Articles | Volume 28, issue 19
https://doi.org/10.5194/hess-28-4477-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-4477-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Root zone in the Earth system
Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
Markus Hrachowitz
Water Resources Section, Delft University of Technology, Delft, the Netherlands
Lan Wang-Erlandsson
Stockholm Resilience Centre (SRC), Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
Fabrizio Fenicia
Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland
Qiaojuan Xi
Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
Jianyang Xia
Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
Wei Shao
Key Laboratory of Hydrometeorological Disaster Mechanism and Warning, Ministry of Water Resources/School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China
Ge Sun
Eastern Forest Environmental Threat Assessment Center, USDA Forest Service Southern Research Station, Research Triangle Park, Triangle Park, NC 27709, USA
Hubert H. G. Savenije
Water Resources Section, Delft University of Technology, Delft, the Netherlands
Related authors
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Jiaxing Liang, Hongkai Gao, Fabrizio Fenicia, Qiaojuan Xi, Yahui Wang, and Hubert H. G. Savenije
EGUsphere, https://doi.org/10.5194/egusphere-2024-550, https://doi.org/10.5194/egusphere-2024-550, 2024
Short summary
Short summary
The root zone storage capacity (Sumax) is a key element in hydrology and land-atmospheric interaction. In this study, we utilized a hydrological model and a dynamic parameter identification method, to quantify the temporal trends of Sumax for 497 catchments in the USA. We found that 423 catchments (85 %) showed increasing Sumax, which averagely increased from 178 to 235 mm between 1980 and 2014. The increasing trend was also validated by multi-sources data and independent methods.
Hongkai Gao, Fabrizio Fenicia, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2607–2620, https://doi.org/10.5194/hess-27-2607-2023, https://doi.org/10.5194/hess-27-2607-2023, 2023
Short summary
Short summary
It is a deeply rooted perception that soil is key in hydrology. In this paper, we argue that it is the ecosystem, not the soil, that is in control of hydrology. Firstly, in nature, the dominant flow mechanism is preferential, which is not particularly related to soil properties. Secondly, the ecosystem, not the soil, determines the land–surface water balance and hydrological processes. Moving from a soil- to ecosystem-centred perspective allows more realistic and simpler hydrological models.
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci., 26, 4187–4208, https://doi.org/10.5194/hess-26-4187-2022, https://doi.org/10.5194/hess-26-4187-2022, 2022
Short summary
Short summary
Frozen soil hydrology is one of the 23 unsolved problems in hydrology (UPH). In this study, we developed a novel conceptual frozen soil hydrological model, FLEX-Topo-FS. The model successfully reproduced the soil freeze–thaw process, and its impacts on hydrologic connectivity, runoff generation, and groundwater. We believe this study is a breakthrough for the 23 UPH, giving us new insights on frozen soil hydrology, with broad implications for predicting cold region hydrology in future.
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-264, https://doi.org/10.5194/hess-2021-264, 2021
Manuscript not accepted for further review
Short summary
Short summary
Permafrost hydrology is one of the 23 major unsolved problems in hydrology. In this study, we used a stepwise modeling and dynamic parameter method to examine the impact of permafrost on streamflow in the Hulu catchment in western China. We found that: topography and landscape are dominant controls on catchment response; baseflow recession is slower than other regions; precipitation-runoff relationship is non-stationary; permafrost impacts on streamflow mostly at the beginning of melting season.
Hongkai Gao, Christian Birkel, Markus Hrachowitz, Doerthe Tetzlaff, Chris Soulsby, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 23, 787–809, https://doi.org/10.5194/hess-23-787-2019, https://doi.org/10.5194/hess-23-787-2019, 2019
Short summary
Short summary
Supported by large-sample ecological observations, a novel, simple and topography-driven runoff generation module (HSC-MCT) was created. The HSC-MCT is calibration-free, and therefore it can be used to predict in ungauged basins, and has great potential to be generalized at the global scale. Also, it allows us to reproduce the variation of saturation areas, which has great potential to be used for broader hydrological, ecological, climatological, and biogeochemical studies.
Nutchanart Sriwongsitanon, Hongkai Gao, Hubert H. G. Savenije, Ekkarin Maekan, Sirikanya Saengsawang, and Sansarith Thianpopirug
Hydrol. Earth Syst. Sci., 20, 3361–3377, https://doi.org/10.5194/hess-20-3361-2016, https://doi.org/10.5194/hess-20-3361-2016, 2016
Short summary
Short summary
We demonstrated that the readily available NDII remote sensing product is a very useful proxy for moisture storage in the root zone of vegetation. We compared the temporal variation of the NDII with the root zone storage in a hydrological model of eight catchments in the Upper Ping River in Thailand, yielding very good results. Having a reliable NDII product that can help us to estimate the actual moisture storage in catchments is a major contribution to prediction in ungauged basins.
Lan Wang-Erlandsson, Wim G. M. Bastiaanssen, Hongkai Gao, Jonas Jägermeyr, Gabriel B. Senay, Albert I. J. M. van Dijk, Juan P. Guerschman, Patrick W. Keys, Line J. Gordon, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 20, 1459–1481, https://doi.org/10.5194/hess-20-1459-2016, https://doi.org/10.5194/hess-20-1459-2016, 2016
Short summary
Short summary
We present an "Earth observation-based" method for estimating root zone storage capacity – a critical parameter in land surface modelling that represents the maximum amount of soil moisture available for vegetation. Variability within a land cover type is captured, and a global model evaporation simulation is overall improved, particularly in sub-humid to humid regions with seasonality. This new method can eliminate the need for unreliable soil and root depth data in land surface modelling.
S. Gharari, M. Hrachowitz, F. Fenicia, H. Gao, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 4839–4859, https://doi.org/10.5194/hess-18-4839-2014, https://doi.org/10.5194/hess-18-4839-2014, 2014
H. Gao, M. Hrachowitz, F. Fenicia, S. Gharari, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 1895–1915, https://doi.org/10.5194/hess-18-1895-2014, https://doi.org/10.5194/hess-18-1895-2014, 2014
Jordy Salmon-Monviola, Ophélie Fovet, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 127–158, https://doi.org/10.5194/hess-29-127-2025, https://doi.org/10.5194/hess-29-127-2025, 2025
Short summary
Short summary
To increase the predictive power of hydrological models, it is necessary to improve their consistency, i.e. their physical realism, which is measured by the ability of the model to reproduce observed system dynamics. Using a model to represent the dynamics of water and nitrate and dissolved organic carbon concentrations in an agricultural catchment, we showed that using solute-concentration data for calibration is useful to improve the hydrological consistency of the model.
Daniel Klotz, Peter Miersch, Thiago V. M. do Nascimento, Fabrizio Fenicia, Martin Gauch, and Jakob Zscheischler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-450, https://doi.org/10.5194/essd-2024-450, 2025
Preprint under review for ESSD
Short summary
Short summary
Data availability is central to hydrological science. It is the basis for advancing our understanding of hydrological processes, building prediction models, and anticipatory water management. We present a data-driven daily runoff reconstruction product for natural streamflow. We name it EARLS: European aggregated reconstruction for large-sample studies. The reconstructions represent daily simulations of natural streamflow across Europe and cover the period from 1953 to 2020.
Chandrakant Singh, Ruud van der Ent, Ingo Fetzer, and Lan Wang-Erlandsson
Earth Syst. Dynam., 15, 1543–1565, https://doi.org/10.5194/esd-15-1543-2024, https://doi.org/10.5194/esd-15-1543-2024, 2024
Short summary
Short summary
Tropical rainforests risk tipping to savanna under future climate change. By analysing ecosystem root zone dynamics using hydroclimate data from Earth system models, we project the tipping risks for these rainforests. Our findings suggest that although some transition risks may be inevitable, most can still be mitigated by adapting to less severe climate change scenarios. Limiting global surface temperatures to meet the Paris Agreement targets is critical to preserving these ecosystems.
Hatice Türk, Christine Stumpp, Markus Hrachowitz, Karsten Schulz, Peter Strauss, Günter Blöschl, and Michael Stockinger
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-359, https://doi.org/10.5194/hess-2024-359, 2024
Preprint under review for HESS
Short summary
Short summary
Using advances in transit time estimation and tracer data, we tested if fast-flow transit times are controlled solely by soil moisture or are also controlled by precipitation intensity. We used soil moisture-dependent and precipitation intensity-conditional transfer functions. We showed that significant portion of event water bypasses the soil matrix through fast flow paths (overland flow, tile drains, preferential flow paths) in dry soil conditions for both low and high-intensity precipitation.
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024, https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature associated with aridity and intermittent flow that is needed for challenging cases. Baseflow index, aridity, and soil or vegetation attributes strongly correlate with learnt features, indicating their importance for streamflow prediction.
Nathalie Rombeek, Markus Hrachowitz, Arjan Droste, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2024-3207, https://doi.org/10.5194/egusphere-2024-3207, 2024
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Rain gauge networks from personal weather stations (PWSs) have a network density 100 times higher than dedicated rain gauge networks in the Netherlands. However, PWSs are prone to several sources of error, as they are generally not installed and maintained according to international guidelines. This study systematically quantifies and describes the uncertainties arising from PWS rainfall estimates. In particular, the focus is on the highest rainfall accumulations.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Wouter R. Berghuijs, Ross A. Woods, Bailey J. Anderson, Anna Luisa Hemshorn de Sánchez, and Markus Hrachowitz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2954, https://doi.org/10.5194/egusphere-2024-2954, 2024
Short summary
Short summary
Water balances of catchments will often strongly depend on their state in the recent past but such memory effects may persist at annual timescales. We use global datasets to show that annual memory is typically absent in precipitation but strong in terrestrial water stores and also present evaporation and streamflow (including low flows and floods). Our experiments show that hysteretic models provide behavior that is consistent with these observed memory behaviors.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Magali Ponds, Sarah Hanus, Harry Zekollari, Marie-Claire ten Veldhuis, Gerrit Schoups, Roland Kaitna, and Markus Hrachowitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-260, https://doi.org/10.5194/hess-2024-260, 2024
Preprint under review for HESS
Short summary
Short summary
This research examines how future climate changes impact root zone storage, a crucial hydrological model parameter. Root zone storage—the soil water accessible to plants—adapts to climate but is often treated as constant in models. We estimated climate-adapted storage for six Austrian Alps catchments. Although storage increased, streamflow projections showed minimal change, indicating that dynamic root zone representation is less critical in humid regions but warrants more study in arid areas.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024, https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
Short summary
We compared the predicted change in catchment outlet discharge to precipitation and temperature change for conceptual and machine learning hydrological models. We found that machine learning models, despite providing excellent fit and prediction capabilities, can be unreliable regarding the prediction of the effect of temperature change for low-elevation catchments. This indicates the need for caution when applying them for the prediction of the effect of climate change.
Fransje van Oorschot, Ruud J. van der Ent, Andrea Alessandri, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 2313–2328, https://doi.org/10.5194/hess-28-2313-2024, https://doi.org/10.5194/hess-28-2313-2024, 2024
Short summary
Short summary
Vegetation plays a crucial role in regulating the water cycle by transporting water from the subsurface to the atmosphere via roots; this transport depends on the extent of the root system. In this study, we quantified the effect of irrigation on roots at a global scale. Our results emphasize the importance of accounting for irrigation in estimating the vegetation root extent, which is essential to adequately represent the water cycle in hydrological and climate models.
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-120, https://doi.org/10.5194/hess-2024-120, 2024
Revised manuscript under review for HESS
Short summary
Short summary
Quantification of precipitation into evaporation and runoff is vital for water resources management. The Budyko Framework, based on aridity and evaporative indices of a catchment, can be an ideal tool for that. However, Recent research highlights deviations of catchments from the expected evaporative index, casting doubt on its reliability. This study quantified deviations of 2387 catchments, finding them minor and predictable. Integrating these into predictions upholds the framework's efficacy.
Hubert H. G. Savenije
Proc. IAHS, 385, 1–4, https://doi.org/10.5194/piahs-385-1-2024, https://doi.org/10.5194/piahs-385-1-2024, 2024
Short summary
Short summary
Hydrology is the bloodstream of the Earth, acting as a living organism, with the ecosystem as its active agent. The ecosystem optimises its survival within the constraints of energy, water, climate and nutrients. It is capable of adjusting the hydrological system and, through evolution, adjust its efficiency of carbon sequestration and moisture uptake. In trying to understand future functioning of hydrology, we have to take into account the adaptability of the ecosystem.
Jiaxing Liang, Hongkai Gao, Fabrizio Fenicia, Qiaojuan Xi, Yahui Wang, and Hubert H. G. Savenije
EGUsphere, https://doi.org/10.5194/egusphere-2024-550, https://doi.org/10.5194/egusphere-2024-550, 2024
Short summary
Short summary
The root zone storage capacity (Sumax) is a key element in hydrology and land-atmospheric interaction. In this study, we utilized a hydrological model and a dynamic parameter identification method, to quantify the temporal trends of Sumax for 497 catchments in the USA. We found that 423 catchments (85 %) showed increasing Sumax, which averagely increased from 178 to 235 mm between 1980 and 2014. The increasing trend was also validated by multi-sources data and independent methods.
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Short summary
CAMELS-CH is an open large-sample hydro-meteorological data set that covers 331 catchments in hydrologic Switzerland from 1 January 1981 to 31 December 2020. It comprises (a) daily data of river discharge and water level as well as meteorologic variables like precipitation and temperature; (b) yearly glacier and land cover data; (c) static attributes of, e.g, topography or human impact; and (d) catchment delineations. CAMELS-CH enables water and climate research and modeling at catchment level.
Fransje van Oorschot, Ruud J. van der Ent, Markus Hrachowitz, Emanuele Di Carlo, Franco Catalano, Souhail Boussetta, Gianpaolo Balsamo, and Andrea Alessandri
Earth Syst. Dynam., 14, 1239–1259, https://doi.org/10.5194/esd-14-1239-2023, https://doi.org/10.5194/esd-14-1239-2023, 2023
Short summary
Short summary
Vegetation largely controls land hydrology by transporting water from the subsurface to the atmosphere through roots and is highly variable in space and time. However, current land surface models have limitations in capturing this variability at a global scale, limiting accurate modeling of land hydrology. We found that satellite-based vegetation variability considerably improved modeled land hydrology and therefore has potential to improve climate predictions of, for example, droughts.
En Ning Lai, Lan Wang-Erlandsson, Vili Virkki, Miina Porkka, and Ruud J. van der Ent
Hydrol. Earth Syst. Sci., 27, 3999–4018, https://doi.org/10.5194/hess-27-3999-2023, https://doi.org/10.5194/hess-27-3999-2023, 2023
Short summary
Short summary
This research scrutinized predicted changes in root zone soil moisture dynamics across different climate scenarios and different climate regions globally between 2021 and 2100. The Mediterranean and most of South America stood out as regions that will likely experience permanently drier conditions, with greater severity observed in the no-climate-policy scenarios. These findings underscore the impact that possible future climates can have on green water resources.
Shanlei Sun, Zaoying Bi, Jingfeng Xiao, Yi Liu, Ge Sun, Weimin Ju, Chunwei Liu, Mengyuan Mu, Jinjian Li, Yang Zhou, Xiaoyuan Li, Yibo Liu, and Haishan Chen
Earth Syst. Sci. Data, 15, 4849–4876, https://doi.org/10.5194/essd-15-4849-2023, https://doi.org/10.5194/essd-15-4849-2023, 2023
Short summary
Short summary
Based on various existing datasets, we comprehensively considered spatiotemporal differences in land surfaces and CO2 effects on plant stomatal resistance to parameterize the Shuttleworth–Wallace model, and we generated a global 5 km ensemble mean monthly potential evapotranspiration (PET) dataset (including potential transpiration PT and soil evaporation PE) during 1982–2015. The new dataset may be used by academic communities and various agencies to conduct various studies.
Siyuan Wang, Markus Hrachowitz, Gerrit Schoups, and Christine Stumpp
Hydrol. Earth Syst. Sci., 27, 3083–3114, https://doi.org/10.5194/hess-27-3083-2023, https://doi.org/10.5194/hess-27-3083-2023, 2023
Short summary
Short summary
This study shows that previously reported underestimations of water ages are most likely not due to the use of seasonally variable tracers. Rather, these underestimations can be largely attributed to the choices of model approaches which rely on assumptions not frequently met in catchment hydrology. We therefore strongly advocate avoiding the use of this model type in combination with seasonally variable tracers and instead adopting StorAge Selection (SAS)-based or comparable model formulations.
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 12, 155–169, https://doi.org/10.5194/gi-12-155-2023, https://doi.org/10.5194/gi-12-155-2023, 2023
Short summary
Short summary
The study investigates how low-cost technology can be applied in data-scarce catchments to improve water resource management. More specifically, we investigate how drone technology can be combined with low-cost real-time kinematic positioning (RTK) global navigation satellite system (GNSS) equipment and subsequently applied to a 3D hydraulic model so as to generate more physically based rating curves.
Hongkai Gao, Fabrizio Fenicia, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2607–2620, https://doi.org/10.5194/hess-27-2607-2023, https://doi.org/10.5194/hess-27-2607-2023, 2023
Short summary
Short summary
It is a deeply rooted perception that soil is key in hydrology. In this paper, we argue that it is the ecosystem, not the soil, that is in control of hydrology. Firstly, in nature, the dominant flow mechanism is preferential, which is not particularly related to soil properties. Secondly, the ecosystem, not the soil, determines the land–surface water balance and hydrological processes. Moving from a soil- to ecosystem-centred perspective allows more realistic and simpler hydrological models.
Nutchanart Sriwongsitanon, Wasana Jandang, James Williams, Thienchart Suwawong, Ekkarin Maekan, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2149–2171, https://doi.org/10.5194/hess-27-2149-2023, https://doi.org/10.5194/hess-27-2149-2023, 2023
Short summary
Short summary
We developed predictive semi-distributed rainfall–runoff models for nested sub-catchments in the upper Ping basin, which yielded better or similar performance compared to calibrated lumped models. The normalised difference infrared index proves to be an effective proxy for distributed root zone moisture capacity over sub-catchments and is well correlated with the percentage of evergreen forest. In validation, soil moisture simulations appeared to be highly correlated with the soil wetness index.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Bart Schilperoort, Nick van de Giesen, Imasiku Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 1695–1722, https://doi.org/10.5194/hess-27-1695-2023, https://doi.org/10.5194/hess-27-1695-2023, 2023
Short summary
Short summary
Miombo woodland plants continue to lose water even during the driest part of the year. This appears to be facilitated by the adapted features such as deep rooting (beyond 5 m) with access to deep soil moisture, potentially even ground water. It appears the trend and amount of water that the plants lose is correlated more to the available energy. This loss of water in the dry season by miombo woodland plants appears to be incorrectly captured by satellite-based evaporation estimates.
Chinchu Mohan, Tom Gleeson, James S. Famiglietti, Vili Virkki, Matti Kummu, Miina Porkka, Lan Wang-Erlandsson, Xander Huggins, Dieter Gerten, and Sonja C. Jähnig
Hydrol. Earth Syst. Sci., 26, 6247–6262, https://doi.org/10.5194/hess-26-6247-2022, https://doi.org/10.5194/hess-26-6247-2022, 2022
Short summary
Short summary
The relationship between environmental flow violations and freshwater biodiversity at a large scale is not well explored. This study intended to carry out an exploratory evaluation of this relationship at a large scale. While our results suggest that streamflow and EF may not be the only determinants of freshwater biodiversity at large scales, they do not preclude the existence of relationships at smaller scales or with more holistic EF methods or with other biodiversity data or metrics.
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022, https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Short summary
We test whether coupling a global glacier model (GloGEM) with a global hydrological model (PCR-GLOBWB 2) leads to a more realistic glacier representation and to improved basin runoff simulations across 25 large-scale basins. The coupling does lead to improved glacier representation, mainly by accounting for glacier flow and net glacier mass loss, and to improved basin runoff simulations, mostly in strongly glacier-influenced basins, which is where the coupling has the most impact.
