. Sci., 25, 3855–3874, https://doi.org/10.5194/hess-25-3855-2021, https://doi.org/10.5194/hess-25-3855-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) links the water, energy and carbon cycle on land. Reliable ET estimates are key to understand droughts and flooding. We develop a new ET dataset, DOLCE V3, by merging multiple global ET datasets, and we show that it matches ET observations better and hence is more reliable than its parent datasets. Next, we use DOLCE V3 to examine recent changes in ET and find that ET has increased over most of the land, decreased in some regions, and has not changed in some other regions
Frederik Kratzert, Daniel Klotz, Sepp Hochreiter, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 25, 2685–2703, https://doi.org/10.5194/hess-25-2685-2021, https://doi.org/10.5194/hess-25-2685-2021, 2021
Short summary
Short summary
We investigate how deep learning models use different meteorological data sets in the task of (regional) rainfall–runoff modeling. We show that performance can be significantly improved when using different data products as input and further show how the model learns to combine those meteorological input differently across time and space. The results are carefully benchmarked against classical approaches, showing the supremacy of the presented approach.
Fabian Stenzel, Dieter Gerten, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 25, 1711–1726, https://doi.org/10.5194/hess-25-1711-2021, https://doi.org/10.5194/hess-25-1711-2021, 2021
Short summary
Short summary
Ideas to mitigate climate change include the large-scale cultivation of fast-growing plants to capture atmospheric CO2 in biomass. To maximize the productivity of these plants, they will likely be irrigated. However, there is strong disagreement in the literature on how much irrigation water is needed globally, potentially inducing water stress. We provide a comprehensive overview of global irrigation demand studies for biomass production and discuss the diverse underlying study assumptions.
Charles Rougé, Patrick M. Reed, Danielle S. Grogan, Shan Zuidema, Alexander Prusevich, Stanley Glidden, Jonathan R. Lamontagne, and Richard B. Lammers
Hydrol. Earth Syst. Sci., 25, 1365–1388, https://doi.org/10.5194/hess-25-1365-2021, https://doi.org/10.5194/hess-25-1365-2021, 2021
Short summary
Short summary
Amid growing interest in using large-scale hydrological models for flood and drought monitoring and forecasting, it is important to evaluate common assumptions these models make. We investigated the representation of reservoirs as separate (non-coordinated) infrastructure. We found that not appropriately representing coordination and control processes can lead a hydrological model to simulate flood and drought events that would not occur given the coordinated emergency response in the basin.
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021, https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Short summary
Billions of people rely on groundwater as an accessible source of drinking water and for irrigation, especially in times of drought. Groundwater recharge is the primary process of regenerating groundwater resources. We find that groundwater recharge will increase in northern Europe by about 19 % and decrease by 10 % in the Amazon with 3 °C global warming. In the Mediterranean, a 2 °C warming has already lead to a reduction in recharge by 38 %. However, these model predictions are uncertain.
Laura E. Queen, Philip W. Mote, David E. Rupp, Oriana Chegwidden, and Bart Nijssen
Hydrol. Earth Syst. Sci., 25, 257–272, https://doi.org/10.5194/hess-25-257-2021, https://doi.org/10.5194/hess-25-257-2021, 2021
Short summary
Short summary
Using a large ensemble of simulated flows throughout the northwestern USA, we compare daily flood statistics in the past (1950–1999) and future (2050–1999) periods and find that nearly all locations will experience an increase in flood magnitudes. The flood season expands significantly in many currently snow-dominant rivers, moving from only spring to both winter and spring. These results, properly extended, may help inform flood risk management and negotiations of the Columbia River Treaty.
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Short summary
We evaluated the largest and most diverse set of surface soil moisture products ever evaluated in a single study. We found pronounced differences in performance among individual products and product groups. Our results provide guidance to choose the most suitable product for a particular application.
Yared Abayneh Abebe, Amineh Ghorbani, Igor Nikolic, Natasa Manojlovic, Angelika Gruhn, and Zoran Vojinovic
Hydrol. Earth Syst. Sci., 24, 5329–5354, https://doi.org/10.5194/hess-24-5329-2020, https://doi.org/10.5194/hess-24-5329-2020, 2020
Short summary
Short summary
The paper presents a coupled agent-based and flood model for Hamburg, Germany. It explores residents’ adaptation behaviour in relation to flood event scenarios, economic incentives and shared and individual strategies. We found that unique trajectories of adaptation behaviour emerge from different flood event series. Providing subsidies improves adaptation behaviour in the long run. The coupled modelling technique allows the role of individual measures in flood risk management to be examined.