Judith Uwihirwe, Alessia Riveros, Hellen Wanjala, Jaap Schellekens, Frederiek Sperna Weiland, Markus Hrachowitz, and Thom A. Bogaard
Nat. Hazards Earth Syst. Sci., 22, 3641–3661, https://doi.org/10.5194/nhess-22-3641-2022, https://doi.org/10.5194/nhess-22-3641-2022, 2022
Short summary
Short summary
This study compared gauge-based and satellite-based precipitation products. Similarly, satellite- and hydrological model-derived soil moisture was compared to in situ soil moisture and used in landslide hazard assessment and warning. The results reveal the cumulative 3 d rainfall from the NASA-GPM to be the most effective landslide trigger. The modelled antecedent soil moisture in the root zone was the most informative hydrological variable for landslide hazard assessment and warning in Rwanda.
Marvin Höge, Andreas Scheidegger, Marco Baity-Jesi, Carlo Albert, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 26, 5085–5102, https://doi.org/10.5194/hess-26-5085-2022, https://doi.org/10.5194/hess-26-5085-2022, 2022
Short summary
Short summary
Neural ODEs fuse physics-based models with deep learning: neural networks substitute terms in differential equations that represent the mechanistic structure of the system. The approach combines the flexibility of machine learning with physical constraints for inter- and extrapolation. We demonstrate that neural ODE models achieve state-of-the-art predictive performance while keeping full interpretability of model states and processes in hydrologic modelling over multiple catchments.
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci., 26, 4187–4208, https://doi.org/10.5194/hess-26-4187-2022, https://doi.org/10.5194/hess-26-4187-2022, 2022
Short summary
Short summary
Frozen soil hydrology is one of the 23 unsolved problems in hydrology (UPH). In this study, we developed a novel conceptual frozen soil hydrological model, FLEX-Topo-FS. The model successfully reproduced the soil freeze–thaw process, and its impacts on hydrologic connectivity, runoff generation, and groundwater. We believe this study is a breakthrough for the 23 UPH, giving us new insights on frozen soil hydrology, with broad implications for predicting cold region hydrology in future.
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022, https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Short summary
Direct and indirect human actions have altered streamflow across the world since pre-industrial times. Here, we apply a method of environmental flow envelopes (EFEs) that develops the existing global environmental flow assessments by methodological advances and better consideration of uncertainty. By assessing the violations of the EFE, we comprehensively quantify the frequency, severity, and trends of flow alteration during the past decades, illustrating anthropogenic effects on streamflow.
Judith Uwihirwe, Markus Hrachowitz, and Thom Bogaard
Nat. Hazards Earth Syst. Sci., 22, 1723–1742, https://doi.org/10.5194/nhess-22-1723-2022, https://doi.org/10.5194/nhess-22-1723-2022, 2022
Short summary
Short summary
This research tested the value of regional groundwater level information to improve landslide predictions with empirical models based on the concept of threshold levels. In contrast to precipitation-based thresholds, the results indicated that relying on threshold models exclusively defined using hydrological variables such as groundwater levels can lead to improved landslide predictions due to their implicit consideration of long-term antecedent conditions until the day of landslide occurrence.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Petra Hulsman, Nick van de Giesen, Imasiku Nyambe, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-114, https://doi.org/10.5194/hess-2022-114, 2022
Manuscript not accepted for further review
Short summary
Short summary
We compare performance of evaporation models in the Luangwa Basin located in a semi-arid and complex Miombo ecosystem in Africa. Miombo plants changes colour, drop off leaves and acquire new leaves during the dry season. In addition, the plant roots go deep in the soil and appear to access groundwater. Results show that evaporation models with structure and process that do not capture this unique plant structure and behaviour appears to have difficulties to correctly estimating evaporation.
Elisa Ragno, Markus Hrachowitz, and Oswaldo Morales-Nápoles
Hydrol. Earth Syst. Sci., 26, 1695–1711, https://doi.org/10.5194/hess-26-1695-2022, https://doi.org/10.5194/hess-26-1695-2022, 2022
Short summary
Short summary
We explore the ability of non-parametric Bayesian networks to reproduce maximum daily discharge in a given month in a catchment when the remaining hydro-meteorological and catchment attributes are known. We show that a saturated network evaluated in an individual catchment can reproduce statistical characteristics of discharge in about ~ 40 % of the cases, while challenges remain when a saturated network considering all the catchments together is evaluated.
Laurène J. E. Bouaziz, Emma E. Aalbers, Albrecht H. Weerts, Mark Hegnauer, Hendrik Buiteveld, Rita Lammersen, Jasper Stam, Eric Sprokkereef, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 26, 1295–1318, https://doi.org/10.5194/hess-26-1295-2022, https://doi.org/10.5194/hess-26-1295-2022, 2022
Short summary
Short summary
Assuming stationarity of hydrological systems is no longer appropriate when considering land use and climate change. We tested the sensitivity of hydrological predictions to changes in model parameters that reflect ecosystem adaptation to climate and potential land use change. We estimated a 34 % increase in the root zone storage parameter under +2 K global warming, resulting in up to 15 % less streamflow in autumn, due to 14 % higher summer evaporation, compared to a stationary system.
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 11, 1–23, https://doi.org/10.5194/gi-11-1-2022, https://doi.org/10.5194/gi-11-1-2022, 2022
Short summary
Short summary
The study was conducted along the Luangwa River in Zambia. It combines low-cost instruments such as UAVs and GPS kits to collect data for the purposes of water management. A novel technique which seamlessly merges the dry and wet bathymetry before application in a hydraulic model was applied. Successful implementation resulted in water authorities with small budgets being able to monitor flows safely and efficiently without significant compromise on accuracy.
Marco Dal Molin, Dmitri Kavetski, and Fabrizio Fenicia
Geosci. Model Dev., 14, 7047–7072, https://doi.org/10.5194/gmd-14-7047-2021, https://doi.org/10.5194/gmd-14-7047-2021, 2021
Short summary
Short summary
This paper introduces SuperflexPy, an open-source Python framework for building flexible conceptual hydrological models. SuperflexPy is available as open-source code and can be used by the hydrological community to investigate improved process representations, for model comparison, and for operational work.
Jiehao Zhang, Yulong Zhang, Ge Sun, Conghe Song, Matthew P. Dannenberg, Jiangfeng Li, Ning Liu, Kerong Zhang, Quanfa Zhang, and Lu Hao
Hydrol. Earth Syst. Sci., 25, 5623–5640, https://doi.org/10.5194/hess-25-5623-2021, https://doi.org/10.5194/hess-25-5623-2021, 2021
Short summary
Short summary
To quantify how vegetation greening impacts the capacity of water supply, we built a hybrid model and conducted a case study using the upper Han River basin (UHRB) that serves as the water source area to the world’s largest water diversion project. Vegetation greening in the UHRB during 2001–2018 induced annual water yield (WY) greatly decreased. Vegetation greening also increased the possibility of drought and reduced a quarter of WY on average during drought periods.
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915, https://doi.org/10.5194/hess-25-4887-2021, https://doi.org/10.5194/hess-25-4887-2021, 2021
Short summary
Short summary
Deforestation affects how catchments store and release water. Here we found that deforestation in the study catchment led to a 20 % increase in mean runoff, while reducing the vegetation-accessible water storage from about 258 to 101 mm. As a consequence, fractions of young water in the stream increased by up to 25 % during wet periods. This implies that water and solutes are more rapidly routed to the stream, which can, after contamination, lead to increased contaminant peak concentrations.
Fransje van Oorschot, Ruud J. van der Ent, Markus Hrachowitz, and Andrea Alessandri
Earth Syst. Dynam., 12, 725–743, https://doi.org/10.5194/esd-12-725-2021, https://doi.org/10.5194/esd-12-725-2021, 2021
Short summary
Short summary
The roots of vegetation largely control the Earth's water cycle by transporting water from the subsurface to the atmosphere but are not adequately represented in land surface models, causing uncertainties in modeled water fluxes. We replaced the root parameters in an existing model with more realistic ones that account for a climate control on root development and found improved timing of modeled river discharge. Further extension of our approach could improve modeled water fluxes globally.
Sarah Hanus, Markus Hrachowitz, Harry Zekollari, Gerrit Schoups, Miren Vizcaino, and Roland Kaitna
Hydrol. Earth Syst. Sci., 25, 3429–3453, https://doi.org/10.5194/hess-25-3429-2021, https://doi.org/10.5194/hess-25-3429-2021, 2021
Short summary
Short summary
This study investigates the effects of climate change on runoff patterns in six Alpine catchments in Austria at the end of the 21st century. Our results indicate a substantial shift to earlier occurrences in annual maximum and minimum flows in high-elevation catchments. Magnitudes of annual extremes are projected to increase under a moderate emission scenario in all catchments. Changes are generally more pronounced for high-elevation catchments.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-264, https://doi.org/10.5194/hess-2021-264, 2021
Manuscript not accepted for further review
Short summary
Short summary
Permafrost hydrology is one of the 23 major unsolved problems in hydrology. In this study, we used a stepwise modeling and dynamic parameter method to examine the impact of permafrost on streamflow in the Hulu catchment in western China. We found that: topography and landscape are dominant controls on catchment response; baseflow recession is slower than other regions; precipitation-runoff relationship is non-stationary; permafrost impacts on streamflow mostly at the beginning of melting season.
Artemis Roodari, Markus Hrachowitz, Farzad Hassanpour, and Mostafa Yaghoobzadeh
Hydrol. Earth Syst. Sci., 25, 1943–1967, https://doi.org/10.5194/hess-25-1943-2021, https://doi.org/10.5194/hess-25-1943-2021, 2021
Short summary
Short summary
In a combined data analysis and modeling study in the transboundary Helmand River basin, we analyzed spatial patterns of drought and changes therein based on the drought indices as well as on absolute water deficits. Overall the results illustrate that flow deficits and the associated droughts clearly reflect the dynamic interplay between temporally varying regional differences in hydro-meteorological variables together with subtle and temporally varying effects linked to human intervention.
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Petra Hulsman, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 957–982, https://doi.org/10.5194/hess-25-957-2021, https://doi.org/10.5194/hess-25-957-2021, 2021
Short summary
Short summary
Satellite observations have increasingly been used for model calibration, while model structural developments largely rely on discharge data. For large river basins, this often results in poor representations of system internal processes. This study explores the combined use of satellite-based evaporation and total water storage data for model structural improvement and spatial–temporal model calibration for a large, semi-arid and data-scarce river system.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Bart Schilperoort, Adriana del Pilar González-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 25, 619–635, https://doi.org/10.5194/hess-25-619-2021, https://doi.org/10.5194/hess-25-619-2021, 2021
Short summary
Short summary
During rainfall events, evaporation from tropical forests is usually ignored. However, the water retained in the canopy during rainfall increases the evaporation despite the high-humidity conditions. In a tropical wet forest in Costa Rica, it was possible to depict vapor plumes rising from the forest canopy during rainfall. These plumes are evidence of forest evaporation. Also, we identified the conditions that allowed this phenomenon to happen using time-lapse videos and meteorological data.
Ralf Loritz, Markus Hrachowitz, Malte Neuper, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 147–167, https://doi.org/10.5194/hess-25-147-2021, https://doi.org/10.5194/hess-25-147-2021, 2021
Short summary
Short summary
This study investigates the role and value of distributed rainfall in the runoff generation of a mesoscale catchment. We compare the performance of different hydrological models at different periods and show that a distributed model driven by distributed rainfall yields improved performances only during certain periods. We then step beyond this finding and develop a spatially adaptive model that is capable of dynamically adjusting its spatial model structure in time.
Bart Schilperoort, Miriam Coenders-Gerrits, César Jiménez Rodríguez, Christiaan van der Tol, Bas van de Wiel, and Hubert Savenije
Biogeosciences, 17, 6423–6439, https://doi.org/10.5194/bg-17-6423-2020, https://doi.org/10.5194/bg-17-6423-2020, 2020
Short summary
Short summary
With distributed temperature sensing (DTS) we measured a vertical temperature profile in a forest, from the forest floor to above the treetops. Using this temperature profile we can see which parts of the forest canopy are colder (thus more dense) or warmer (and less dense) and study the effect this has on the suppression of turbulent mixing. This can be used to improve our knowledge of the interaction between the atmosphere and forests and improve carbon dioxide flux measurements over forests.
Erqian Cui, Chenyu Bian, Yiqi Luo, Shuli Niu, Yingping Wang, and Jianyang Xia
Biogeosciences, 17, 6237–6246, https://doi.org/10.5194/bg-17-6237-2020, https://doi.org/10.5194/bg-17-6237-2020, 2020
Short summary
Short summary
Mean annual net ecosystem productivity (NEP) is related to the magnitude of the carbon sink of a specific ecosystem, while its inter-annual variation (IAVNEP) characterizes the stability of such a carbon sink. Thus, a better understanding of the co-varying NEP and IAVNEP is critical for locating the major and stable carbon sinks on land. Based on daily NEP observations from eddy-covariance sites, we found local indicators for the spatially varying NEP and IAVNEP, respectively.
Justus G. V. van Ramshorst, Miriam Coenders-Gerrits, Bart Schilperoort, Bas J. H. van de Wiel, Jonathan G. Izett, John S. Selker, Chad W. Higgins, Hubert H. G. Savenije, and Nick C. van de Giesen
Atmos. Meas. Tech., 13, 5423–5439, https://doi.org/10.5194/amt-13-5423-2020, https://doi.org/10.5194/amt-13-5423-2020, 2020
Short summary
Short summary
In this work we present experimental results of a novel actively heated fiber-optic (AHFO) observational wind-probing technique. We utilized a controlled wind-tunnel setup to assess both the accuracy and precision of AHFO under a range of operational conditions (wind speed, angles of attack and temperature differences). AHFO has the potential to provide high-resolution distributed observations of wind speeds, allowing for better spatial characterization of fine-scale processes.
Renaud Hostache, Dominik Rains, Kaniska Mallick, Marco Chini, Ramona Pelich, Hans Lievens, Fabrizio Fenicia, Giovanni Corato, Niko E. C. Verhoest, and Patrick Matgen
Hydrol. Earth Syst. Sci., 24, 4793–4812, https://doi.org/10.5194/hess-24-4793-2020, https://doi.org/10.5194/hess-24-4793-2020, 2020
Short summary
Short summary
Our objective is to investigate how satellite microwave sensors, particularly Soil Moisture and Ocean Salinity (SMOS), may help to reduce errors and uncertainties in soil moisture simulations with a large-scale conceptual hydro-meteorological model. We assimilated a long time series of SMOS observations into a hydro-meteorological model and showed that this helps to improve model predictions. This work therefore contributes to the development of faster and more accurate drought prediction tools.
Petra Hulsman, Hessel C. Winsemius, Claire I. Michailovsky, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 24, 3331–3359, https://doi.org/10.5194/hess-24-3331-2020, https://doi.org/10.5194/hess-24-3331-2020, 2020
Short summary
Short summary
In the absence of discharge data in ungauged basins, remotely sensed river water level data, i.e. altimetry, may provide valuable information to calibrate hydrological models. This study illustrated that for large rivers in data-scarce regions, river altimetry data from multiple locations combined with GRACE data have the potential to fill this gap when combined with estimates of the river geometry, thereby allowing a step towards more reliable hydrological modelling in data-scarce regions.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Jochen Wenninger, Adriana Gonzalez-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 24, 2179–2206, https://doi.org/10.5194/hess-24-2179-2020, https://doi.org/10.5194/hess-24-2179-2020, 2020
Short summary
Short summary
Tropical forest ecosystems are able to export a lot of water to the atmosphere by means of evaporation. However, little is known on how their complex structure affects this water flux. This paper analyzes the contribution of three canopy layers in terms of water fluxes and stable water isotope signatures. During the dry season in 2018 the two lower canopy layers provide 20 % of measured evaporation, highlighting the importance of knowing how forest structure can affect the hydrological cycle.
Jian Zhou, Jianyang Xia, Ning Wei, Yufu Liu, Chenyu Bian, Yuqi Bai, and Yiqi Luo
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-76, https://doi.org/10.5194/gmd-2020-76, 2020
Revised manuscript not accepted
Short summary
Short summary
The increase of model complexity and data volume challenges the evaluation of Earth system models (ESMs), which mainly stems from the untraceable, unautomatic, and high computational costs. Here, we built up an online Traceability analysis system for Model Evaluation (TraceME), which is traceable, automatic and shareable. The TraceME (v1.0) can trace the structural uncertainty of simulated carbon (C) storage in ESMs and provide some new implications for the next generation of model evaluation.
Marco Dal Molin, Mario Schirmer, Massimiliano Zappa, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 24, 1319–1345, https://doi.org/10.5194/hess-24-1319-2020, https://doi.org/10.5194/hess-24-1319-2020, 2020
Nutchanart Sriwongsitanon, Wasana Jandang, Thienchart Suwawong, and Hubert H.~G. Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-82, https://doi.org/10.5194/hess-2020-82, 2020
Manuscript not accepted for further review
Short summary
Short summary
In this paper we present a method to distribute crucial model parameters over subcatchments so as to enhance overall rainfall-runoff performance. We also analyse how soil moisture indicators can be used to distribute root zone moisture capacity over subcatchments. NDII proves to be very effective for this purpose, resulting in better overall model performance, good temporal correspondence between modelled soil moisture and the SWI, and improved recession behavior and dry season flow.
Zhilin Zhang and Hubert Savenije
Earth Syst. Dynam., 10, 667–684, https://doi.org/10.5194/esd-10-667-2019, https://doi.org/10.5194/esd-10-667-2019, 2019
Short summary
Short summary
Natural systems evolve towards a state of maximum power, including estuarine circulation. The energy of lighter fresh water drives circulation, while it dissipates by friction. This rotational flow causes the spread of salinity, which is represented by the dispersion coefficient. In this paper, the maximum power concept provides a new equation for this coefficient. Together with the steady-state equation, this results in a new analytical model for density-driven salinity intrusion.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Thom Bogaard, Erika Vatiero, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-344, https://doi.org/10.5194/hess-2019-344, 2019
Revised manuscript not accepted
Short summary
Short summary
Knowing the isotopic composition of water vapor in the air is a difficult task. The estimation of δ18O and δ2H has to be done carefully, because it is accompanied by a high risk of methodological errors (if it is sampled) or wrong assumptions that can lead to incorrect values (if it is modeled). The aim of this work was to compare available sampling methods for water vapor in the air and estimate their isotopic composition, comparing the results against direct measurements of the sampled air.
Huayang Cai, Hubert H. G. Savenije, Erwan Garel, Xianyi Zhang, Leicheng Guo, Min Zhang, Feng Liu, and Qingshu Yang
Hydrol. Earth Syst. Sci., 23, 2779–2794, https://doi.org/10.5194/hess-23-2779-2019, https://doi.org/10.5194/hess-23-2779-2019, 2019
Short summary
Short summary
Tide–river dynamics play an essential role in large-scale river deltas as they exert a tremendous impact on delta morphodynamics, salt intrusion and deltaic ecosystems. For the first time, we illustrate that there is a critical river discharge, beyond which tidal damping is reduced with increasing river discharge, and we explore the underlying mechanism using an analytical model. The results are useful for guiding sustainable water management and sediment transport in tidal rivers.
Lorenz Ammann, Fabrizio Fenicia, and Peter Reichert
Hydrol. Earth Syst. Sci., 23, 2147–2172, https://doi.org/10.5194/hess-23-2147-2019, https://doi.org/10.5194/hess-23-2147-2019, 2019
Short summary
Short summary
The uncertainty of hydrological models can be substantial, and its quantification and realistic description are often difficult. We propose a new flexible probabilistic framework to describe and quantify this uncertainty. It is show that the correlation of the errors can be non-stationary, and that accounting for temporal changes in correlation can lead to strongly improved probabilistic predictions. This is a promising avenue for improving uncertainty estimation in hydrological modelling.
Yuanyuan Huang, Mark Stacy, Jiang Jiang, Nilutpal Sundi, Shuang Ma, Volodymyr Saruta, Chang Gyo Jung, Zheng Shi, Jianyang Xia, Paul J. Hanson, Daniel Ricciuto, and Yiqi Luo
Geosci. Model Dev., 12, 1119–1137, https://doi.org/10.5194/gmd-12-1119-2019, https://doi.org/10.5194/gmd-12-1119-2019, 2019
Short summary
Short summary
Predicting future changes in ecosystem services is not only highly desirable but is also becoming feasible as several forces are converging to transform ecological research into quantitative forecasting. To realize ecological forecasting, we have developed an Ecological Platform for Assimilating Data (EcoPAD) into models. EcoPAD also has the potential to become an interactive tool for resource management, stimulate citizen science in ecology, and transform environmental education.
Jing Wang, Jianyang Xia, Xuhui Zhou, Kun Huang, Jian Zhou, Yuanyuan Huang, Lifen Jiang, Xia Xu, Junyi Liang, Ying-Ping Wang, Xiaoli Cheng, and Yiqi Luo
Biogeosciences, 16, 917–926, https://doi.org/10.5194/bg-16-917-2019, https://doi.org/10.5194/bg-16-917-2019, 2019
Short summary
Short summary
Soil is critical in mitigating climate change mainly because soil carbon turns over much slower in soils than vegetation and the atmosphere. However, Earth system models (ESMs) have large uncertainty in simulating carbon dynamics due to their biased estimation of soil carbon transit time (τsoil). Here, the τsoil estimates from 12 ESMs that participated in CMIP5 were evaluated by a database of measured τsoil. We detected a large spatial variation in measured τsoil across the globe.
Erwin Zehe, Ralf Loritz, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Theresa Blume, Sibylle K. Hassler, and Hubert H. Savenije
Hydrol. Earth Syst. Sci., 23, 971–987, https://doi.org/10.5194/hess-23-971-2019, https://doi.org/10.5194/hess-23-971-2019, 2019
Martijn Westhoff, Axel Kleidon, Stan Schymanski, Benjamin Dewals, Femke Nijsse, Maik Renner, Henk Dijkstra, Hisashi Ozawa, Hubert Savenije, Han Dolman, Antoon Meesters, and Erwin Zehe
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-6, https://doi.org/10.5194/esd-2019-6, 2019
Publication in ESD not foreseen
Short summary
Short summary
Even models relying on physical laws have parameters that need to be measured or estimated. Thermodynamic optimality principles potentially offer a way to reduce the number of estimated parameters by stating that a system evolves to an optimum state. These principles have been applied successfully within the Earth system, but it is often unclear what to optimize and how. In this review paper we identify commonalities between different successful applications as well as some doubtful applications.
Hongkai Gao, Christian Birkel, Markus Hrachowitz, Doerthe Tetzlaff, Chris Soulsby, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 23, 787–809, https://doi.org/10.5194/hess-23-787-2019, https://doi.org/10.5194/hess-23-787-2019, 2019
Short summary
Short summary
Supported by large-sample ecological observations, a novel, simple and topography-driven runoff generation module (HSC-MCT) was created. The HSC-MCT is calibration-free, and therefore it can be used to predict in ungauged basins, and has great potential to be generalized at the global scale. Also, it allows us to reproduce the variation of saturation areas, which has great potential to be used for broader hydrological, ecological, climatological, and biogeochemical studies.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Proc. IAHS, 380, 3–8, https://doi.org/10.5194/piahs-380-3-2018, https://doi.org/10.5194/piahs-380-3-2018, 2018
Laurène Bouaziz, Albrecht Weerts, Jaap Schellekens, Eric Sprokkereef, Jasper Stam, Hubert Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 22, 6415–6434, https://doi.org/10.5194/hess-22-6415-2018, https://doi.org/10.5194/hess-22-6415-2018, 2018
Short summary
Short summary
We quantify net intercatchment groundwater flows in the Meuse basin in a complementary three-step approach through (1) water budget accounting, (2) testing a set of conceptual hydrological models and (3) evaluating against remote sensing actual evaporation data. We show that net intercatchment groundwater flows can make up as much as 25 % of mean annual precipitation in the headwaters and should therefore be accounted for in conceptual models to prevent overestimating actual evaporation rates.
Dirk-Jan D. Kok, Saket Pande, Jules B. van Lier, Angela R. C. Ortigara, Hubert Savenije, and Stefan Uhlenbrook
Hydrol. Earth Syst. Sci., 22, 5781–5799, https://doi.org/10.5194/hess-22-5781-2018, https://doi.org/10.5194/hess-22-5781-2018, 2018
Short summary
Short summary
Phosphorus (P) is important to global food security. Thus it is concerning that natural P reserves are predicted to deplete within the century. Here we explore the potential of P recovery from wastewater (WW) at global scale. We identify high production and demand sites to determine optimal market prices and trade flows. We show that 20 % of the agricultural demand can be met, yet only 4 % can be met economically. Nonetheless, this recovery stimulates circular economic development in WW treatment.
Nevil Quinn, Günter Blöschl, András Bárdossy, Attilio Castellarin, Martyn Clark, Christophe Cudennec, Demetris Koutsoyiannis, Upmanu Lall, Lubomir Lichner, Juraj Parajka, Christa D. Peters-Lidard, Graham Sander, Hubert Savenije, Keith Smettem, Harry Vereecken, Alberto Viglione, Patrick Willems, Andy Wood, Ross Woods, Chong-Yu Xu, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 5735–5739, https://doi.org/10.5194/hess-22-5735-2018, https://doi.org/10.5194/hess-22-5735-2018, 2018
Zhenggang Du, Ensheng Weng, Lifen Jiang, Yiqi Luo, Jianyang Xia, and Xuhui Zhou
Geosci. Model Dev., 11, 4399–4416, https://doi.org/10.5194/gmd-11-4399-2018, https://doi.org/10.5194/gmd-11-4399-2018, 2018
Short summary
Short summary
In this study, based on a traceability analysis technique, we evaluated alternative representations of C–N interactions and their impacts on the C cycle using the TECO model framework. Our results showed that different representations of C–N coupling processes lead to divergent effects on plant production, C residence time, and thus the ecosystem C storage capacity. Identifying those effects can help us to improve the N limitation assumptions employed in terrestrial ecosystem models.
César~Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Thom Bogaard, Erika Vatiero, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-538, https://doi.org/10.5194/hess-2018-538, 2018
Manuscript not accepted for further review
Short summary
Short summary
The measurement of stable isotopes in water vapor has been improved with the use of laser technologies. Its direct application in the field depends on the availability of infrastructure or the budget of the project. For those cases when it is not possible, we provide an alternative method to sample the air for its later measurement. This method is based on the use of a low-cost polyethylene bag, getting stable measurements with a volume of 450 mL of air reducing the risk of sample deterioration.
Petra Hulsman, Thom A. Bogaard, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 22, 5081–5095, https://doi.org/10.5194/hess-22-5081-2018, https://doi.org/10.5194/hess-22-5081-2018, 2018
Short summary
Short summary
In many river basins, the development of hydrological models is challenged by poor discharge data availability and quality. In contrast, water level data are more reliable, as these are direct measurements and are unprocessed. In this study, an alternative calibration method is presented using water-level time series and the Strickler–Manning formula instead of discharge. This is applied to a semi-distributed rainfall-runoff model for the semi-arid, poorly gauged Mara River basin in Kenya.
Lan Wang-Erlandsson, Ingo Fetzer, Patrick W. Keys, Ruud J. van der Ent, Hubert H. G. Savenije, and Line J. Gordon
Hydrol. Earth Syst. Sci., 22, 4311–4328, https://doi.org/10.5194/hess-22-4311-2018, https://doi.org/10.5194/hess-22-4311-2018, 2018
Short summary
Short summary
Winds carry air moisture from one place to another. Thus, land-use change that alters air moisture content can also modify downwind rainfall and distant river flows. This aspect has rarely been taken into account in studies of river flow changes. We show here that remote land-use change effect on rainfall can exceed that of local, and that foreign nation influence on river flows is much more prevalent than previously thought. This has important implications for both land and water governance.
Andreas Moser, Devon Wemyss, Ruth Scheidegger, Fabrizio Fenicia, Mark Honti, and Christian Stamm
Hydrol. Earth Syst. Sci., 22, 4229–4249, https://doi.org/10.5194/hess-22-4229-2018, https://doi.org/10.5194/hess-22-4229-2018, 2018
Short summary
Short summary
Many chemicals such as pesticides, pharmaceuticals or household chemicals impair water quality in many areas worldwide. Measuring pollution everywhere is too costly. Models can be used instead to predict where high pollution levels are expected. We tested a model that can be used across large river basins. We find that for the selected chemicals predictions are generally within a factor of 2 to 4 from observed concentrations. Often, knowledge about the chemical use limits the predictions.
Huayang Cai, Marco Toffolon, Hubert H. G. Savenije, Qingshu Yang, and Erwan Garel
Ocean Sci., 14, 769–782, https://doi.org/10.5194/os-14-769-2018, https://doi.org/10.5194/os-14-769-2018, 2018
Stefanie R. Lutz, Andrea Popp, Tim van Emmerik, Tom Gleeson, Liz Kalaugher, Karsten Möbius, Tonie Mudde, Brett Walton, Rolf Hut, Hubert Savenije, Louise J. Slater, Anna Solcerova, Cathelijne R. Stoof, and Matthias Zink
Hydrol. Earth Syst. Sci., 22, 3589–3599, https://doi.org/10.5194/hess-22-3589-2018, https://doi.org/10.5194/hess-22-3589-2018, 2018
Short summary
Short summary
Media play a key role in the communication between scientists and the general public. However, the interaction between scientists and journalists is not always straightforward. In this opinion paper, we present insights from hydrologists and journalists into the benefits, aftermath and potential pitfalls of science–media interaction. We aim to encourage scientists to participate in the diverse and evolving media landscape, and we call on the scientific community to support scientists who do so.
Karin Mostbauer, Roland Kaitna, David Prenner, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 22, 3493–3513, https://doi.org/10.5194/hess-22-3493-2018, https://doi.org/10.5194/hess-22-3493-2018, 2018
Short summary
Short summary
Debris flows represent a severe hazard in mountain regions and so far remain difficult to predict. We applied a hydrological model to link not only precipitation, but also snowmelt, antecedent soil moisture, etc. with debris flow initiation in an Alpine watershed in Austria. Our results highlight the value of this more holistic perspective for developing a better understanding of debris flow initiation.
Patrick W. Keys and Lan Wang-Erlandsson
Earth Syst. Dynam., 9, 829–847, https://doi.org/10.5194/esd-9-829-2018, https://doi.org/10.5194/esd-9-829-2018, 2018
Short summary
Short summary
Moisture recycling is the atmospheric branch of the water cycle, including evaporation and precipitation. While the physical water cycle is well-understood, the social links among the recipients of precipitation back to the sources of evaporation are not. In this work, we develop a method to determine how these social connections unfold, using a mix of quantitative and qualitative methods, finding that there are distinct types of social connections with corresponding policy and management tools.
Liming Yan, Xiaoni Xu, and Jianyang Xia
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-124, https://doi.org/10.5194/bg-2018-124, 2018
Manuscript not accepted for further review
Short summary
Short summary
The patterns of the ratio of atmospheric deposited ammonium- to nitrate-N shows an increasing trend with the total N load since the industrial revolution. As a key role of N in plant growth, it is important to know the general response patterns of plant growth to N forms. By the synthesized dataset and meta-analysis, we found a higher response of plant growth to NH4+-N than NO3−-N addition across all species. Our results suggest plant could more positively respond to N deposition in the future.
Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 22, 1911–1916, https://doi.org/10.5194/hess-22-1911-2018, https://doi.org/10.5194/hess-22-1911-2018, 2018
Short summary
Short summary
This paper provides the connection between two simple equations describing groundwater flow at different scales: the Darcy equation describes groundwater flow at pore scale, the linear reservoir equation at catchment scale. The connection between the two appears to be very simple. The two parameters of the equations are proportional, depending on the porosity of the subsoil and the resistance for the groundwater to enter the surface drainage network.
Zhilin Zhang and Hubert H. G. Savenije
Earth Syst. Dynam., 9, 241–247, https://doi.org/10.5194/esd-9-241-2018, https://doi.org/10.5194/esd-9-241-2018, 2018
Short summary
Short summary
This paper presents a new equation for the dispersion of salinity in alluvial estuaries based on the maximum power concept. The new equation is physically based and replaces previous empirical equations. It is very useful for application in practice because in contrast to previous methods it no longer requires a calibration parameter, turning the method into a predictive method. The paper presents successful applications in more than 23 estuaries in different parts of the world.
Dirk-Jan Daniel Kok, Saket Pande, Angela Renata Cordeiro Ortigara, Hubert Savenije, and Stefan Uhlenbrook
Proc. IAHS, 376, 83–86, https://doi.org/10.5194/piahs-376-83-2018, https://doi.org/10.5194/piahs-376-83-2018, 2018
Short summary
Short summary
Phosphorus is necessary for the development of crops and is therefore essential in safeguarding our food security. Several studies predict that our rock phosphate reserves, used to create synthetic, phosphatic fertilizers, may become depleted within this century. This study roughly approximates for which areas in Africa we can instead recover phosphorus from wastewater in order to reduce our dependancy on unsustainable rock phosphate.
Bart Schilperoort, Miriam Coenders-Gerrits, Willem Luxemburg, César Jiménez Rodríguez, César Cisneros Vaca, and Hubert Savenije
Hydrol. Earth Syst. Sci., 22, 819–830, https://doi.org/10.5194/hess-22-819-2018, https://doi.org/10.5194/hess-22-819-2018, 2018
Short summary
Short summary
Using the
DTStechnology, we measured the evaporation of a forest using fibre optic cables. The cables work like long thermometers, with a measurement every 12.5 cm. We placed the cables vertically along the tower, one cable being dry, the other kept wet. By looking at the dry and wet cable temperatures over the height we are able to study heat storage and the amount of water the forest is evaporating. These results can be used to better understand the storage and heat exchange of forests.
Axel Kleidon and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-674, https://doi.org/10.5194/hess-2017-674, 2017
Revised manuscript not accepted
Short summary
Short summary
At larger scales, the flow of rivers can often be described by a relatively simple, exponential decay, and it is unclear how such simple behaviour can be explained given that river basins show such vast complexity. Here, we use a highly idealised model to show that such simple behaviour can be explained by viewing it as the emergent consequence of the groundwater system (which feeds river flow) minimising its energy dissipation.
Markus Hrachowitz and Martyn P. Clark
Hydrol. Earth Syst. Sci., 21, 3953–3973, https://doi.org/10.5194/hess-21-3953-2017, https://doi.org/10.5194/hess-21-3953-2017, 2017
Short summary
Short summary
Physically based and conceptual models in hydrology are the two endpoints in the spectrum of modelling strategies, mostly differing in their degree of detail in resolving the model domain. Given the limitations both modelling strategies face, we believe that to achieve progress in hydrological modelling, a convergence of these methods is necessary. This would allow us to exploit the respective advantages of the bottom-up and top-down models while limiting their respective uncertainties.
Randal D. Koster, Alan K. Betts, Paul A. Dirmeyer, Marc Bierkens, Katrina E. Bennett, Stephen J. Déry, Jason P. Evans, Rong Fu, Felipe Hernandez, L. Ruby Leung, Xu Liang, Muhammad Masood, Hubert Savenije, Guiling Wang, and Xing Yuan
Hydrol. Earth Syst. Sci., 21, 3777–3798, https://doi.org/10.5194/hess-21-3777-2017, https://doi.org/10.5194/hess-21-3777-2017, 2017
Short summary
Short summary
Large-scale hydrological variability can affect society in profound ways; floods and droughts, for example, often cause major damage and hardship. A recent gathering of hydrologists at a symposium to honor the career of Professor Eric Wood motivates the present survey of recent research on this variability. The surveyed literature and the illustrative examples provided in the paper show that research into hydrological variability continues to be strong, vibrant, and multifaceted.
Zhilin Zhang and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 21, 3287–3305, https://doi.org/10.5194/hess-21-3287-2017, https://doi.org/10.5194/hess-21-3287-2017, 2017
Short summary
Short summary
An estuary is where fresh water rivers meet the salty open sea. This mixture of salty fresh water leads to a varying water quality. There a model works well showing how far the salty water can travel, with an empirical parameter that needs to be calibrated every time. This paper provides a possible solution for this parameter to make the model predictive. Also, the model was improved by considering 2-D exchange flow. This new model was supported by observations in 18 estuaries around the world.
Catchments as meta-organisms – a new blueprint for hydrological modelling
Hubert H. G. Savenije and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 21, 1107–1116, https://doi.org/10.5194/hess-21-1107-2017, https://doi.org/10.5194/hess-21-1107-2017, 2017
Short summary
Short summary
The natural environment that we live in is the result of evolution. This does not only apply to ecosystems, but also to the physical environment through which the water flows. This has resulted in the formation of flow patterns that obey sometimes surprisingly simple mathematical laws. Hydrological models should represent the physics of these patterns and should account for the fact that the ecosystem adjusts itself continuously to changing circumstances. Physics-based models are alive!
Tanja de Boer-Euser, Laurène Bouaziz, Jan De Niel, Claudia Brauer, Benjamin Dewals, Gilles Drogue, Fabrizio Fenicia, Benjamin Grelier, Jiri Nossent, Fernando Pereira, Hubert Savenije, Guillaume Thirel, and Patrick Willems
Hydrol. Earth Syst. Sci., 21, 423–440, https://doi.org/10.5194/hess-21-423-2017, https://doi.org/10.5194/hess-21-423-2017, 2017
Short summary
Short summary
In this study, the rainfall–runoff models of eight international research groups were compared for a set of subcatchments of the Meuse basin to investigate the influence of certain model components on the modelled discharge. Although the models showed similar performances based on general metrics, clear differences could be observed for specific events. The differences during drier conditions could indeed be linked to differences in model structures.
Yiqi Luo, Zheng Shi, Xingjie Lu, Jianyang Xia, Junyi Liang, Jiang Jiang, Ying Wang, Matthew J. Smith, Lifen Jiang, Anders Ahlström, Benito Chen, Oleksandra Hararuk, Alan Hastings, Forrest Hoffman, Belinda Medlyn, Shuli Niu, Martin Rasmussen, Katherine Todd-Brown, and Ying-Ping Wang
Biogeosciences, 14, 145–161, https://doi.org/10.5194/bg-14-145-2017, https://doi.org/10.5194/bg-14-145-2017, 2017
Short summary
Short summary
Climate change is strongly regulated by land carbon cycle. However, we lack the ability to predict future land carbon sequestration. Here, we develop a novel framework for understanding what determines the direction and rate of future change in land carbon storage. The framework offers a suite of new approaches to revolutionize land carbon model evaluation and improvement.
Remko Nijzink, Christopher Hutton, Ilias Pechlivanidis, René Capell, Berit Arheimer, Jim Freer, Dawei Han, Thorsten Wagener, Kevin McGuire, Hubert Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 4775–4799, https://doi.org/10.5194/hess-20-4775-2016, https://doi.org/10.5194/hess-20-4775-2016, 2016
Short summary
Short summary
The core component of many hydrological systems, the moisture storage capacity available to vegetation, is typically treated as a calibration parameter in hydrological models and often considered to remain constant in time. In this paper we test the potential of a recently introduced method to robustly estimate catchment-scale root-zone storage capacities exclusively based on climate data to reproduce the temporal evolution of root-zone storage under change (deforestation).