Denise Cáceres, Ben Marzeion, Jan Hendrik Malles, Benjamin Daniel Gutknecht, Hannes Müller Schmied, and Petra Döll
Hydrol. Earth Syst. Sci., 24, 4831–4851, https://doi.org/10.5194/hess-24-4831-2020, https://doi.org/10.5194/hess-24-4831-2020, 2020
Short summary
Short summary
We analysed how and to which extent changes in water storage on continents had an effect on global ocean mass over the period 1948–2016. Continents lost water to oceans at an accelerated rate, inducing sea level rise. Shrinking glaciers explain 81 % of the long-term continental water mass loss, while declining groundwater levels, mainly due to sustained groundwater pumping for irrigation, is the second major driver. This long-term decline was partly offset by the impoundment of water in dams.
Salma Tafasca, Agnès Ducharne, and Christian Valentin
Hydrol. Earth Syst. Sci., 24, 3753–3774, https://doi.org/10.5194/hess-24-3753-2020, https://doi.org/10.5194/hess-24-3753-2020, 2020
Short summary
Short summary
In land surface models (LSMs), soil properties are inferred from soil texture. In this study, we use different input global soil texture maps from the literature to investigate the impact of soil texture on the simulated water budget in an LSM. The medium loamy textures give the highest evapotranspiration and lowest total runoff rates. However, the different soil texture maps result in similar water budgets because of their inherent similarities, especially when upscaled at the 0.5° resolution.
Xinxuan Zhang, Viviana Maggioni, Azbina Rahman, Paul Houser, Yuan Xue, Timothy Sauer, Sujay Kumar, and David Mocko
Hydrol. Earth Syst. Sci., 24, 3775–3788, https://doi.org/10.5194/hess-24-3775-2020, https://doi.org/10.5194/hess-24-3775-2020, 2020
Short summary
Short summary
This study assesses the extent to which a land surface model can be optimized via the assimilation of leaf area index (LAI) observations at the global scale. The model performance is evaluated by the model-estimated LAI and five water flux/storage variables. Results show the LAI assimilation reduces errors in the model-estimated LAI. The LAI assimilation also improves the five water variables under wet conditions, but some of the model-estimated variables tend to be worse under dry conditions.
Cited articles
Alcamo, J., Flörke, M., and Märker, M.: Future long-term changes in global water resources driven by socio-economic and climatic changes', Hydrolog. Sci. J., 52(2), 247–275, 2007.
Arnell, N. W.: The effect of climate change on hydrological regimes in Europe: a continental perspective, Global Environmental Change, 9, 5–23, 1999.
Arnell, N. W.: Climate change and global water resources: SRES emissions and socio-economic scenarios, Global Environmental Change, 14, 31–52, 2004.
Arneth, A., Sitch, S., Bondeau, A., Butterbach-Bahl, K., Foster, P., Gedney, N., de Noblet-Ducoudré, N., Prentice, I. C., Sanderson, M., Thonicke, K., Wania, R., and Zaehle, S.: From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere, Biogeosciences, 7, 121–149, https://doi.org/10.5194/bg-7-121-2010, 2010.
Beer, C., Lucht, W., Gerten, D., Thonicke, K., and Schmullius, C.: Effects of soil freezing and thawing on vegetation carbon density in Siberia: a modeling analysis with the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM), Global Biogeochem. Cyc., 21, GB1012, https://doi.org/10.1029/2006GB002760, 2007.
Betts, R. A., Boucher, O., Collins, M., Cox, P. M., Falloon, P. D., Gedney, N., Hemming, D. L., Huntingford, C., Jones, C. D., Sexton, D. M. H., and Webb, M. J.: Projected increase in continental runoff due to plant responses to increasing carbon dioxide, Nature, 448, 1037–1042, 2007.
Biemans, H., Hutjes, R. W. A., Kabat, P., Strengers, B. J., Gerten, D., and Rost, S.: Effects of precipitation uncertainty on discharge calculations for main river basins, J. Hydrometeorol., 10, 1011–1025, 2009.
Bond, W. J. and Midgley, G. F.: A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas, Glob. Change Biol., 6(8), 865–869, 2000.
Bondeau, A., Smith, P., Zähle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., and Smith, B.: Modelling the role of agriculture for the 20th century, Glob. Change Biol., 13, 679–706, 2007.
Bosch, J. M. and Hewlett, J. D.: A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration, J. Hydrol., 55, 3–23, 1982.
Chin, E. H., Skelton, J., and Guy, H. P.: The 1973 Mississippi River basin flood: compilation and analysis of meteorologic, streamflow and sediment data, US Geological Survey Professional Paper 937, 137 pp., 1975.