Ali D. Abdullah, Jacqueline I. A. Gisen, Pieter van der Zaag, Hubert H. G. Savenije, Usama F. A. Karim, Ilyas Masih, and Ioana Popescu
Hydrol. Earth Syst. Sci., 20, 4031–4042, https://doi.org/10.5194/hess-20-4031-2016, https://doi.org/10.5194/hess-20-4031-2016, 2016
Short summary
Short summary
A comprehensive and detailed data set of the salinity distribution over an entire year in a complex and dynamic (because heavily utilized and modified) deltaic river system was thoroughly analysed, and formed the basis for a validated analytical model that can predict the extent of seawater among other salinity sources in an estuary. The procedure can be applied to other estuaries.
Nutchanart Sriwongsitanon, Hongkai Gao, Hubert H. G. Savenije, Ekkarin Maekan, Sirikanya Saengsawang, and Sansarith Thianpopirug
Hydrol. Earth Syst. Sci., 20, 3361–3377, https://doi.org/10.5194/hess-20-3361-2016, https://doi.org/10.5194/hess-20-3361-2016, 2016
Short summary
Short summary
We demonstrated that the readily available NDII remote sensing product is a very useful proxy for moisture storage in the root zone of vegetation. We compared the temporal variation of the NDII with the root zone storage in a hydrological model of eight catchments in the Upper Ping River in Thailand, yielding very good results. Having a reliable NDII product that can help us to estimate the actual moisture storage in catchments is a major contribution to prediction in ungauged basins.
Nadja I. den Besten, Saket Pande, and Hubert H. G. Savenije
Proc. IAHS, 373, 115–118, https://doi.org/10.5194/piahs-373-115-2016, https://doi.org/10.5194/piahs-373-115-2016, 2016
Short summary
Short summary
Maharashtra is one of the states in India that has witnessed highest rates of farmer suicides as proportion of total number of suicides. We interpret the crisis using a socio-hydrological model in two adjoining regions in Maharashtra, Marathwada and Desh, with higher farmer suicide rates in the former. The analysis confirms existing narratives: low (soil) water storage capacities, no irrigation and access to alternative sources of incomes are to blame for the crisis.
Lan Wang-Erlandsson, Wim G. M. Bastiaanssen, Hongkai Gao, Jonas Jägermeyr, Gabriel B. Senay, Albert I. J. M. van Dijk, Juan P. Guerschman, Patrick W. Keys, Line J. Gordon, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 20, 1459–1481, https://doi.org/10.5194/hess-20-1459-2016, https://doi.org/10.5194/hess-20-1459-2016, 2016
Short summary
Short summary
We present an "Earth observation-based" method for estimating root zone storage capacity – a critical parameter in land surface modelling that represents the maximum amount of soil moisture available for vegetation. Variability within a land cover type is captured, and a global model evaporation simulation is overall improved, particularly in sub-humid to humid regions with seasonality. This new method can eliminate the need for unreliable soil and root depth data in land surface modelling.
Huayang Cai, Hubert H. G. Savenije, Chenjuan Jiang, Lili Zhao, and Qingshu Yang
Hydrol. Earth Syst. Sci., 20, 1177–1195, https://doi.org/10.5194/hess-20-1177-2016, https://doi.org/10.5194/hess-20-1177-2016, 2016
Short summary
Short summary
In this paper, an analytical model for tide-river dynamics has been used to understand the influence of tide and fresh water discharge on the rise of mean water level along the estuary, which remains poorly understood. It is shown that the mean water level is influenced primarily by the tide-river interaction in the tide-dominated region, while it is mainly controlled by the river flow in the upstream part of the estuary.
Remko C. Nijzink, Luis Samaniego, Juliane Mai, Rohini Kumar, Stephan Thober, Matthias Zink, David Schäfer, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 1151–1176, https://doi.org/10.5194/hess-20-1151-2016, https://doi.org/10.5194/hess-20-1151-2016, 2016
Short summary
Short summary
The heterogeneity of landscapes in river basins strongly affects the hydrological response. In this study, the distributed mesoscale Hydrologic Model (mHM) was equipped with additional processes identified by landscapes within one modelling cell. Seven study catchments across Europe were selected to test the value of this additional sub-grid heterogeneity. In addition, the models were constrained based on expert knowledge. Generally, the modifications improved the representation of low flows.
Demetris Koutsoyiannis, Günter Blöschl, András Bárdossy, Christophe Cudennec, Denis Hughes, Alberto Montanari, Insa Neuweiler, and Hubert Savenije
Hydrol. Earth Syst. Sci., 20, 1081–1084, https://doi.org/10.5194/hess-20-1081-2016, https://doi.org/10.5194/hess-20-1081-2016, 2016
J. I. A. Gisen, H. H. G. Savenije, and R. C. Nijzink
Hydrol. Earth Syst. Sci., 19, 2791–2803, https://doi.org/10.5194/hess-19-2791-2015, https://doi.org/10.5194/hess-19-2791-2015, 2015
Short summary
Short summary
We revised the predictive equations for two calibrated parameters in salt intrusion model (the Van der Burgh coefficient K and dispersion coefficient D) using an extended database of 89 salinity profiles including 8 newly conducted salinity measurements. The revised predictive equations consist of easily measured parameters such as the geometry of estuary, tide, friction and the Richardson number. These equations are useful in obtaining the first estimate of salinity distribution in an estuary.
D. Diederen, H. H. G. Savenije, and M. Toffolon
Ocean Sci. Discuss., https://doi.org/10.5194/osd-12-925-2015, https://doi.org/10.5194/osd-12-925-2015, 2015
Revised manuscript not accepted
W. Shao, T. A. Bogaard, M. Bakker, and R. Greco
Hydrol. Earth Syst. Sci., 19, 2197–2212, https://doi.org/10.5194/hess-19-2197-2015, https://doi.org/10.5194/hess-19-2197-2015, 2015
Short summary
Short summary
The effect of preferential flow on the stability of landslides is studied through numerical simulation of two types of rainfall events on a hypothetical hillslope. A model is developed that consists of two parts. The first part is a model for combined saturated/unsaturated subsurface flow and is used to compute the spatial and temporal water pressure response to rainfall. Preferential flow is simulated with a dual-permeability continuum model consisting of a matrix/preferential flow domain.
S. Ceola, B. Arheimer, E. Baratti, G. Blöschl, R. Capell, A. Castellarin, J. Freer, D. Han, M. Hrachowitz, Y. Hundecha, C. Hutton, G. Lindström, A. Montanari, R. Nijzink, J. Parajka, E. Toth, A. Viglione, and T. Wagener
Hydrol. Earth Syst. Sci., 19, 2101–2117, https://doi.org/10.5194/hess-19-2101-2015, https://doi.org/10.5194/hess-19-2101-2015, 2015
Short summary
Short summary
We present the outcomes of a collaborative hydrological experiment undertaken by five different international research groups in a virtual laboratory. Moving from the definition of accurate protocols, a rainfall-runoff model was independently applied by the research groups, which then engaged in a comparative discussion. The results revealed that sharing protocols and running the experiment within a controlled environment is fundamental for ensuring experiment repeatability and reproducibility.
S. Pande, L. Arkesteijn, H. Savenije, and L. A. Bastidas
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-3945-2015, https://doi.org/10.5194/hessd-12-3945-2015, 2015
Revised manuscript not accepted
O. Fovet, L. Ruiz, M. Hrachowitz, M. Faucheux, and C. Gascuel-Odoux
Hydrol. Earth Syst. Sci., 19, 105–123, https://doi.org/10.5194/hess-19-105-2015, https://doi.org/10.5194/hess-19-105-2015, 2015
Short summary
Short summary
We studied the annual hysteretic patterns observed between stream flow and water storage in the saturated and unsaturated zones of a hillslope and a riparian zone. We described these signatures using a hysteresis index and then used this to assess conceptual hydrological models. This led us to identify four hydrological periods and a clearly distinct behaviour between riparian and hillslope groundwaters and to provide new information about the model performances.
J. D. Edixhoven, J. Gupta, and H. H. G. Savenije
Earth Syst. Dynam., 5, 491–507, https://doi.org/10.5194/esd-5-491-2014, https://doi.org/10.5194/esd-5-491-2014, 2014
Short summary
Short summary
Phosphate rock is a finite resource required for fertilizer production. Following a debate over the PR depletion timeline, global PR reserves were recently increased 4-fold based mainly on a restatement of Moroccan reserves. We review whether this restatement is methodologically compatible with resource terminology used in major resource classifications, whether resource classification nomenclature is sufficiently understood in the literature, and whether the recent restatements are reliable.
S. Gharari, M. Hrachowitz, F. Fenicia, H. Gao, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 4839–4859, https://doi.org/10.5194/hess-18-4839-2014, https://doi.org/10.5194/hess-18-4839-2014, 2014
S. Gharari, M. Shafiei, M. Hrachowitz, R. Kumar, F. Fenicia, H. V. Gupta, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 4861–4870, https://doi.org/10.5194/hess-18-4861-2014, https://doi.org/10.5194/hess-18-4861-2014, 2014
L. Wang-Erlandsson, R. J. van der Ent, L. J. Gordon, and H. H. G. Savenije
Earth Syst. Dynam., 5, 441–469, https://doi.org/10.5194/esd-5-441-2014, https://doi.org/10.5194/esd-5-441-2014, 2014
Short summary
Short summary
We investigate the temporal characteristics of partitioned evaporation on land, and we present STEAM (Simple Terrestrial Evaporation to Atmosphere Model) -- a hydrological land-surface model developed to provide inputs to moisture tracking. The terrestrial residence timescale of transpiration (days to months) has larger inter-seasonal variation and is substantially longer than that of interception (hours). This can cause differences in moisture recycling, which is investigated more in Part 2.
R. J. van der Ent, L. Wang-Erlandsson, P. W. Keys, and H. H. G. Savenije
Earth Syst. Dynam., 5, 471–489, https://doi.org/10.5194/esd-5-471-2014, https://doi.org/10.5194/esd-5-471-2014, 2014
T. H. M. van Emmerik, Z. Li, M. Sivapalan, S. Pande, J. Kandasamy, H. H. G. Savenije, A. Chanan, and S. Vigneswaran
Hydrol. Earth Syst. Sci., 18, 4239–4259, https://doi.org/10.5194/hess-18-4239-2014, https://doi.org/10.5194/hess-18-4239-2014, 2014
H. Cai, H. H. G. Savenije, and C. Jiang
Hydrol. Earth Syst. Sci., 18, 4153–4168, https://doi.org/10.5194/hess-18-4153-2014, https://doi.org/10.5194/hess-18-4153-2014, 2014
M. Valk, H. H. G. Savenije, C. C. J. M. Tiberius, and W. M. J. Luxemburg
Hydrol. Earth Syst. Sci., 18, 2599–2613, https://doi.org/10.5194/hess-18-2599-2014, https://doi.org/10.5194/hess-18-2599-2014, 2014
C. Volta, S. Arndt, H. H. G. Savenije, G. G. Laruelle, and P. Regnier
Geosci. Model Dev., 7, 1271–1295, https://doi.org/10.5194/gmd-7-1271-2014, https://doi.org/10.5194/gmd-7-1271-2014, 2014
G. Blöschl, A. Bárdossy, D. Koutsoyiannis, Z. W. Kundzewicz, I. Littlewood, A. Montanari, and H. Savenije
Hydrol. Earth Syst. Sci., 18, 2433–2435, https://doi.org/10.5194/hess-18-2433-2014, https://doi.org/10.5194/hess-18-2433-2014, 2014
H. Gao, M. Hrachowitz, F. Fenicia, S. Gharari, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 18, 1895–1915, https://doi.org/10.5194/hess-18-1895-2014, https://doi.org/10.5194/hess-18-1895-2014, 2014
S. Pande, L. Arkesteijn, H. H. G. Savenije, and L. A. Bastidas
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-2555-2014, https://doi.org/10.5194/hessd-11-2555-2014, 2014
Manuscript not accepted for further review
H. H. G. Savenije, A. Y. Hoekstra, and P. van der Zaag
Hydrol. Earth Syst. Sci., 18, 319–332, https://doi.org/10.5194/hess-18-319-2014, https://doi.org/10.5194/hess-18-319-2014, 2014
H. Cai, H. H. G. Savenije, and M. Toffolon
Hydrol. Earth Syst. Sci., 18, 287–304, https://doi.org/10.5194/hess-18-287-2014, https://doi.org/10.5194/hess-18-287-2014, 2014
R. J. van der Ent, O. A. Tuinenburg, H.-R. Knoche, H. Kunstmann, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 17, 4869–4884, https://doi.org/10.5194/hess-17-4869-2013, https://doi.org/10.5194/hess-17-4869-2013, 2013
W. R. van Esse, C. Perrin, M. J. Booij, D. C. M. Augustijn, F. Fenicia, D. Kavetski, and F. Lobligeois
Hydrol. Earth Syst. Sci., 17, 4227–4239, https://doi.org/10.5194/hess-17-4227-2013, https://doi.org/10.5194/hess-17-4227-2013, 2013
B. M. C. Fischer, M. L. Mul, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 17, 2161–2170, https://doi.org/10.5194/hess-17-2161-2013, https://doi.org/10.5194/hess-17-2161-2013, 2013
T. Euser, H. C. Winsemius, M. Hrachowitz, F. Fenicia, S. Uhlenbrook, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 17, 1893–1912, https://doi.org/10.5194/hess-17-1893-2013, https://doi.org/10.5194/hess-17-1893-2013, 2013
A. M. J. Coenders-Gerrits, L. Hopp, H. H. G. Savenije, and L. Pfister
Hydrol. Earth Syst. Sci., 17, 1749–1763, https://doi.org/10.5194/hess-17-1749-2013, https://doi.org/10.5194/hess-17-1749-2013, 2013
M. Hrachowitz, H. Savenije, T. A. Bogaard, D. Tetzlaff, and C. Soulsby
Hydrol. Earth Syst. Sci., 17, 533–564, https://doi.org/10.5194/hess-17-533-2013, https://doi.org/10.5194/hess-17-533-2013, 2013
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Theory development
Future response of ecosystem water use efficiency to CO2 effects in the Yellow River Basin, China
Temporal shift in groundwater fauna in southwestern Germany
Impact of hydro-meteorological conditions and flash drought duration on post-flash drought recovery time patterns
Combined impacts of climate change and human activities on blue and green water resources in the high-intensity development watershed
Drought Research Exhibits Shifting Priorities, Trends and Geographic Patterns
Soil water sources and their implications for vegetation restoration in the Three-Rivers Headwater Region during different ablation periods
Canopy structure modulates the sensitivity of subalpine forest stands to interannual snowpack and precipitation variability
Biocrust-reduced soil water retention and soil infiltration in an alpine Kobresia meadow
The natural abundance of stable water isotopes method may overestimate deep-layer soil water use by trees
Contribution of cryosphere to runoff in the transition zone between the Tibetan Plateau and arid region based on environmental isotopes
Vegetation optimality explains the convergence of catchments on the Budyko curve
Differential response of plant transpiration to uptake of rainwater-recharged soil water for dominant tree species in the semiarid Loess Plateau
Isotopic offsets between bulk plant water and its sources are larger in cool and wet environments
Hydrology without dimensions
Long-term climate-influenced land cover change in discontinuous permafrost peatland complexes
Groundwater fauna in an urban area – natural or affected?
Age and origin of leaf wax n-alkanes in fluvial sediment–paleosol sequences and implications for paleoenvironmental reconstructions
Seasonal partitioning of precipitation between streamflow and evapotranspiration, inferred from end-member splitting analysis
The influence of litter crusts on soil properties and hydrological processes in a sandy ecosystem
Unexplained hydrogen isotope offsets complicate the identification and quantification of tree water sources in a riparian forest
A synthesis of three decades of hydrological research at Scotty Creek, NWT, Canada
Potential evaporation at eddy-covariance sites across the globe
Scaling properties reveal regulation of river flows in the Amazon through a “forest reservoir”
Water movement through plant roots – exact solutions of the water flow equation in roots with linear or exponential piecewise hydraulic properties
Large-scale vegetation responses to terrestrial moisture storage changes
Vegetation dynamics and climate seasonality jointly control the interannual catchment water balance in the Loess Plateau under the Budyko framework
Leaf-scale experiments reveal an important omission in the Penman–Monteith equation
The Budyko functions under non-steady-state conditions
Matching the Budyko functions with the complementary evaporation relationship: consequences for the drying power of the air and the Priestley–Taylor coefficient
Hydrological recovery in two large forested watersheds of southeastern China: the importance of watershed properties in determining hydrological responses to reforestation
The socioecohydrology of rainwater harvesting in India: understanding water storage and release dynamics across spatial scales
Nitrate sinks and sources as controls of spatio-temporal water quality dynamics in an agricultural headwater catchment
Impacts of beaver dams on hydrologic and temperature regimes in a mountain stream
Estimation of crop water requirements: extending the one-step approach to dual crop coefficients
Technical Note: On the Matt–Shuttleworth approach to estimate crop water requirements
Horizontal soil water potential heterogeneity: simplifying approaches for crop water dynamics models
Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics
Regional and local patterns in depth to water table, hydrochemistry and peat properties of bogs and their laggs in coastal British Columbia
Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China
A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach
Training hydrologists to be ecohydrologists and play a leading role in environmental problem solving
Thermodynamic constraints on effective energy and mass transfer and catchment function
Can we predict groundwater discharge from terrestrial ecosystems using existing eco-hydrological concepts?
Macroinvertebrate community responses to a dewatering disturbance gradient in a restored stream
Mechanisms of vegetation uprooting by flow in alluvial non-cohesive sediment
Forest decline caused by high soil water conditions in a permafrost region
Siwei Chen, Yuxue Guo, Yue-Ping Xu, and Lu Wang
Hydrol. Earth Syst. Sci., 28, 4989–5009, https://doi.org/10.5194/hess-28-4989-2024, https://doi.org/10.5194/hess-28-4989-2024, 2024
Short summary
Short summary
Our research explores how increased CO2 levels affect water use efficiency in the Yellow River basin. Using updated climate models, we found that future climate change significantly impacts water use efficiency, leading to improved plant resilience against moderate droughts. These findings help predict how ecosystems might adapt to environmental changes, providing essential insights into ways of managing water resources under varying climate conditions.
Fabien Koch, Philipp Blum, Heide Stein, Andreas Fuchs, Hans Jürgen Hahn, and Kathrin Menberg
Hydrol. Earth Syst. Sci., 28, 4927–4946, https://doi.org/10.5194/hess-28-4927-2024, https://doi.org/10.5194/hess-28-4927-2024, 2024
Short summary
Short summary
In this study, we identify shifts in groundwater fauna due to natural or human impacts over 2 decades. We find no overall temporal or large-scale trends in fauna or abiotic parameters. However, at a local level, six monitoring wells show shifting or fluctuating faunal parameters. Our findings indicate that changes in surface conditions should be assessed in line with hydrochemical parameters to better understand changes in groundwater fauna and to obtain reliable biomonitoring results.
Mengge Lu, Huaiwei Sun, Yong Yang, Jie Xue, Hongbo Ling, Hong Zhang, and Wenxin Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-128, https://doi.org/10.5194/hess-2024-128, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Our study explores how ecosystems recover after flash droughts. Using vegetation and soil moisture data, we found that recovery takes about 37.5 days on average in China, longer in central and southern regions. Factors like post-drought radiation and temperature affect recovery, with extreme temperatures prolonging it. Herbaceous plants recover faster than forests. Our findings aid water resource management and drought monitoring on a large scale, offering insights into ecosystem resilience.
Xuejin Tan, Bingjun Liu, Xuezhi Tan, Zeqin Huang, and Jianyu Fu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-106, https://doi.org/10.5194/hess-2024-106, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We assess the spatiotemporal changes in blue and green water scarcity in a anthropogenic highly-impacted watershed and their association with climate change and land use change, using a multi-water-flux validated SWAT model. Observed streamflow, evapotranspiration, and soil moisture are integrated to model calibration, and validation. Results show that both climate change and land use change have decrease blue water and g green water flow, while land use change increase green water flow.
Roland Baatz, Gohar Ghazaryan, Michael Hagenlocher, Claas Nendel, Andrea Toreti, and Ehsan Eyshi Rezaei
EGUsphere, https://doi.org/10.5194/egusphere-2024-1069, https://doi.org/10.5194/egusphere-2024-1069, 2024
Short summary
Short summary
Our analysis of over 130,000 peer-reviewed articles on drought research reveals critical shifts towards interdisciplinary approaches. Research priorities are identified in methodological advancements of drought forecasting and in plant genetics. The systemic nature of drought impacts is demonstrated. Challenges identified are the integration of plant physiological response in forecasting, fostering machine learning and early warning systems, and more systemic drought resilience frameworks.
Zongxing Li, Juan Gui, Qiao Cui, Jian Xue, Fa Du, and Lanping Si
Hydrol. Earth Syst. Sci., 28, 719–734, https://doi.org/10.5194/hess-28-719-2024, https://doi.org/10.5194/hess-28-719-2024, 2024
Short summary
Short summary
Precipitation, ground ice, and snow meltwater accounted for approximately 72 %, 20 %, and 8 % of soil water during the early ablation period. Snow is completely melted in the heavy ablation period and the end of the ablation period, and precipitation contributed about 90 % and 94 % of soil water, respectively. These recharges also vary markedly with altitude and vegetation type.
Max Berkelhammer, Gerald F. Page, Frank Zurek, Christopher Still, Mariah S. Carbone, William Talavera, Laura Hildebrand, James Byron, Kyle Inthabandith, Angellica Kucinski, Melissa Carter, Kelsey Foss, Wendy Brown, Rosemary W. H. Carroll, Austin Simonpietri, Marshall Worsham, Ian Breckheimer, Anna Ryken, Reed Maxwell, David Gochis, Mark Raleigh, Eric Small, and Kenneth H. Williams
EGUsphere, https://doi.org/10.5194/egusphere-2023-3063, https://doi.org/10.5194/egusphere-2023-3063, 2024
Short summary
Short summary
Warming in montane systems is affecting the amount of snowmelt inputs. This will affect subalpine forests globally that rely on spring snowmelt to support their water demands. We use a network of sensors across in the Upper Colorado Basin to show that changing spring primarily impacts dense forest stands that have high peak water demands. On the other hand, open forest stands show a higher reliance on summer rain and were minimally sensitive to even historically low snow conditions like 2019.
Licong Dai, Ruiyu Fu, Xiaowei Guo, Yangong Du, Guangmin Cao, Huakun Zhou, and Zhongmin Hu
Hydrol. Earth Syst. Sci., 27, 4247–4256, https://doi.org/10.5194/hess-27-4247-2023, https://doi.org/10.5194/hess-27-4247-2023, 2023
Short summary
Short summary
We found that, in the 0–30 cm soil layer, soil water retention and soil water content in normal Kobresia meadow (NM) were higher than those in biocrust meadow (BM), whereas the 30–40 cm layer's soil water retention and soil water content in NM were lower than those in BM. The topsoil infiltration rate in BM was lower than that in NM. Our findings revealed that the establishment of biocrust did not improve soil water retention and infiltration.
Shaofei Wang, Xiaodong Gao, Min Yang, Gaopeng Huo, Xiaolin Song, Kadambot H. M. Siddique, Pute Wu, and Xining Zhao
Hydrol. Earth Syst. Sci., 27, 123–137, https://doi.org/10.5194/hess-27-123-2023, https://doi.org/10.5194/hess-27-123-2023, 2023
Short summary
Short summary
Water uptake depth of 11-year-old apple trees reached 300 cm in the blossom and young fruit stage and only 100 cm in the fruit swelling stage, while 17-year-old trees always consumed water from 0–320 cm soil layers. Overall, the natural abundance of stable water isotopes method overestimated the contribution of deep soil water, especially in the 320–500 cm soils. Our findings highlight that determining the occurrence of root water uptake in deep soils helps to quantify trees' water use strategy.
Juan Gui, Zongxing Li, Qi Feng, Qiao Cui, and Jian Xue
Hydrol. Earth Syst. Sci., 27, 97–122, https://doi.org/10.5194/hess-27-97-2023, https://doi.org/10.5194/hess-27-97-2023, 2023
Short summary
Short summary
As the transition zone between the Tibetan Plateau and the arid region, the Qilian Mountains are important ecological barriers and source regions of inland rivers in northwest China. In recent decades, drastic changes in the cryosphere have had a significant impact on the quantity and formation process of water resources in the Qilian Mountains. The mountain runoff of the Qilian Mountains mainly comes from the cryosphere belt, which contributes to approximately 80 % runoff.
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 6289–6309, https://doi.org/10.5194/hess-26-6289-2022, https://doi.org/10.5194/hess-26-6289-2022, 2022
Short summary
Short summary
Most catchments plot close to the empirical Budyko curve, which allows for estimating the long-term mean annual evaporation and runoff. We found that a model that optimizes vegetation properties in response to changes in precipitation leads it to converge to a single curve. In contrast, models that assume no changes in vegetation start to deviate from a single curve. This implies that vegetation has a stabilizing role, bringing catchments back to equilibrium after changes in climate.
Yakun Tang, Lina Wang, Yongqiang Yu, and Dongxu Lu
Hydrol. Earth Syst. Sci., 26, 4995–5013, https://doi.org/10.5194/hess-26-4995-2022, https://doi.org/10.5194/hess-26-4995-2022, 2022
Short summary
Short summary
Whether rainwater-recharged soil water (RRS) uptake can increase plant transpiration after rainfall pulses requires investigation. Our results indicate a differential response of plant transpiration to RRS uptake. Mixed afforestation enhances these water relationships and decreases soil water source competition in deep soil. Our results suggest that plant species or plantation types that can enhance RRS uptake and reduce water competition should be considered for use in water-limited regions.
Javier de la Casa, Adrià Barbeta, Asun Rodríguez-Uña, Lisa Wingate, Jérôme Ogée, and Teresa E. Gimeno
Hydrol. Earth Syst. Sci., 26, 4125–4146, https://doi.org/10.5194/hess-26-4125-2022, https://doi.org/10.5194/hess-26-4125-2022, 2022
Short summary
Short summary
Recently, studies have been reporting mismatches in the water isotopic composition of plants and soils. In this work, we reviewed worldwide isotopic composition data of field and laboratory studies to see if the mismatch is generalised, and we found it to be true. This contradicts theoretical expectations and may underlie an non-described phenomenon that should be forward investigated and implemented in ecohydrological models to avoid erroneous estimations of water sources used by vegetation.
Amilcare Porporato
Hydrol. Earth Syst. Sci., 26, 355–374, https://doi.org/10.5194/hess-26-355-2022, https://doi.org/10.5194/hess-26-355-2022, 2022
Short summary
Short summary
Applying dimensional analysis to the partitioning of water and soil on terrestrial landscapes reveals their dominant environmental controls. We discuss how the dryness index and the storage index affect the long-term rainfall partitioning, the key nonlinear control of the dryness index in global datasets of weathering rates, and the existence of new macroscopic relations among average variables in landscape evolution statistics with tantalizing analogies with turbulent fluctuations.
Olivia Carpino, Kristine Haynes, Ryan Connon, James Craig, Élise Devoie, and William Quinton
Hydrol. Earth Syst. Sci., 25, 3301–3317, https://doi.org/10.5194/hess-25-3301-2021, https://doi.org/10.5194/hess-25-3301-2021, 2021
Short summary
Short summary
This study demonstrates how climate warming in peatland-dominated regions of discontinuous permafrost is changing the form and function of the landscape. Key insights into the rates and patterns of such changes in the coming decades are provided through careful identification of land cover transitional stages and characterization of the hydrological and energy balance regimes for each stage.
Fabien Koch, Kathrin Menberg, Svenja Schweikert, Cornelia Spengler, Hans Jürgen Hahn, and Philipp Blum
Hydrol. Earth Syst. Sci., 25, 3053–3070, https://doi.org/10.5194/hess-25-3053-2021, https://doi.org/10.5194/hess-25-3053-2021, 2021
Short summary
Short summary
In this study, we address the question of whether groundwater fauna in an urban area is natural or affected in comparison to forested land. We find noticeable differences in the spatial distribution of groundwater species and abiotic parameters. An ecological assessment reveals that conditions in the urban area are mainly not good. Yet, there is no clear spatial pattern in terms of land use and anthropogenic impacts. These are significant findings for conservation and usage of urban groundwater.
Marcel Bliedtner, Hans von Suchodoletz, Imke Schäfer, Caroline Welte, Gary Salazar, Sönke Szidat, Mischa Haas, Nathalie Dubois, and Roland Zech
Hydrol. Earth Syst. Sci., 24, 2105–2120, https://doi.org/10.5194/hess-24-2105-2020, https://doi.org/10.5194/hess-24-2105-2020, 2020
Short summary
Short summary
This study investigates the age and origin of leaf wax n-alkanes from a fluvial sediment–paleosol sequence (FSPS) by compound-class 14C dating. Our results show varying age offsets between the formation and sedimentation of leaf wax n-alkanes from well-developed (paleo)soils and fluvial sediments that are mostly due to their complex origin in such sequences. Thus, dating the leaf wax n-alkanes is an important step for more robust leaf-wax-based paleoenvironmental reconstructions in FSPSs.
James W. Kirchner and Scott T. Allen
Hydrol. Earth Syst. Sci., 24, 17–39, https://doi.org/10.5194/hess-24-17-2020, https://doi.org/10.5194/hess-24-17-2020, 2020
Short summary
Short summary
Perhaps the oldest question in hydrology is
Where does water go when it rains?. Here we present a new way to measure how the terrestrial water cycle partitions precipitation into its two ultimate fates:
green waterthat is evaporated or transpired back to the atmosphere and
blue waterthat is discharged to stream channels. Our analysis may help in gauging the vulnerability of both water resources and terrestrial ecosystems to changes in rainfall patterns.
Yu Liu, Zeng Cui, Ze Huang, Hai-Tao Miao, and Gao-Lin Wu
Hydrol. Earth Syst. Sci., 23, 2481–2490, https://doi.org/10.5194/hess-23-2481-2019, https://doi.org/10.5194/hess-23-2481-2019, 2019
Short summary
Short summary
We focus on the positive effects of litter crusts on soil water holding capacity and water interception capacity compared with biocrusts. Litter crusts can significantly improve sandy water content and organic matter. Water-holding capacity increased with development of litter crusts in the sandy interface. Water infiltration rate is increased by sandy and litter crusts' interface properties. Litter crusts provided a better microhabitat conducive to plant growth in sandy lands.
Adrià Barbeta, Sam P. Jones, Laura Clavé, Lisa Wingate, Teresa E. Gimeno, Bastien Fréjaville, Steve Wohl, and Jérôme Ogée
Hydrol. Earth Syst. Sci., 23, 2129–2146, https://doi.org/10.5194/hess-23-2129-2019, https://doi.org/10.5194/hess-23-2129-2019, 2019
Short summary
Short summary
Plant water sources of a beech riparian forest were monitored using stable isotopes. Isotopic fractionation during root water uptake is usually neglected but may be more common than previously accepted. Xylem water was always more depleted in δ2H than all sources considered, suggesting isotopic discrimination during water uptake or within plant tissues. Thus, the identification and quantification of tree water sources was affected. Still, oxygen isotopes were a good tracer of plant source water.
William Quinton, Aaron Berg, Michael Braverman, Olivia Carpino, Laura Chasmer, Ryan Connon, James Craig, Élise Devoie, Masaki Hayashi, Kristine Haynes, David Olefeldt, Alain Pietroniro, Fereidoun Rezanezhad, Robert Schincariol, and Oliver Sonnentag
Hydrol. Earth Syst. Sci., 23, 2015–2039, https://doi.org/10.5194/hess-23-2015-2019, https://doi.org/10.5194/hess-23-2015-2019, 2019
Short summary
Short summary
This paper synthesizes nearly three decades of eco-hydrological field and modelling studies at Scotty Creek, Northwest Territories, Canada, highlighting the key insights into the major water flux and storage processes operating within and between the major land cover types of this wetland-dominated region of discontinuous permafrost. It also examines the rate and pattern of permafrost-thaw-induced land cover change and how such changes will affect the hydrology and water resources of the region.
Wouter H. Maes, Pierre Gentine, Niko E. C. Verhoest, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 23, 925–948, https://doi.org/10.5194/hess-23-925-2019, https://doi.org/10.5194/hess-23-925-2019, 2019
Short summary
Short summary
Potential evaporation (Ep) is the amount of water an ecosystem would consume if it were not limited by water availability or other stress factors. In this study, we compared several methods to estimate Ep using a global dataset of 107 FLUXNET sites. A simple radiation-driven method calibrated per biome consistently outperformed more complex approaches and makes a suitable tool to investigate the impact of water use and demand, drought severity and biome productivity.
Juan Fernando Salazar, Juan Camilo Villegas, Angela María Rendón, Estiven Rodríguez, Isabel Hoyos, Daniel Mercado-Bettín, and Germán Poveda
Hydrol. Earth Syst. Sci., 22, 1735–1748, https://doi.org/10.5194/hess-22-1735-2018, https://doi.org/10.5194/hess-22-1735-2018, 2018
Short summary
Short summary
River flow regimes are being altered by global change. Understanding the mechanisms behind such alterations is crucial for hydrological prediction. We introduce a novel interpretation of river flow metrics (scaling) that allows any river basin to be classified as regulated or unregulated, and to identify transitions between these states. We propose the
forest reservoirhypothesis to explain how forest loss can force the Amazonian river basins from regulated to unregulated states.
Félicien Meunier, Valentin Couvreur, Xavier Draye, Mohsen Zarebanadkouki, Jan Vanderborght, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 21, 6519–6540, https://doi.org/10.5194/hess-21-6519-2017, https://doi.org/10.5194/hess-21-6519-2017, 2017
Short summary
Short summary
To maintain its yield, a plant needs to transpire water that it acquires from the soil. A deep understanding of the mechanisms that lead to water uptake location and intensity is required to correctly simulate the water transfer in the soil to the atmosphere. This work presents novel and general solutions of the water flow equation in roots with varying hydraulic properties that deeply affect the uptake pattern and the transpiration rate and can be used in ecohydrological models.
Robert L. Andrew, Huade Guan, and Okke Batelaan
Hydrol. Earth Syst. Sci., 21, 4469–4478, https://doi.org/10.5194/hess-21-4469-2017, https://doi.org/10.5194/hess-21-4469-2017, 2017
Short summary
Short summary
In this study we statistically analyse the relationship between vegetation cover and components of total water storage. Splitting water storage into different components allows for a more comprehensive understanding of the temporal response of vegetation to changes in water storage. Generally, vegetation appears to be more sensitive to interannual changes in water storage than to shorter changes, though this varies in different land use types.
Tingting Ning, Zhi Li, and Wenzhao Liu
Hydrol. Earth Syst. Sci., 21, 1515–1526, https://doi.org/10.5194/hess-21-1515-2017, https://doi.org/10.5194/hess-21-1515-2017, 2017
Short summary
Short summary
The relationship between controlling parameters of annual catchment water balance and climate seasonality (S) and vegetation coverage (M) was discussed under the Budyko framework and an empirical equation was further developed so that the contributions from M to actual evapotranspiration (ET) could be determined more accurately. The results showed that the effects of landscape condition changes to ET variation will be estimated with a large error if the impacts of S are ignored.
Stanislaus J. Schymanski and Dani Or
Hydrol. Earth Syst. Sci., 21, 685–706, https://doi.org/10.5194/hess-21-685-2017, https://doi.org/10.5194/hess-21-685-2017, 2017
Short summary
Short summary
Most of the rain falling on land is returned to the atmosphere by plant leaves, which release water vapour (transpire) through tiny pores. To better understand this process, we used artificial leaves in a special wind tunnel and discovered major problems with an established approach (PM equation) widely used to quantify transpiration and its sensitivity to climate change. We present an improved set of equations, consistent with experiments and displaying more realistic climate sensitivity.
Roger Moussa and Jean-Paul Lhomme
Hydrol. Earth Syst. Sci., 20, 4867–4879, https://doi.org/10.5194/hess-20-4867-2016, https://doi.org/10.5194/hess-20-4867-2016, 2016
Short summary
Short summary
A new physically based formulation is proposed to extend the Budyko framework under non-steady-state conditions, taking into account the change in water storage. The new formulation, which introduces an additional parameter, represents a generic framework applicable to any Budyko function at various time steps. It is compared to other formulations from the literature and the analytical solution of Greve et al. (2016) appears to be a particular case.
Jean-Paul Lhomme and Roger Moussa
Hydrol. Earth Syst. Sci., 20, 4857–4865, https://doi.org/10.5194/hess-20-4857-2016, https://doi.org/10.5194/hess-20-4857-2016, 2016
Short summary
Short summary
The Budyko functions are matched with the complementary evaporation relationship. We show that there is a functional dependence between the Budyko functions and the drying power of the air. Examining the case where potential evaporation is calculated by means of a Priestley–Taylor type equation with a varying coefficient, we show that this coefficient should have a specified value as a function of the Budyko shape parameter and the aridity index.
Wenfei Liu, Xiaohua Wei, Qiang Li, Houbao Fan, Honglang Duan, Jianping Wu, Krysta Giles-Hansen, and Hao Zhang
Hydrol. Earth Syst. Sci., 20, 4747–4756, https://doi.org/10.5194/hess-20-4747-2016, https://doi.org/10.5194/hess-20-4747-2016, 2016
Short summary
Short summary
In recent decades, limited research has been conducted to examine the role of watershed properties in hydrological responses in large watersheds. Based on pair-wise comparisons, we conclude that reforestation decreased high flows but increased low flows in the watersheds studied. Hydrological recovery through reforestation is largely dependent on watershed properties when forest change and climate are similar and comparable. This finding has important implications for designing reforestation.
Kimberly J. Van Meter, Michael Steiff, Daniel L. McLaughlin, and Nandita B. Basu
Hydrol. Earth Syst. Sci., 20, 2629–2647, https://doi.org/10.5194/hess-20-2629-2016, https://doi.org/10.5194/hess-20-2629-2016, 2016
Short summary
Short summary
Although village-scale rainwater harvesting (RWH) structures have been used for millennia in India, many of these structures have fallen into disrepair due to increased dependence on groundwater. This dependence has contributed to declines in groundwater resources, and in turn to efforts to revive older RWH systems. In the present study, we use field data to quantify water fluxes in a cascade of irrigation tanks to better our understanding of the impact of RWH systems on the water balance in con
Tobias Schuetz, Chantal Gascuel-Odoux, Patrick Durand, and Markus Weiler
Hydrol. Earth Syst. Sci., 20, 843–857, https://doi.org/10.5194/hess-20-843-2016, https://doi.org/10.5194/hess-20-843-2016, 2016
Short summary
Short summary
We quantify the spatio-temporal impact of distinct nitrate sinks and sources on stream network nitrate dynamics in an agricultural headwater. By applying a data-driven modelling approach, we are able to fully distinguish between mixing and dilution processes, and biogeochemical in-stream removal processes along the stream network. In-stream nitrate removal is estimated by applying a novel transfer coefficient based on energy availability.
M. Majerova, B. T. Neilson, N. M. Schmadel, J. M. Wheaton, and C. J. Snow
Hydrol. Earth Syst. Sci., 19, 3541–3556, https://doi.org/10.5194/hess-19-3541-2015, https://doi.org/10.5194/hess-19-3541-2015, 2015
Short summary
Short summary
This study quantifies the impacts of beaver on hydrologic and temperature regimes, as well as highlights the importance of understanding the spatial and temporal scales of those impacts.