Cogley, J. G.: GGHYDRO – Global Hydrographic Data Release 2.0, Department of Geography, Trent University, 1991.
Costa, M. H. and Foley, J. A.: Trends in the hydrologic cycle of the Amazon basin, J. Geophys. Res., 104, 14189–14198, 1999.
Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A., and Young-Molling, C.: Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models, Glob. Change Biol., 7, 357–373, 2001.
Dai, A. and Trenberth, K. E.: Estimates of freshwater discharge from continents: latitudinal and seasonal variations, J. Hydrometeorol., 3, 660–687, 2002.
Dai, A., Trenberth, K. E. and Qian, T.: A global data set of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming, J. Hydrometeorol., 5, 1117–1130, 2004.
Dai, A., Qian, T., and Trenberth, K. E.: Changes in continental freshwater discharge from 1948 to 2004, J. Clim., 22, 2773–2792, 2009.
Dai, A. G, Trenberth, K. E., and Karl, T. R.: Global variations in droughts and wet spells: 1900–1995, Geophys. Res. Lett., 25, 3367–3370, 1998.
D'Almeida, C., Vörösmarty, C. J., Hurtt, G. C., Marengo, J. A., Dingman, S. L. and Keim, B. D.: The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution, Int. J. Climatol., 27, 633–647, 2007.
Déry, S. J. and Wood, E. F.: Decreasing river discharge in northern Canada, Geophys. Res. Lett., 32, L10401, https://doi.org/10.1029/2005GL022845, 2005.
Deutsch, M. and Ruggles, F.: Optical data processing and projected applications of the ERTS-1 imagery covering the 1973 Mississippi river valley floods, J. Am. Water Resour. As., 10(5), 1023–1039, 1974.
Dingman, S. L.: Physical Hydrology, Prentice-Hall, Englewood Cliffs, N. J., 2001.
Döll, P., Kaspar, F., and Lehner, B.: A global hydrological model for deriving water availability indicators: model tuning and validation, Journal of Hydrology, 270, 105–134, 2003.
Döll, P., Fiedler, K., and Zhang, J.: Global-scale analysis of river flow alterations due to water withdrawals and reservoirs, Hydrol. Earth Syst. Sci., 13, 2413–2432, https://doi.org/10.5194/hess-13-2413-2009, 2009.
Dracup, J. A., Lee, K. S., and Paulson, E. G. Jr.: On the definition of droughts, Water Resour. Res., 16(2), 297–302, 1980.
Elshamy, M. E. and Wheater, H. S.: Performance assessment of a GCM land surface scheme using a fine-scale calibrated hydrological model: an evaluation of MOSES for the Nile Basin, Hydrological Processes, 23, 1548–1564, 2009.
Etheridge, D., Steele, L., Langenfelds, R., Francey, R., Barnola, J.-M., and Morgan, V.: Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn, J. Geophys. Res., 101, D2, 4115–4128, 1996.
Fekete, B. M., Vörösmarty, C. J., and Grabs, W.: Global, Composite Runoff Fields Based on Observed River Discharge and Simulated Water Balances, GRDC Report 22, Global Runoff Data Center, Koblenz, Germany, 1999.
Fekete, B. M., Vörösmarty, C. J., and Grabs, W.: High resolution fields of global runoff combining observed river discharge and simulated water balances, Global Biogeochem. Cyc., 16(3), https://doi.org/10.1029/1999GB001254, 2002.
Fekete, B. M., Vörösmarty, C. J., Roads, J. O., and Willmott, C. J.: Uncertainties in precipitation and their impacts on runoff estimates, J. Clim., 17(2), 294–304, 2004.
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C, Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., and Snyder, P. K.: Global consequences of land use, Science, 309, 570–574, 2005.
Fye, F. K., Stahle, D. W., and Cook, E. R.: Paleoclimatic analogs to twentieth-century moisture regimes across the United States, B. Am. Meteorol. Soc., 84, 901–909, 2003.
Gedney, N., Cox, P. M., Betts, R. A., Boucher, O., Huntingford, C., and Scott, P. A.: Detection of a direct carbon dioxide effect in continental river runoff records, Nature, 439, 835–838, 2006.
Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.: Terrestrial vegetation and water balance – hydrological evaluation of a dynamic global vegetation model, J. Hydrol., 286, 249–270, 2004.
Gerten, D., Rost, S., von Bloh, W., and Lucht, W.: Causes of change in 20th century global river discharge, Geophys. Res. Lett., 35, L20405, https://doi.org/10.1029/2008GL035258, 2008.