Reach-scale discharge showed shift from losing to gaining. Temperature increased by 0.38°C (3.8%) and mean residence time by 230%. At the sub-reach scale, discharge gains and losses increased in variability. At the beaver dam scale, we observed increase in thermal heterogeneity with warmer and cooler niches.
J. P. Lhomme, N. Boudhina, M. M. Masmoudi, and A. Chehbouni
Hydrol. Earth Syst. Sci., 19, 3287–3299, https://doi.org/10.5194/hess-19-3287-2015, https://doi.org/10.5194/hess-19-3287-2015, 2015
J. P. Lhomme, N. Boudhina, and M. M. Masmoudi
Hydrol. Earth Syst. Sci., 18, 4341–4348, https://doi.org/10.5194/hess-18-4341-2014, https://doi.org/10.5194/hess-18-4341-2014, 2014
V. Couvreur, J. Vanderborght, L. Beff, and M. Javaux
Hydrol. Earth Syst. Sci., 18, 1723–1743, https://doi.org/10.5194/hess-18-1723-2014, https://doi.org/10.5194/hess-18-1723-2014, 2014
A. D. Jayakaran, T. M. Williams, H. Ssegane, D. M. Amatya, B. Song, and C. C. Trettin
Hydrol. Earth Syst. Sci., 18, 1151–1164, https://doi.org/10.5194/hess-18-1151-2014, https://doi.org/10.5194/hess-18-1151-2014, 2014
S. A. Howie and H. J. van Meerveld
Hydrol. Earth Syst. Sci., 17, 3421–3435, https://doi.org/10.5194/hess-17-3421-2013, https://doi.org/10.5194/hess-17-3421-2013, 2013
X. Cui, S. Liu, and X. Wei
Hydrol. Earth Syst. Sci., 16, 4279–4290, https://doi.org/10.5194/hess-16-4279-2012, https://doi.org/10.5194/hess-16-4279-2012, 2012
V. Couvreur, J. Vanderborght, and M. Javaux
Hydrol. Earth Syst. Sci., 16, 2957–2971, https://doi.org/10.5194/hess-16-2957-2012, https://doi.org/10.5194/hess-16-2957-2012, 2012
M. E. McClain, L. Chícharo, N. Fohrer, M. Gaviño Novillo, W. Windhorst, and M. Zalewski
Hydrol. Earth Syst. Sci., 16, 1685–1696, https://doi.org/10.5194/hess-16-1685-2012, https://doi.org/10.5194/hess-16-1685-2012, 2012
C. Rasmussen
Hydrol. Earth Syst. Sci., 16, 725–739, https://doi.org/10.5194/hess-16-725-2012, https://doi.org/10.5194/hess-16-725-2012, 2012
A. P. O'Grady, J. L. Carter, and J. Bruce
Hydrol. Earth Syst. Sci., 15, 3731–3739, https://doi.org/10.5194/hess-15-3731-2011, https://doi.org/10.5194/hess-15-3731-2011, 2011
J. D. Muehlbauer, M. W. Doyle, and E. S. Bernhardt
Hydrol. Earth Syst. Sci., 15, 1771–1783, https://doi.org/10.5194/hess-15-1771-2011, https://doi.org/10.5194/hess-15-1771-2011, 2011
K. Edmaier, P. Burlando, and P. Perona
Hydrol. Earth Syst. Sci., 15, 1615–1627, https://doi.org/10.5194/hess-15-1615-2011, https://doi.org/10.5194/hess-15-1615-2011, 2011
H. Iwasaki, H. Saito, K. Kuwao, T. C. Maximov, and S. Hasegawa
Hydrol. Earth Syst. Sci., 14, 301–307, https://doi.org/10.5194/hess-14-301-2010, https://doi.org/10.5194/hess-14-301-2010, 2010
Cited articles
Ali, G. A., L'Heureux, C., Roy, A. G., Turmel, M. C., and Courchesne, F.: Linking spatial patterns of perched groundwater storage and stormflow generation processes in a headwater forested catchment, Hydrol. Process., 25, 3843–3857, https://doi.org/10.1002/hyp.8238, 2011.
Allen, M. F.: Mycorrhizal fungi: Highways for water and nutrients in arid soils, Vadose Zone J., 6, 291–297, https://doi.org/10.2136/vzj2006.0068, 2007.
Arnbroise, B.: Variable, `active' versus `contributing' areas or periods: a necessary distinction, Hydrol. Process., 18, 1149–1155, https://doi.org/10.1002/hyp.5536, 2004.
Augé, R. M.: Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis, Mycorrhiza, 11, 3–42, https://doi.org/10.1007/s005720100097, 2001.
Bachofen, C., Tumber-Davila, S. J., Mackay, D. S., McDowell, N. G., Carminati, A., Klein, T., Stocker, B. D., Mencuccini, M., and Grossiord, C.: Tree water uptake patterns across the globe, New Phytol., 242, 1891–1910, https://doi.org/10.1111/nph.19762, 2024.
Banwart, S. A., Bernasconi, S. M., Blum, W. E. H., de Souza, D. M., Chabaux, F., Duffy, C., Kercheva, M., Krám, P., Lair, G. J., Lundin, L., Menon, M., Nikolaidis, N. P., Novak, M., Panagos, P., Ragnarsdottir, K. V., Robinson, D. A., Rousseva, S., de Ruiter, P., van Gaans, P., Weng, L., White, T., and Zhang, B.: Soil Functions in Earth's Critical Zone: Key Results and Conclusions, Adv. Agron., 142, 1–27, https://doi.org/10.1016/bs.agron.2016.11.001, 2017.
Beiler, K. J., Durall, D. M., Simard, S. W., Maxwell, S. A., and Kretzer, A. M.: Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts, New Phytol., 185, 543–553, https://doi.org/10.1111/j.1469-8137.2009.03069.x, 2009.
Bengough, A. G.: Water Dynamics of the Root Zone: Rhizosphere Biophysics and Its Control on Soil Hydrology, Vadose Zo. J., 11, vzj2011.0111, https://doi.org/10.2136/vzj2011.0111, 2012.
Beven, K.: The era of infiltration, Hydrol. Earth Syst. Sci., 25, 851–866, https://doi.org/10.5194/hess-25-851-2021, 2021.
Beven, K. and Germann, P.: Macropores and water flow in soils revisited, Water Resour. Res., 49, 3071–3092, https://doi.org/10.1002/wrcr.20156, 2013.
Beven, K. J.: Rainfall-runoff modeling: the primer. Rainfall-runoff Model, Primer, 15, 84–96, 2012.
Bian, C., Xia, J., Zhang, X., Huang, K., Cui, E., Zhou, J., Wei, N., Wang, Y. P., Lombardozzi, D., Goll, D. S., Knauer, J., Arora, V., Yuan, W., Sitch, S., Friedlingstein, P., and Luo, Y.: Uncertainty and Emergent Constraints on Enhanced Ecosystem Carbon Stock by Land Greening, J. Adv. Model. Earth Syst., 15, e2022MS003397, https://doi.org/10.1029/2022MS003397, 2023.
Bleby, T. M., Mcelrone, A. J., and Jackson, R. B.: Water uptake and hydraulic redistribution across large woody root systems to 20 m depth, Plant Cell Environ., 33, 2132–2148, https://doi.org/10.1111/j.1365-3040.2010.02212.x, 2010.
Blöschl, G. and Sivapalan, M.: Scale issues in hydrological modelling: A review, Hydrol. Process., 9, 3–4, https://doi.org/10.1002/hyp.3360090305, 1995.
Blume-Werry, G., Milbau, A., Teuber, L. M., Johansson, M., and Dorrepaal, E.: Dwelling in the deep–strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil, New Phytol., 223, 1328–1339, https://doi.org/10.1111/nph.15903, 2019.
Bonfante, P. and Genre, A.: Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis, Nat. Commun., 1, 48, https://doi.org/10.1038/ncomms1046, 2010.
Bouaziz, L. J. E., Steele-Dunne, S. C., Schellekens, J., Weerts, A. H., Stam, J., Sprokkereef, E., Winsemius, H. H. C., Savenije, H. H. G., and Hrachowitz, M.: Improved Understanding of the Link Between Catchment-Scale Vegetation Accessible Storage and Satellite-Derived Soil Water Index, Water Resour. Res., 56, e2019WR026365, https://doi.org/10.1029/2019WR026365, 2020.
Bouaziz, L. J. E., Aalbers, E. E., Weerts, A. H., Hegnauer, M., Buiteveld, H., Lammersen, R., Stam, J., Sprokkereef, E., Savenije, H. H. G., and Hrachowitz, M.: Ecosystem adaptation to climate change: The sensitivity of hydrological predictions to time-dynamic model parameters, Hydrol. Earth Syst. Sci., 26, 1295–1318, https://doi.org/10.5194/hess-26-1295-2022, 2022.
Brantley, S. L., Eissenstat, D. M., Marshall, J. A., Godsey, S. E., Balogh-Brunstad, Z., Karwan, D. L., Papuga, S. A., Roering, J., Dawson, T. E., Evaristo, J., Chadwick, O., McDonnell, J. J., and Weathers, K. C.: Reviews and syntheses: on the roles trees play in building and plumbing the critical zone, Biogeosciences, 14, 5115–5142, https://doi.org/10.5194/bg-14-5115-2017, 2017.
Brutsaert, W.: Daily evaporation from drying soil: Universal parameterization with similarity, Water Resour. Res., 50, 3206–3215, https://doi.org/10.1002/2013WR014872, 2014.
Cai, G., Vanderborght, J., Langensiepen, M., Schnepf, A., Hüging, H., and Vereecken, H.: Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions, Hydrol. Earth Syst. Sci., 22, 2449–2470, https://doi.org/10.5194/hess-22-2449-2018, 2018.
Cao, Z., Duan, H., Ma, R., Shen, M., and Yang, H.: Remarkable effects of greening watershed on reducing suspended sediment flux in China's major rivers, Sci. Bull., 68, 2285–2288, https://doi.org/10.1016/j.scib.2023.08.036, 2023.
Casper, B. B., Schenk, H. J., and Jackson, R. B.: Defining a plant's belowground zone of influence, Ecology, 84, 2313–2321, https://doi.org/10.1890/02-0287, 2003.
Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu, Z., Nemani, R. R., and Myneni, R. B.: China and India lead in greening of the world through land-use management, Nat. Sustain., 2, 122–129, https://doi.org/10.1038/s41893-019-0220-7, 2019.
Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., Wagener, T., and Hay, L. E.: Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models, Water Resour. Res., 44, W00B02, https://doi.org/10.1029/2007WR006735, 2008.
Coenders-Gerrits, A. M. J., Van Der Ent, R. J., Bogaard, T. A., Wang-Erlandsson, L., Hrachowitz, M., and Savenije, H. H. G.: Uncertainties in transpiration estimates, Nature, 506, E1–E2, https://doi.org/10.1038/nature12925, 2014.
Cohen, D. and Schwarz, M.: Tree-root control of shallow landslides, Earth Surf. Dynam., 5, 451–477, https://doi.org/10.5194/esurf-5-451-2017, 2017.
Collenteur, R. A., Bakker, M., Klammler, G., and Birk, S.: Estimation of groundwater recharge from groundwater levels using nonlinear transfer function noise models and comparison to lysimeter data, Hydrol. Earth Syst. Sci., 25, 2931–2949, https://doi.org/10.5194/hess-25-2931-2021, 2021.
Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A.: Mapping tree density at a global scale, Nature, 525, 201–205, https://doi.org/10.1038/nature14967, 2015.
Daly, K. R., Cooper, L. J., Koebernick, N., Evaristo, J., Keyes, S. D., van Veelen, A., and Roose, T.: Modelling water dynamics in the rhizosphere, Rhizosphere, 4, 139–151, https://doi.org/10.1016/j.rhisph.2017.10.004, 2017.
de Boer-Euser, T., McMillan, H. K., Hrachowitz, M., Winsemius, H. C., and Savenije, H. H. G.: Influence of soil and climate on root zone storage capacity, Water Resour. Res., 52, 2009–2024, https://doi.org/10.1002/2015WR018115, 2016.
Delcourt, H. and Delcourt, P.: Quaternary landscape ecology: Relevant scales in space and time, Landscape Ecol., 2, 23–44, https://doi.org/10.1007/BF00138906, 1988.
Ding, Z., Peng, J., Qiu, S., and Zhao, Y.: Nearly Half of Global Vegetated Area Experienced Inconsistent Vegetation Growth in Terms of Greenness, Cover, and Productivity, Earth Future, 8, e2020EF001618, https://doi.org/10.1029/2020EF001618, 2020.
Dralle, D. N., Hahm, W. J., Chadwick, K. D., McCormick, E., and Rempe, D. M.: Technical note: Accounting for snow in the estimation of root zone water storage capacity from precipitation and evapotranspiration fluxes, Hydrol. Earth Syst. Sci., 25, 2861–2867, https://doi.org/10.5194/hess-25-2861-2021, 2021.
Drewniak, B. A.: Simulating dynamic roots in the energy Exascale Earth system land model, J. Adv. Model. Earth Syst., 11, 338–359, https://doi.org/10.1029/2018MS001334, 2019.
Eisenhauer, N., Frank, K., Weigelt, A., Bartkowski, B., Beugnon, R., Liebal, K., Mahecha, M., Quaas, M., Al-Halbouni, D., Bastos, A., Bohn, F. J., de Brito, M. M., Denzler, J., Feilhauer, H., Fischer, R., Fritsche, I., Guimaraes-Steinicke, C., Hänsel, M., Haun, D. B. M., Herrmann, H., Huth, A., Kalesse-Los, H., Koetter, M., Kolleck, N., Krause, M., Kretschmer, M., Leitão, P. J., Masson, T., Mora, K., Müller, B., Peng, J., Pöhlker, M. L., Ratzke, L., Reichstein, M., Richter, S., Rüger, N., Sánchez-Parra, B., Shadaydeh, M., Sippel, S., Tegen, I., Thrän, D., Umlauft, J., Wendisch, M., Wolf, K., Wirth, C., Zacher, H., Zaehle, S., and Quaas, J.: A belowground perspective on the nexus between biodiversity change, climate change, and human well-being, J. Sustain. Agric. Environ., 3, e212108, https://doi.org/10.1002/sae2.12108, 2024.
Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J., Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., McDonald, K. C., Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., Spencer, M. W., Thurman, S. W., Tsang, L., and Van Zyl, J.: The Soil Moisture Active Passive (SMAP) Mission, Proc. IEEE, 98, 704–716, https://doi.org/10.1109/JPROC.2010.2043918, 2010.
Evaristo, J. and McDonnell, J. J.: Prevalence and magnitude of groundwater use by vegetation: a global stable isotope meta-analysis, Sci. Rep., 7, 44110, https://doi.org/10.1038/srep44110, 2017.
Falkenmark, M.: Competing freshwater and ecological services in the river basin perspective: An expanded conceptual framework, Water Int., 25, 172–177, https://doi.org/10.1080/02508060008686815, 2000.
Fan, J., McConkey, B., Wang, H., and Janzen, H.: Root distribution by depth for temperate agricultural crops, Field Crop. Res., 189, 68–74, https://doi.org/10.1016/j.fcr.2016.02.013, 2016.
Fan, Y., Miguez-Macho, G., Jobbagy, E. G., Jackson, R. B., and Otero-Casal, C.: Hydrologic regulation of plant rooting depth, P. Natl. Acad. Sci. USA, 114, 10572–10577, https://doi.org/10.1073/pnas.1712381114, 2017.
Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., Lü, Y., Zeng, Y., Li, Y., Jiang, X., and Wu, B.: Revegetation in China's Loess Plateau is approaching sustainable water resource limits, Nat. Clim. Change, 6, 1019–1022, https://doi.org/10.1038/nclimate3092, 2016.
Fenicia, F., Kavetski, D., Savenije, H. H. G., Clark, M. P., Schoups, G., Pfister, L., and Freer, J.: Catchment properties, function, and conceptual model representation: is there a correspondence?, Hydrol. Process., 28, 2451–2467, https://doi.org/10.1002/hyp.9726, 2014.
Fitts, C. R.: Groundwater Science, in: 1st Edn., Elsevier, ISBN 978-0-08-049503-3, 2002.
Fletcher, T. D., Andrieu, H., and Hamel, P.: Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art, Adv. Water Resour., 51, 261–279, https://doi.org/10.1016/j.advwatres.2012.09.001, 2013.
Fraedrich, K., Kleidon, A., and Lunkeit, F.: A green planet versus a desert world: Estimating the effect of vegetation extremes on the atmosphere, J. Climate, 12, 3156–3163, https://doi.org/10.1175/1520-0442(1999)012<3156:AGPVAD>2.0.CO;2, 1999.
Gao, H., Hrachowitz, M., Schymanski, S. J., Fenicia, F., Sriwongsitanon, N., and Savenije, H. H. G.: Climate controls how ecosystems size the root zone storage capacity at catchment scale, Geophys. Res. Lett., 41, 7916–7923, https://doi.org/10.1002/2014GL061668, 2014a.
Gao, H., Hrachowitz, M., Fenicia, F., Gharari, S., and Savenije, H. H. G.: Testing the realism of a topography-driven model (FLEX-Topo) in the nested catchments of the Upper Heihe, China, Hydrol. Earth Syst. Sci., 18, 1895–1915, https://doi.org/10.5194/hess-18-1895-2014, 2014b.
Gao, H., Sabo, J.L, Chen, X., Liu, Z., Yang, Z., Ren, Z., and Liu, M.: Landscape heterogeneity and hydrological processes: a review of landscape-based hydrological models, Landscape Ecol., 33, 1461–1480, https://doi.org/10.1007/s10980-018-0690-4, 2018.
Gao, H., Birkel, C., Hrachowitz, M., Tetzlaff, D., Soulsby, C., and Savenije, H. H. G.: A simple topography-driven and calibration-free runoff generation module, Hydrol. Earth Syst. Sci., 23, 787–809, https://doi.org/10.5194/hess-23-787-2019, 2019.
Gao, H., Dong, J., Chen, X., Cai, H., Liu, Z., Jin, Z., Mao, D., Yang, Z., and Duan, Z.: Stepwise modeling and the importance of internal variables validation to test model realism in a data scarce glacier basin, J. Hydrol., 591, 125457, https://doi.org/10.1016/j.jhydrol.2020.125457, 2020.
Gao, H., Han, C., Chen, R., Feng, Z., Wang, K., Fenicia, F., and Savenije, H.: Frozen soil hydrological modeling for a mountainous catchment northeast of the Qinghai-Tibet Plateau, Hydrol. Earth Syst. Sci., 26, 4187–4208, https://doi.org/10.5194/hess-26-4187-2022, 2022.
Gao, H., Liu, J., Gao, G., and Xia, J.: Ecological and hydrological perspectives of the water retention concept, Acta Geogr. Sin., 78, 139–148, 2023a.
Gao, H., Fenicia, F., and Savenije, H. H. G.: HESS Opinions: Are soils overrated in hydrology?, Hydrol. Earth Syst. Sci., 27, 2607–2620, https://doi.org/10.5194/hess-27-2607-2023, 2023b.
Gerrits, A. M. J., Pfister, L., and Savenije, H. H. G.: Spatial and temporal variability of canopy and forest floor interception in a beech forest, Hydrol. Process., 24, 3011–3025, https://doi.org/10.1002/hyp.7712, 2010.
Gharari, S., Hrachowitz, M., Fenicia, F., Gao, H., and Savenije, H. H. G.: Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration, Hydrol. Earth Syst. Sci., 18, 4839–4859, https://doi.org/10.5194/hess-18-4839-2014, 2014.
Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E., and Cardenas, M. B.: The global volume and distribution of modern groundwater, Nat. Geosci., 9, 161–164, https://doi.org/10.1038/ngeo2590, 2016.