Global Runoff Data Centre: Major river basins of the world, GRDC in the Bundesanstalt fuer Gewaesserkunde, 56068 Koblenz, Germany, http://grdc.bafg.de, 2007.
Gordon, W. S., Famiglietti, J. S., Fowler, N. L., Kittel, T. G. F., and Hibbard, K. A.: Validation of simulated runoff from six terrestrial ecosystem models: results from VEMAP, Ecol. Appl., 14, 527–545, 2004.
Higgins, S. I., Bond, W. J., February, E. C., Bronn, A., Euston-Brown, D. I. W., Enslin, B., Govender, N., Rademan, L., O'Regan, S., Potgieter, A. L. F., Scheiter, S., Sowry, R., Trollope, L., and Trollope W. S. W.: Effects of four decades of fire manipulation on woody vegetation structure in savanna, Ecology, 88, 1119–1125, 2007.
Hobbins, M. T., Ramírez, J. A., and Brown, T. C.: The complementary relationship in estimation of regional evapotranspiration: an enhanced advection-aridity model, Water Resour. Res., 37, 1389–1403, 2001.
Huntington, T. G.: Evidence for intensification of the global water cycle: review and synthesis, J. Hydrol., 319, 83–95, 2006.
Huntington, T. G.: CO2-induced suppression of transpiration cannot explain increasing runoff, Hydrological Processes, 22, 311–314, 2008.
Ibrahim, A. M.: The Nile: Description, hydrology, control and utilisation, Hydrobiologia, 110, 1, 1–13, 1984.
IPCC: Appendix II – SRES Tables', in: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A., Cambridge University Press, Cambridge, UK and New York, NY, USA, 881 pp., 2001.
Karl, T. R.: Sensitivity of the Palmer Drought Severity Index and Palmer's Z-index to their calibration coefficients including potential evapotranspiration, J. Clim. Appl. Meteorol., 25, 77–86, 1986.
Keyantash, J. and Dracup, J. A.: The quantification of drought: an evaluation of drought indices, Bu. Am. Meteorol. Soc., 83, 1167–1180, 2002.
Klein Goldewijk, K., van Drecht, G., and Bouwman, A.: Mapping contemporary global cropland and grassland distributions on a 5 × 5 min resolution', Journal of Land Use, Science, 2(3), 167–190, 2007.
Kucharik, C. J., Foley, J. A., Delire, C., Fisher, V. A., Coe, M. T., Lenters, J. D., Young-Molling, C., Ramankutty, N., Norman, J. M., and Gower, S. T.: Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure, Global Biogeochem. Cy., 14, 3, 795–825, 2000.
Kuhl, S. C. and Miller, J. R.: Seasonal river runoff calculated from a global atmospheric model, Water Resour. Res., 28, 2029–2039, 1992.
Labat, D., Goddéris, Y., Probst, J. L., and Guyot, J. L.: Evidence for global runoff increase related to climate warming, Adv. Water Resour., 27, 631–642, 2004.
Lehner, B., Döll, P., Alcamo, J., Henrichs, T., and Kaspar, F.: Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis, Clim. Change, 75, 273–299, 2006.
Levis, S., Foley, J. A., and Pollard, D.: Large-scale vegetation feedbacks on a doubled CO2 climate, J. Clim., 13, 1313–1325, 2000.
Lloyd-Hughes, B. and Saunders, M. A.: A drought climatology for Europe, Int. J. Climatol., 22, 1571–1592, 2002.
Milliman, J. D., Farnsworth, K. L., Jones, P. D., Xu, K. H., and Smith, L. C.: Climate and anthropogenic factors affecting river discharge to the global ocean, 1951–2000, Global Planet. Change, 62, 187–194, 2008.
Mitchell, T. D. and Jones, P. D.: An improved method of constructing a database of monthly climate observations and associated high-resolution grids, Int. J. Climatol., 25(6), 693–712, 2005.
Müller, C., Bondeau, A., Lotze-Campen, H., Cramer, W., and Lucht, W.: Comparative impact of climatic and nonclimatic factors on global terrestrial carbon and water cycles, Global Biogeochem. Cy., 20, GB4015, https://doi.org/10.1029/2006GB002742, 2006.
Murray, S. J.: Trends in 20th century global rainfall interception as simulated by a Dynamic Global Vegetation Model: Implications for global water resources, J. Hydrol., in review, 2011.
Mylne, M. F. and Rowntree, P. R.: Modelling the effects of albedo change associated with tropical deforestation, Clim. Change, 21, 1573–1480, 1992.