Good, S. P., Noone, D., and Bowen, G.: Hydrologic connectivity constrains partitioning of global terrestrial water fluxes, Science, 349, 175–177, https://doi.org/10.1126/science.aaa5931, 2015.
Guo, D., Xia, M., Wei, X., Chang, W., Liu, Y., and Wang, Z.: Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species, New Phytol., 180, 673–683, https://doi.org/10.1111/j.1469-8137.2008.02573.x, 2008.
Guo, L. and Lin, H.: Critical zone research and observatories: Current status and future perspectives, Vadose Zone J., 15, 1–14, https://doi.org/10.2136/vzj2016.06.0050, 2016.
Guswa, A. J.: The influence of climate on root depth: A carbon cost-benefit analysis, Water Resour. Res., 44, W02427, https://doi.org/10.1029/2007WR006384, 2008.
Guswa, A. J.: Effect of plant uptake strategy on the water-optimal root depth, Water Resour. Res., 46, W09601, https://doi.org/10.1029/2010WR009122, 2010.
Hafner, B. D., Hesse, B. D., and Grams, T. E. E.: Friendly neighbours: Hydraulic redistribution accounts for one quarter of water used by neighbouring drought stressed tree saplings, Plant Cell Environ., 44, 1243–1256, https://doi.org/10.1111/pce.13852, 2021.
Hahm, W. J., Dralle, D. N., Lapides, D. A., Ehlert, R. S., and Rempe, D. M.: Geologic Controls on Apparent Root-Zone Storage Capacity, Water Resour. Res., 60, e2023WR035362, https://doi.org/10.1029/2023WR035362, 2024.
Hao, L., Huang, X., Qin, M., Liu, Y., Li, W., and Sun, G.: Ecohydrological processes explain urban dry island effects in a wet region, southern China, Water Resour., 54, 6757–6771, https://doi.org/10.1029/2018WR023002, 2018.
Harman, C. and Troch, P. A.: What makes Darwinian hydrology “Darwinian”? Asking a different kind of question about landscapes, Hydrol. Earth Syst. Sci., 18, 417–433, https://doi.org/10.5194/hess-18-417-2014, 2014.
Harman, C. J. and Xu Fei, E.: mesas.py v1.0: a flexible Python package for modeling solute transport and transit times using StorAge Selection functions, Geosci. Model Dev., 17, 477–495, https://doi.org/10.5194/gmd-17-477-2024, 2024.
Hartmann, A., Rothballer, M., and Schmid, M.: Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research, Plant Soil, 312, 7–14, https://doi.org/10.1007/s11104-007-9514-z, 2008.
Hauser, E., Sullivan, P. L., Flores, A. N., Hirmas, D., and Billings, S. A.: Global-Scale Shifts in Rooting Depths Due To Anthropocene Land Cover Changes Pose Unexamined Consequences for Critical Zone Functioning, Earth's Future, 10, e2022EF002897, https://doi.org/10.1029/2022EF002897, 2022.
Hetherington, A. J.: Evolution of Plant Rooting Systems, in: Encyclopedia of Life Sciences, John Wiley & Sons, Ltd., 1–10, https://doi.org/10.1002/9780470015902.a0028341, 2019.
Hewlett, J. D. and Hibbert, A. R. Factors affecting the response of small watersheds to precipitation in humid areas, in: Forest hydrology, edited by: Sopper, W. E. and Lull, H. W., Pergamon Press, New York, https://api.semanticscholar.org/CorpusID:128648858 (last access: 11 October 2024), 1967.
Hidy, D., Barcza, Z., Hollós, R., Dobor, L., Ács, T., Zacháry, D., Filep, T., Pásztor, L., Incze, D., Dencső, M., Tóth, E., Merganičová, K., Thornton, P., Running, S., and Fodor, N.: Soil-related developments of the Biome-BGCMuSo v6.2 terrestrial ecosystem model, Geosci. Model Dev., 15, 2157–2181, https://doi.org/10.5194/gmd-15-2157-2022, 2022.
Hiltner, L.: Ueber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie und unter besonderer Berücksichtigung der Grundungung und Brache, Arb. Deut. Landw. Gesell, 98, 59–78, 1904.
Hinsinger, P., Bengough, A. G., Vetterlein, D., and Young, I. M.: Rhizosphere: Biophysics, biogeochemistry and ecological relevance, Plant Soil, 321, 117–152, https://doi.org/10.1007/s11104-008-9885-9, 2009.
Hrachowitz, M., Savenije, H. H. G., Blöschl, G., McDonnell, J. J., Sivapalan, M., Pomeroy, J. W., Arheimer, B., Blume, T., Clark, M. P., Ehret, U., Fenicia, F., Freer, J. E., Gelfan, A., Gupta, H. V., Hughes, D. A., Hut, R. W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P. A., Uhlenbrook, S., Wagener, T., Winsemius, H. C., Woods, R. A., Zehe, E., and Cudennec, C.: A decade of Predictions in Ungauged Basins (PUB) – a review, Hydrolog. Sci. J., 58, 1198–1255, https://doi.org/10.1080/02626667.2013.803183, 2013.
Hrachowitz, M., Stockinger, M., Coenders-Gerrits, M., Van Der Ent, R., Bogena, H., Lücke, A., and Stumpp, C.: Reduction of vegetation-accessible water storage capacity after deforestation affects catchment travel time distributions and increases young water fractions in a headwater catchment, Hydrol. Earth Syst. Sci., 25, 4887–4915, https://doi.org/10.5194/hess-25-4887-2021, 2021.
Huggett, R.: Soil as part of the Earth system, Prog. Phys. Geogr., 47, 454–466, https://doi.org/10.1177/03091333221147655, 2023.
Hunt, A. G., Sahimi, M., Ghanbarian, B., and Poveda, G.: Predicting ecosystem net primary productivity by percolation theory and optimality principle, Water Resour. Res., 60, e2023WR036340, https://doi.org/10.1029/2023WR036340, 2024.
Ielpi, A., Lapôtre, M. G. A., Gibling, M. R., and Boyce, C. K.: The impact of vegetation on meandering rivers, Nat. Rev. Earth Environ., 3, 165–178, https://doi.org/10.1038/s43017-021-00249-6, 2022.
Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E. D.: A global analysis of root distributions for terrestrial biomes, Oecologia, 108, 389–411, https://doi.org/10.1007/BF00333714, 1996.
Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., and Fawcett, P. J.: Terrestrial water fluxes dominated by transpiration, Nature, 496, 347–350, https://doi.org/10.1038/nature11983, 2013.
Jing, C. Q., Li, L., Chen, X., and Luo, G. P.: Comparison of root water uptake functions to simulate surface energy fluxes within a deep-rooted desert shrub ecosystem, Hydrol. Process., 28, 5436–5449, https://doi.org/10.1002/hyp.10047, 2014.
Kenrick, P. and Strullu-Derrien, C.: The origin and early evolution of roots, Plant Physiol., 166, 570–580, https://doi.org/10.1104/pp.114.244517, 2014.
Keys, P. W., Wang-Erlandsson, L., and Gordon, L. J.: Revealing Invisible Water: Moisture Recycling as an Ecosystem Service, PLoS One, 11, e0151993, https://doi.org/10.1371/journal.pone.0151993, 2016.
Kim, Y., Park, H., Kimball, J. S., Colliander, A., and McCabe, M. F.: Global estimates of daily evapotranspiration using SMAP surface and root-zone soil moisture, Remote Sens. Environ., 298, 113803, https://doi.org/10.1016/j.rse.2023.113803, 2023.
Kleidon, A.: Global datasets and rooting zone depth inferred from inverse methods, J. Climate, 17, 2714–2722, https://doi.org/10.1175/1520-0442(2004)017<2714:GDORZD>2.0.CO;2, 2004.
Kleidon, A. and Heimann, M.: A method of determining rooting depth from a terrestrial biosphere model and its impacts on the global water and carbon cycle, Global Change Biol., 4, 275–286, https://doi.org/10.1046/j.1365-2486.1998.00152.x, 1998.
Kleidon, A., Fraedrich, K., and Heimann, M.: A green planet versus a desert world: Estimating the maximum effect of vegetation on the land surface climate, Climatic Change, 44, 471–493, https://doi.org/10.1023/A:1005559518889, 2000.
Klos, P. Z., Goulden, M. L., Riebe, C. S., Tague, C. L., O'Geen, A. T., Flinchum, B. A., Safeeq, M., Conklin, M. H., Hart, S. C., Berhe, A. A., Hartsough, P. C., Holbrook, W. S., and Bales, R. C.: Subsurface plant-accessible water in mountain ecosystems with a Mediterranean climate, Wiley Interdisciplin. Rev.-Water, 5, e1277, https://doi.org/10.1002/wat2.1277, 2018.
Kühn, N., Spiegel, M. P., Tovar, C., Willis, K. J., and Macias-Fauria, M.: Seeing roots from space: aboveground fingerprints of root depth in vegetation sensitivity to climate in dry biomes, Environ. Res. Lett., 17, 114062, https://doi.org/10.1088/1748-9326/ac9d4f, 2022.
Kuzyakov, Y. and Razavi, B. S.: Rhizosphere size and shape: Temporal dynamics and spatial stationarity, Soil Biol. Biochem., 135, 343–360, https://doi.org/10.1016/j.soilbio.2019.05.011, 2019.
Lapides, D. A., Hahm, W. J., Forrest, M., Rempe, D. M., Hickler, T., and Dralle, D. N.: Inclusion of bedrock vadose zone in dynamic global vegetation models is key for simulating vegetation structure and function, Biogeosciences, 21, 1801–1826, https://doi.org/10.5194/bg-21-1801-2024, 2024.
Lazarovitch, N., Vanderborght, J., Jin, Y., and van Genuchten, M. T.: The Root Zone: Soil Physics and Beyond, Vadose Zone J., 17, 1–6, https://doi.org/10.2136/vzj2018.01.0002, 2018.
Li, C., Fu, B., Wang, S., Stringer, L. C., Wang, Y., Li, Z., Liu, Y., and Zhou, W.: Drivers and impacts of changes in China's drylands, Nat. Rev. Earth Environ., 2, 858–873, https://doi.org/10.1038/s43017-021-00226-z, 2021.
Li, Y., Zhai, Z., Cong, P., Zhang, Y., Pang, H., Dong, G., and Gao, J.: Effect of plough pan thickness on crop growth parameters, nitrogen uptake and greenhouse gas (CO2 and N2O) emissions in a wheat-maize double-crop rotation in the Northern China Plain: A one-year study, Agr. Water Manage., 213, 534–545, https://doi.org/10.1016/j.agwat.2018.10.044, 2019.
Lian, X., Piao, S., Huntingford, C., Li, Y., Zeng, Z., Wang, X., Ciais, P., McVicar, T. R., Peng, S., Ottlé, C., Yang, H., Yang, Y., Zhang, Y., and Wang, T.: Partitioning global land evapotranspiration using CMIP5 models constrained by observations, Nat. Clim. Change, 8, 640–646, https://doi.org/10.1038/s41558-018-0207-9, 2018.
Liang, J., Gao, H., Fenicia, F., Xi, Q., Wang, Y., and Savenije, H. H. G.: Widespread increase of root zone storage capacity in the United States, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-550, 2024.
Lin, H.: Earth's Critical Zone and hydropedology: concepts, characteristics, and advances, Hydrol. Earth Syst. Sci., 14, 25–45, https://doi.org/10.5194/hess-14-25-2010, 2010.
Liu, D., Tian, F., Hu, H., and Hu, H.: Le rôle du ruissellement latéral dans l'écoulement de surface et les caractéristiques de la production d'écoulement dans le plateau de Loess, en Chine, Hydrolog. Sci. J., 57, 1107–1117, https://doi.org/10.1080/02626667.2012.695870, 2012.
Liu, X., Chen, F., Barlage, M., and Niyogi, D.: Implementing dynamic rooting depth for improved simulation of soil moisture and land surface feedbacks in Noah-MP-Crop, J. Adv. Model. Earth Syst., 12, e2019MS001786. https://doi.org/10.1029/2019MS001786, 2020.
Lovelock, J.: Gaia: A New Look at Life on Earth, Oxford Univ. Press, ISBN 9780198784883, 1979.
Lu, H., Yuan, W., and Chen, X.: A Processes-Based Dynamic Root Growth Model Integrated Into the Ecosystem Model, J. Adv. Model. Earth Syst., 11, 4614–4628, https://doi.org/10.1029/2019MS001846, 2019.
Lundquist, J. D. and Cayan, D. R.: Seasonal and spatial patterns in diurnal cycles in streamflow in the western United States, J. Hydrometeorol., 3, 591–603, https://doi.org/10.1175/1525-7541(2002)003<0591:SASPID>2.0.CO;2, 2002.
Maan, C., ten Veldhuis, M. C., and van de Wiel, B. J. H.: Dynamic root growth in response to depth-varying soil moisture availability: a rhizobox study, Hydrol. Earth Syst. Sci., 27, 2341–2355, https://doi.org/10.5194/hess-27-2341-2023, 2023.
Maeght, J. L., Rewald, B., and Pierret, A.: How to study deep roots-and why it matters, Front. Plant Sci., 4, 1–14, https://doi.org/10.3389/fpls.2013.00299, 2013.
Manabe, S.: Climate and the ocean circulation, Mon. Weather Rev., 97, 775–805, https://doi.org/10.1175/1520-0493(1969)097<0775:CATOC>2.3.CO;2, 1969.
Mao, G. and Liu, J.: WAYS v1: A hydrological model for root zone water storage simulation on a global scale, Geosci. Model Dev., 12, 5267–5289, https://doi.org/10.5194/gmd-12-5267-2019, 2019.
McCartney, M., Rex, W., Yu, W., Uhlenbrook, S., and von Gnechten, R.: Change in global freshwater storage, IWMI Working Paper 202, IWMI – International Water Management Institute, Colombo, Sri Lanka, https://doi.org/10.5337/2022.204, 2024.
McCormick, E. L., Dralle, D. N., Hahm, W. J., Tune, A. K., Schmidt, L. M., Chadwick, K. D., and Rempe, D. M.: Widespread woody plant use of water stored in bedrock, Nature, 597, 225–229, https://doi.org/10.1038/s41586-021-03761-3, 2021.
McDonnell, J. J.: Are all runoff processes the same?, Hydrol. Process., 27, 4103–4111, 2013.
McDonnell, J. J., Sivapalan, M., Vache, K., Dunn, S., Grant, G., Haggerty, R., Hinz, C., Hooper, R., Kirchner, J., Roderick, M. L., Selker, J., and Weiler, M.: Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology, Water Resour. Res., 43, W07301, https://doi.org/10.1029/2006WR005467, 2007.
McDonnell, J. J., Spence, C., Karran, D. J., van Meerveld, H. J., and Harman, C. J.: Fill-and-Spill: A Process Description of Runoff Generation at the Scale of the Beholder, Water Resour. Res., 57, e2020WR027514, https://doi.org/10.1029/2020WR027514, 2021.
McNear, D.: The rhizosphere-roots, soil and everything in between, Nature Education Knowledge, 4, 1, http://www.nature.com/scitable/knowledge/library/the-rhizosphere-roots-soil-and-67500617 (last access: 11 October 2024), 2013.
Melkikh, A. V. and Sutormina, M. I.: From leaves to roots: Biophysical models of transport of substances in plants, Prog. Biophys. Mol. Biol., 169–170, 53–83, https://doi.org/10.1016/j.pbiomolbio.2022.01.002, 2022.
Milly, P. C. D. and Dunne, K. A.: Sensitivity of the global water cycle to the water-holding capacity of land, J. Climate, 7, 506–526, https://doi.org/10.1175/1520-0442(1994)007<0506:SOTGWC>2.0.CO;2, 1994.
Nadezhdina, N., David, T. S., David, J. S., Ferreira, M. I., Dohnal, M., Tesař, M., Gartner, K., Leitgeb, E., Nadezhdin, V., Cermak, J., Jimenez, M. S., and Morales, D.: Trees never rest: the multiple facets of hydraulic redistribution, Ecohydrology, 3, 431–444, https://doi.org/10.1002/eco.148, 2010.
Nie, M., Lu, M., Bell, J., Raut, S., and Pendall, E.: Altered root traits due to elevated CO2: A meta-analysis, Global Ecol. Biogeogr., 22, 1095–1105, https://doi.org/10.1111/geb.12062, 2013.
Nijzink, R., Hutton, C., Pechlivanidis, I., Capell, R., Arheimer, B., Freer, J., Han, D., Wagener, T., McGuire, K., Savenije, H., and Hrachowitz, M.: The evolution of root-zone moisture capacities after deforestation: A step towards hydrological predictions under change?, Hydrol. Earth Syst. Sci., 20, 4775–4799, https://doi.org/10.5194/hess-20-4775-2016, 2016.
NRC – National Research Council: Basic Research Opportunities in Earth Science, National Academies Press, Washington, D.C., USA, https://doi.org/10.17226/9981, 2001.
NRC – National Research Council: Science and Decisions: Advancing Risk Assessment, National Academies Press, Washington, D.C., USA, https://doi.org/10.17226/12209, 2009.
O'Connor, J. C., Dekker, S. C., Staal, A., Tuinenburg, O. A., Rebel, K. T., and Santos, M. J.: Forests buffer against variations in precipitation, Global Chang Biol., 27, 4686–4696, https://doi.org/10.1111/gcb.15763, 2021.
Orellana, F., Verma, P., Loheide, S. P., and Daly, E.: Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems, Rev. Geophys., 50, RG3003, https://doi.org/10.1029/2011RG000383, 2012.
Palmer, M. A., Liu, J., Matthews, J. H., Mumba, M., and D'Odorico, P.: Manage water in a green way, Science, 349, 584–585, https://doi.org/10.1126/science.aac7778, 2015.
Pawlik, Ł., Phillips, J. D., and Šamonil, P.: Roots, rock, and regolith: Biomechanical and biochemical weathering by trees and its impact on hillslopes – A critical literature review, Earth-Sci. Rev., 159, 142–159, https://doi.org/10.1016/j.earscirev.2016.06.002, 2016.
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 279, 275–289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003.
Phillips, J. D.: Store and pour: Evolution of flow systems in landscapes, Catena, 216, 106357, https://doi.org/10.1016/j.catena.2022.106357, 2022.
Ponge, J. F.: The soil as an ecosystem, Biol. Fert. Soils, 51, 645–648, https://doi.org/10.1007/s00374-015-1016-1, 2015.
Püschel, D., Bitterlich, M., Rydlová, J., and Jansa, J.: Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: a Gordian knot of roots and hyphae, Mycorrhiza, 30, 299–313, https://doi.org/10.1007/s00572-020-00949-9, 2020.
Reichle, R. H., Liu, Q., Koster, R. D., Crow, W., De Lannoy, G. J. M., Kimball, J. S., Ardizzone, J. V., Bosch, D., Colliander, A., Cosh, M., Kolassa, J., Mahanama, S. P., Prueger, J., Starks, P., and Walker, J. P.: Version 4 of the SMAP Level-4 Soil Moisture Algorithm and Data Product, J. Adv. Model. Earth Syst., 11, 3106–3130, https://doi.org/10.1029/2019MS001729, 2019.
Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., and Baldocchi, D. D.: Linking plant and ecosystem functional biogeography, P. Natl. Acad. Sci. USA, 111, 13697–13702, https://doi.org/10.1073/pnas.1216065111, 2014.
Rodriguez-Iturbe, I. and Porporato A.: Ecohydrology of Water Controlled Ecosystems: Soil Moisture and Plant Dynamics, Cambridge Univ. Press, New York, ISBN 0-521-819431, 2004.
Saffarpour, S., Western, A. W., Adams, R., and McDonnell, J. J.: Multiple runoff processes and multiple thresholds control agricultural runoff generation, Hydrol. Earth Syst. Sci., 20, 4525–4545, https://doi.org/10.5194/hess-20-4525-2016, 2016.