New, M., Hulme, M., and Jones, P.: Representing twentieth-century space-time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate, J. Climate, 13(13), 2217–2238, 2000.
Ngo-Duc, T., Laval, K., Ramillien, G., Polcher, J., and Cazenave, A.: Validation of the land water storage simulated by Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) with Gravity Recovery and Climate Experiment (GRACE) data, Water Resour. Res., 43, W04427, https://doi.org/10.1029/2006WR004941, 2007.
Ntale, H. K. and Gan, T. Y.: Drought indices and their application to East Africa, Int. J. Climatol., 23, 1335–1357, 2003.
O'Connor, J. E. and Costa, J. E.: The world's largest floods, past and present: their causes and magnitudes, US Geological Survey Circular 1254, 13 pp., 2004.
Oleson, K. W., Dai, Y., Bonan, G., Bosilovich, M., Dickinson, R., Dirmeyer, P., Hoffman, F., Houser, P., Levis, S., Niu, G.-Y., Thornton, P., Vertenstein, M., Yang, Z.-L., and Zeng, X.: Technical description of the Community Land Model (CLM), NCAR Technical Note NCAR/TN-4611STR, 186 pp., 2004.
Piao, S., Friedlingstein, P., Ciais, P., de Noblet-Ducoudré, N., Labat, D., and Zaehle, S.: Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends, Proceedings of the National Academy of Sciences of the United States of America, 104, 15242–15247, 2007.
Prentice, I. C., Kelley, D. I., Foster, P. N., Friedlingstein, P., Harrison, S. P., and Bartlein, P. J.: Fire variability and the terrestrial carbon balance, Global Biogeochem. Cy., in revision, 2011.
Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface heat flux and evaporation using large-scale parameters, Mon. Weather Rev., 100, 81–92, 1972.
Rantz, S. E.: Measurement and Computation of Streamflow: Volume 2. Computation of Discharge, water-supply paper, 2175, US Geological Survey, Reston, VA, 1982.
Robock, A., Vinnikov, K. Y., Srinivasan, G., Entin, J. K., Hollinger, S. E., Speranskaya, N. A., Liu, S., and Namkhai, A.: The Global Soil Moisture Data Bank, Bu. Am. Meteorol. Soc., 81, 1281–1299, 2000.
Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J., and Schaphoff, S.: Agricultural green and blue water consumption and its influence on the global water system, Water Resour. Res., 44, W09405, https://doi.org/10.1029/2007WR006331, 2008.
Rudolf, B., Hauschild, H., Rueth, W., and Schneider, U.: Terrestrial precipitation analysis: operational method and required density of point measurements, in: Global Precipitations and Climate Change, edited by: Desbois, M. and Desalmond, F., NATO ASI Series I, vol. 26, Springer-Verlag, 173–186, 1994.
Schneider, U., Fuchs, T., Meyer-Christoffer, A., and Rudolf, B.: Global precipitation analysis products of the GPCC, Global Precipitation Climatology Centre (GPCC), Deutscher Wetterdienst, Offenbach am Main, Germany, 2008.
Shakesby, R. A. and Doerr, D. A.: Wildfire as a hydrological and geomorphological agent, Earth-Sci. Rev., 74(3–4), 269–307, 2006.
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, T. M., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Glob. Change Biol., 9, 161–185, 2003.
Syed, T. H., Famiglietti, J. S., Chambers, D. P., Willis, J. K. and Hilburn, K.: Satellite-based global-ocean mass of interannual variability and emerging continental freshwater discharge, P. Natl. A. Sci. India. A., 107(42), 17916–17921, 2010.
Thornthwaite, C. W.: An approach toward a rational classification of climate, Geogr. Rev., 38, 55–94, 1948.
Wagner, W., Scipal, K., Pathe, C., Gerten, D., Lucht, W., and Rudolf, B.: Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data, J. Geophys. Res., 108(D19), 4611, https://doi.org/10.1029/2003JD003663, 2003.
Willmott, C. J.: Some comments on the evaluation of model performance, B. Am. Meteorol. Soc., 63, 1309–1313, 1982.
Winsemius, H. C., Savenije, H. H. G., Gerrits, A. M. J., Zapreeva, E. A., and Klees, R.: Comparison of two model approaches in the Zambezi river basin with regard to model reliability and identifiability, Hydrol. Earth Syst. Sci., 10, 339–352, https://doi.org/10.5194/hess-10-339-2006, 2006.
Zobler, L.: A world soil file for global climate modelling, NASA Technical Memorandum 87802, NASA/GISS, New York, USA, 32 pp., 1986.