Sakschewski, B., von Bloh, W., Drüke, M., Sörensson, A. A., Ruscica, R., Langerwisch, F., Billing, M., Bereswill, S., Hirota, M., Oliveira, R. S., Heinke, J., and Thonicke, K.: Variable tree rooting strategies are key for modelling the distribution, productivity and evapotranspiration of tropical evergreen forests, Biogeosciences, 18, 4091–4116, https://doi.org/10.5194/bg-18-4091-2021, 2021.
Savenije, H. H. G.: HESS Opinions “Topography driven conceptual modelling (FLEX-Topo)”, Hydrol. Earth Syst. Sci., 14, 2681–2692, https://doi.org/10.5194/hess-14-2681-2010, 2010.
Savenije, H. H. G.: The hydrological system as a living organism, Proc. IAHS, 385, 1–4, https://doi.org/10.5194/piahs-385-1-2024, 2024.
Savenije, H. H. G. and Hrachowitz, M.: HESS Opinions “catchments as meta-organisms – A new blueprint for hydrological modelling”, Hydrol. Earth Syst. Sci., 21, 1107–1116, https://doi.org/10.5194/hess-21-1107-2017, 2017.
Scanlon, B. R., Levitt, D. G., Reedy, R. C., Keese, K. E., and Sully, M. J.: Ecological controls on water-cycle response to climate variability in deserts, P. Natl. Acad. Sci. USA, 102, 6033–6038, https://doi.org/10.1073/pnas.0408571102, 2005.
Schenk, H. J.: Soil depth, plant rooting strategies and species' niches, New Phytol., 178, 223–225, https://doi.org/10.1111/j.1469-8137.2008.02427.x, 2008.
Schenk, H. J. and Jackson, R. B.: The global biogeography of roots, Ecol. Monogr., 72, 311–328, https://doi.org/10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2, 2002.
Schenk, H. J. and Jackson, R. B.: Mapping the global distribution of deep roots in relation to climate and soil characteristics, Geoderma, 126, 129–140, https://doi.org/10.1016/j.geoderma.2004.11.018, 2005.
Schlesinger, W. H. and Jasechko, S.: Transpiration in the global water cycle, Agr. Forest Meteorol., 189–190, 115–117, https://doi.org/10.1016/j.agrformet.2014.01.011, 2014.
Schymanski, S. J., Sivapalan, M., Roderick, M. L., Beringer, J., and Hutley, L. B.: An optimality-based model of the coupled soil moisture and root dynamics, Hydrol. Earth Syst. Sci., 12, 913–932, https://doi.org/10.5194/hess-12-913-2008, 2008.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil moisture-climate interactions in a changing climate: A review, Earth-Sci. Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.
Seneviratne, S. I., Lehner, I., Gurtz, J., Teuling, A. J., Lang, H., Moser, U., Grebner, D., Menzel, L., and Schroff, K.: Swiss prealpine Rietholzbach research catchment and lysimeter: 32 year time series and drought event, Water Resour. Res., 48, W06526, https://doi.org/10.1029/2011WR011749, 2012.
Shekhar, V., Stockle, D., Thellmann, M., and Vermeer, J. E. M.: The role of plant root systems in evolutionary adaptation, Plant Dev. Evol., 131, 55–80, https://doi.org/10.1016/bs.ctdb.2018.11.011, 2019.
Simard, S. W.: Mycorrhizal Networks Facilitate Tree Communication, Learning, and Memory, in: Memory and Learning in Plants, edited by: Baluska, F., Gagliano, M., and Witzany, G., Springer, 191–213, https://doi.org/10.1007/978-3-319-75596-0_10, 2018.
Singh, C., Wang-Erlandsson, L., Fetzer, I., Rockstroem, J., and van der Ent, R.: Rootzone storage capacity reveals drought coping strategies along rainforest-savanna transitions, Environ. Res. Lett., 15, 124021, https://doi.org/10.1088/1748-9326/abc377, 2020.
Smart, M. S., Filippelli, G., Gilhooly, W. P., Ozaki, K., Reinhard, C. T., Marshall, J. E. A., and Whiteside, J. H.: The expansion of land plants during the Late Devonian contributed to the marine mass extinction, Commun. Earth Environ., 4, 449, https://doi.org/10.1038/s43247-023-01087-8, 2023.
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model, Biogeosciences, 11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014, 2014.
Sprenger, M., Stumpp, C., Weiler, M., Aeschbach, W., Allen, S. T., Benettin, P., Dubbert, M., Hartmann, A., Hrachowitz, M., Kirchner, J. W., McDonnell, J. J., Orlowski, N., Penna, D., Pfahl, S., Rinderer, M., Rodriguez, N., Schmidt, M., and Werner, C.: The Demographics of Water: A Review of Water Ages in the Critical Zone, Rev. Geophys., 57, 800–834, https://doi.org/10.1029/2018RG000633, 2019.
Steffen, W., Richardson, K., Rockstrom, J., Schellnhuber, H. J., Dube, O. P., Dutreuil, S., Lenton, T. M., and Lubchenco, J.: The emergence and evolution of Earth System Science, Nat. Rev. Earth Environ., 1, 54–63, https://doi.org/10.1038/s43017-019-0005-6, 2020.
Stewart-Koster, B., Bunn, S., Green, P., Ndehedehe, C., Andersen, L., Armstrong McKay, D., Bai, X., Declerck, F., Ebi, K., Gordon, C., Gupta, J., Hasan, S., Jacobson, L., Lade, S., Liverman, D., Mohamed, A., Loriani, S., Nakicenovic, N., Obura, D. and Zimm, C.: How can we live within the safe and just Earth system boundaries for blue water?, Research Square, https://doi.org/10.21203/rs.3.rs-2861426/v1, 2023.
Stocker, B. D. D., Tumber-Davila, S. J., Konings, A. G. G., Anderson, M. C. C., Hain, C., and Jackson, R. B. B.: Global patterns of water storage in the rooting zones of vegetation, Nat. Geosci., 16, 250–256, https://doi.org/10.1038/s41561-023-01125-2, 2023.
Strand, A. E., Pritchard, S. G., McCormack, M. L., Davis, M. A., and Oren, R.: Irreconcilable differences: Fine-root life spans and soil carbon persistence, Science, 319, 456–458, https://doi.org/10.1126/science.1151382, 2008.
Sugimoto, A., Yanagisawa, N., Naito, D., Fujita, N., and Maximov, T. C.: Importance of permafrost as a source of water for plants in east Siberian taiga, Ecol. Res., 17, 493–503, https://doi.org/10.1046/j.1440-1703.2002.00506.x, 2002.
Sun, G., Domec, J. C., and Amatya, D. M.: Forest Evapotranspiration: Measurement and Modelling at Multiple Scales, Forest Hydrol.: Process. Manage. Assess., 32–50, https://doi.org/10.1079/9781780646602.0032, 2016.
Sun, G., Gao, H., and Hao, L.: Comments on “Large-scale afforestation significantly increases permanent surface water in China's vegetation restoration regions” by Zeng, Y., Yang, X., Fang, N., and Shi, Z. (2020), Agr. Forest Meteorol., 296, 108213, https://doi.org/10.1016/j.agrformet.2020.108213, 2021.
Suzuki, K., Park, H., Makarieva, O., Kanamori, H., Hori, M., Matsuo, K., Matsumura, S., Nesterova, N., and Hiyama, T.: Effect of Permafrost Thawing on Discharge of the Kolyma River, Northeastern Siberia, Remote Sens., 13, 4389, https://doi.org/10.3390/rs13214389, 2021.
Taylor, B. N., Beidler, K. V., Cooper, E. R., Strand, A. E., and Pritchard, S. G.: Sampling volume in root studies: the pitfalls of under-sampling exposed using accumulation curves, Ecol. Lett., 16, 862–869, https://doi.org/10.1111/ele.12119, 2013.
Tempel, N. T., Bouaziz, L., Taormina, R., van Noppen, E., Stam, J., Sprokkereef, E., and Hrachowitz, M.: Vegetation Response to Climatic Variability: Implications for Root Zone Storage and Streamflow Predictions, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-115, 2024.
Tromp-van Meerveld, H. J. and McDonnell, J. J.: Threshold relations in subsurface stormflow: 1. A 147-storm analysis of the Panola hillslope, Water Resour. Res., 42, W02410, https://doi.org/10.1029/2004WR003778, 2006.
Tumber-Davila, S. J., Schenk, H. J., Du, E., and Jackson, R. B.: Plant sizes and shapes above and belowground and their interactions with climate, New Phytol., 235, 1032–1056, https://doi.org/10.1111/nph.18031, 2022.
Uhlenbrook, S.: Catchment hydrology – a science in which all processes are preferential – Invited commentary, Hydrol. Process., 20, 3581–3585, https://doi.org/10.1002/hyp.6564, 2006.
van der Ent, R. J. and Savenije, H. H. G.: Length and time scales of atmospheric moisture recycling, Atmos. Chem. Phys., 11, 1853–1863, https://doi.org/10.5194/acp-11-1853-2011, 2011.
van der Ent, R. J., Savenije, H. H. G., Schaefli, B., and Steele-Dunne, S. C.: Origin and fate of atmospheric moisture over continents, Water Resour. Res., 46, W09525, https://doi.org/10.1029/2010WR009127, 2010.
van der Ent, R. J., Wang-Erlandsson, L., Keys, P. W., and Savenije, H. H. G.: Contrasting roles of interception and transpiration in the hydrological cycle – Part 2: Moisture recycling, Earth Syst. Dynam., 5, 471–489, https://doi.org/10.5194/esd-5-471-2014, 2014.
Vannoppen, W., De Baets, S., Keeble, J., Dong, Y., and Poesen, J.: How do root and soil characteristics affect the erosion-reducing potential of plant species?, Ecol. Eng., 109, 186–195, https://doi.org/10.1016/j.ecoleng.2017.08.001, 2017.
van Oorschot, F., van der Ent, R. J., Hrachowitz, M., and Alessandri, A.: Climate-controlled root zone parameters show potential to improve water flux simulations by land surface models, Eearth Syst. Dynam., 12, 725–743, https://doi.org/10.5194/esd-12-725-2021, 2021.
van Oorschot, F., van der Ent, R. J., Alessandri, A., and Hrachowitz, M.: Influence of irrigation on root zone storage capacity estimation, Hydrol. Earth Syst. Sci., 28, 2313–2328, https://doi.org/10.5194/hess-28-2313-2024, 2024.
Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J., and Kattge, J.: The emergence and promise of functional biogeography, P. Natl. Acad. Sci. USA, 111, 13690–13696, https://doi.org/10.1073/pnas.1415442111, 2014.
Wang, J., Gao, H., Liu, M., Ding, Y., Wang, Y., Zhao, F., and Xia, J.: Parameter regionalization of the FLEX-Global hydrological model, Sci. China-Earth Sci., 64, 571–588, https://doi.org/10.1007/s11430-020-9706-3, 2021.
Wang, L., Good, S. P., and Caylor, K. K.: Global synthesis of vegetation control on evapotranspiration partitioning, Geophys. Res. Lett., 41, 6753–6757, https://doi.org/10.1002/2014GL061439, 2014.
Wang, P. and Pozdniakov, S. P.: A statistical approach to estimating evapotranspiration from diurnal groundwater level fluctuations, Water Resour. Res., 50, 2276–2292, https://doi.org/10.1002/2013WR014251, 2014.
Wang, P., Niu, G.-Y., Fang, Y.-H., Wu, R.-J., Yu, J.-J., Yuan, G.-F., Pozdniakov, S. P., and Scott R. L.: Implementing dynamic root optimization in Noah-MP for simulating phreatophytic root water uptake, Water Resour. Res., 54, 1560–1575, https://doi.org/10.1002/2017WR021061, 2018.
Wang, S., Hrachowitz, M., and Schoups, G.: Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany, Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, 2024.
Wang, T., Wang, P., Wu, Z., Yu, J., Pozdniakov, S. P., Guan, X., Wang, H., Xu, H., and Yan, D.: Modeling revealed the effect of root dynamics on the water adaptability of phreatophytes, Agr. Forest Meteorol., 320, 108959, https://doi.org/10.1016/j.agrformet.2022.108959, 2022.
Wang, X., Whalley, W. R., Miller, A. J., White, P. J., Zhang, F., and Shen, J.: Sustainable Cropping Requires Adaptation to a Heterogeneous Rhizosphere, Trends Plant Sci., 25, 1194–1202, https://doi.org/10.1016/j.tplants.2020.07.006, 2020.
Wang, Y., Jia, B., and Xie, Z.: The Effects of Dynamic Root Distribution on Land-Atmosphere Carbon and Water Fluxes in the Community Earth System Model (CESM1.2.0), Forests, 9, 172, https://doi.org/10.3390/f9040172, 2018.
Wang-Erlandsson, L., van der Ent, R. J., Gordon, L. J., and Savenije, H. H. G.: Contrasting roles of interception and transpiration in the hydrological cycle – Part 1: Temporal characteristics over land, Earth Syst. Dynam., 5, 441–469, https://doi.org/10.5194/esd-5-441-2014, 2014.
Wang-Erlandsson, L., Bastiaanssen, W. G. M., Gao, H., Jaegermeyr, J., Senay, G. B., van Dijk, A. I. J. M., Guerschman, J. P., Keys, P. W., Gordon, L. J., and Savenije, H. H. G.: Global root zone storage capacity from satellite-based evaporation, Hydrol. Earth Syst. Sci., 20, 1459–1481, https://doi.org/10.5194/hess-20-1459-2016, 2016.
Wang-Erlandsson, L., Fetzer, I., Keys, P. W., van der Ent, R. J., Savenije, H. H. G., and Gordon, L. J.: Remote land use impacts on river flows through atmospheric teleconnections, Hydrol. Earth Syst. Sci., 22, 4311–4328, https://doi.org/10.5194/hess-22-4311-2018, 2018.
Wang-Erlandsson, L., Tobian, A., van der Ent, R. J., Fetzer, I., te Wierik, S., Porkka, M., Staal, A., Jaramillo, F., Dahlmann, H., Singh, C., Greve, P., Gerten, D., Keys, P. W., Gleeson, T., Cornell, S. E., Steffen, W., Bai, X., and Rockstrom, J.: A planetary boundary for green water, Nat. Rev. Earth Environ., 3, 380–392, https://doi.org/10.1038/s43017-022-00287-8, 2022.
Wiltshire, A. J., Burke, E. J., Chadburn, S. E., Jones, C. D., Cox, P. M., Davies-Barnard, T., Friedlingstein, P., Harper, A. B., Liddicoat, S., Sitch, S., and Zaehle, S.: JULES-CN: a coupled terrestrial carbon–nitrogen scheme (JULES vn5.1), Geosci. Model Dev., 14, 2161–2186, https://doi.org/10.5194/gmd-14-2161-2021, 2021.
Xi, Q., Zhong, H., Wang, T., He, T., Gao, H., Xia, J., Wang-Erlandsson, L., Tang, Q., and Liu, J.: Spatio-temporal variation of gray-green-blue storage capacity in nine major basins of China, Chin. Sci. Bull., 66, 4437–4448, https://doi.org/10.1360/TB-2021-0381, 2021.
Xi, Q., Gao, H., Wang‐Erlandsson, L., Dong, J., Fenicia, F., Savenije, H. H. G., and Hrachowitz, M.: Terrestrial ecosystems enhance root zones in response to intensified drought, bioRxiv [preprint], https://api.semanticscholar.org/CorpusID:270205755 (last access: 11 October 2024), 2024.
Xia, J., Zhang, Y. Y., Xiong, L. H., He, S., Wang, L. F., and Yu, Z. B.: Opportunities and challenges of the Sponge City construction related to urban water issues in China, Sci. China Earth Sci., 60, 652–658, https://doi.org/10.1007/s11430-016-0111-8, 2017.
Xu, L., Chen, N., Zhang, X., Moradkhani, H., Zhang, C., and Hu, C.: In-situ and triple-collocation based evaluations of eight global root zone soil moisture products, Remote Sens. Environ., 254, 112248, https://doi.org/10.1016/j.rse.2020.112248, 2021.
Xue, Y., De Sales, F., Vasic, R., Mechoso, C. R., Arakawa, A., and Prince, S.: Global and Seasonal Assessment of Interactions between Climate and Vegetation Biophysical Processes: A GCM Study with Different Land-Vegetation Representations, J. Climate, 23, 1411–1433, https://doi.org/10.1175/2009JCLI3054.1, 2010.
Yue, W., Wang, T., Franz, T. E., and Chen, X.: Spatiotemporal patterns of water table fluctuations and evapotranspiration induced by riparian vegetation in a semiarid area, Water Resour. Res., 52, 1948–1960, https://doi.org/10.1002/2015WR017546, 2016.
Zehe, E., Loritz, R., Jackisch, C., Westhoff, M., Kleidon, A., Blume, T., Hassler, S. K., and Savenije, H. H.: Energy states of soil water – a thermodynamic perspective on soil water dynamics and storage-controlled streamflow generation in different landscapes, Hydrol. Earth Syst. Sci., 23, 971–987, https://doi.org/10.5194/hess-23-971-2019, 2019.
Zeng, X. B., Dai, Y. J., Dickinson, R. E., and Shaikh, M.: The role of root distribution for climate simulation over land, Geophys. Res. Lett., 25, 4533–4536, https://doi.org/10.1029/1998GL900216, 1998.
Zhang, F., Zou, Y.-N., and Wu, Q.-S.: Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress, Sci. Hortic., 229, 132–136, https://doi.org/10.1016/j.scienta.2017.10.038, 2018.
Zhang, Y., Chiew, F. H. S., Pena-Arancibia, J., Sun, F., Li, H., and Leuning, R.: Global variation of transpiration and soil evaporation and the role of their major climate drivers, J. Geophys. Res.-Atmos., 122, 6868–6881, https://doi.org/10.1002/2017JD027025, 2017.
Zhang, Y., Liu, X., Jiao, W., Wu, X., Zeng, X., Zhao, L., Wang, L., Guo, J., Xing, X., and Hong, Y.: Spatial Heterogeneity of Vegetation Resilience Changes to Different Drought Types, Earth's Future, 11, e2022EF003108, https://doi.org/10.1029/2022EF003108, 2023.
Zhao, J., Xu, Z., and Singh, V. P.: Estimation of root zone storage capacity at the catchment scale using improved Mass Curve Technique, J. Hydrol., 540, 959–972, https://doi.org/10.1016/j.jhydrol.2016.07.013, 2016.
Zhao, R.-J.: The xinanjiang model applied in china, J. Hydrol., 135, 371–381, https://doi.org/10.1016/0022-1694(92)90096-E, 1992.
Zheng, Z. and Wang, G.: Modeling the dynamic root water uptake and its hydrological impact at the Reserva Jaru site in Amazonia, J. Geophys. Res.-Biogeo., 112, G04012, https://doi.org/10.1029/2007JG000413, 2007.
Zhou, L., Zhou, X., He, Y., Fu, Y., Du, Z., Lu, M., Sun, X., Li, C., Lu, C., Liu, R., Zhou, G., Bai, S. H., and Thakur, M. P.: Global systematic review with meta-analysis shows that warming effects on terrestrial plant biomass allocation are influenced by precipitation and mycorrhizal association, Nat. Commun., 13, 4914, https://doi.org/10.1038/s41467-022-32671-9, 2022.
Short summary
The concept of the root zone is widely used but lacks a precise definition. Its importance in Earth system science is not well elaborated upon. Here, we clarified its definition with several similar terms to bridge the multi-disciplinary gap. We underscore the key role of the root zone in the Earth system, which links the biosphere, hydrosphere, lithosphere, atmosphere, and anthroposphere. To better represent the root zone, we advocate for a paradigm shift towards ecosystem-centred modelling.
The concept of the root zone is widely used but lacks a precise definition. Its importance in...