Articles | Volume 28, issue 19
https://doi.org/10.5194/hess-28-4407-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-4407-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing groundwater level modelling using a 1-D convolutional neural network (CNN): linking model performances to geospatial and time series features
Federal Institute for Geosciences and Natural Resources, Berlin, Germany
Institute of Groundwater Management, TU Dresden, Dresden, Germany
Maximilian Nölscher
Federal Institute for Geosciences and Natural Resources, Berlin, Germany
Andreas Hartmann
Institute of Groundwater Management, TU Dresden, Dresden, Germany
Stefan Broda
Federal Institute for Geosciences and Natural Resources, Berlin, Germany
Related authors
Marc Ohmer, Tanja Liesch, Bastian Habbel, Benedikt Heudorfer, Mariana Gomez, Patrick Clos, Maximilian Nölscher, and Stefan Broda
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-321, https://doi.org/10.5194/essd-2025-321, 2025
Preprint under review for ESSD
Short summary
Short summary
We present a public dataset of weekly groundwater levels from more than 3,000 wells across Germany, spanning 32 years. It combines weather data and site-specific environmental information to support forecasting groundwater changes. Three benchmark models of varying complexity show how data and modeling approaches influence predictions. This resource promotes open, reproducible research and helps guide future water management decisions.
Fabienne Doll, Tanja Liesch, Maria Wetzel, Stefan Kunz, and Stefan Broda
EGUsphere, https://doi.org/10.5194/egusphere-2025-3539, https://doi.org/10.5194/egusphere-2025-3539, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
With the growing use of machine learning for groundwater level (GWL) prediction, proper performance estimation is crucial. This study compares three validation strategies—blocked cross-validation (bl-CV), repeated out-of-sample (repOOS), and out-of-sample (OOS)—for 1D-CNN models using meteorological inputs. Results show that bl-CV offers the most reliable performance estimates, while OOS is the most uncertain, highlighting the need for careful method selection.
Marc Ohmer, Tanja Liesch, Bastian Habbel, Benedikt Heudorfer, Mariana Gomez, Patrick Clos, Maximilian Nölscher, and Stefan Broda
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-321, https://doi.org/10.5194/essd-2025-321, 2025
Preprint under review for ESSD
Short summary
Short summary
We present a public dataset of weekly groundwater levels from more than 3,000 wells across Germany, spanning 32 years. It combines weather data and site-specific environmental information to support forecasting groundwater changes. Three benchmark models of varying complexity show how data and modeling approaches influence predictions. This resource promotes open, reproducible research and helps guide future water management decisions.
Stefan Kunz, Alexander Schulz, Maria Wetzel, Maximilian Nölscher, Teodor Chiaburu, Felix Biessmann, and Stefan Broda
Hydrol. Earth Syst. Sci., 29, 3405–3433, https://doi.org/10.5194/hess-29-3405-2025, https://doi.org/10.5194/hess-29-3405-2025, 2025
Short summary
Short summary
Accurate groundwater level predictions are crucial for sustainable management. This study applies two machine learning models – Neural Hierarchical Interpolation for Time Series Forecasting (N-HiTS) and the Temporal Fusion Transformer (TFT) – to forecast seasonal groundwater levels for 5288 wells across Germany. N-HiTS outperformed TFT, with both models performing well in diverse hydrogeological settings, particularly in lowlands with distinct seasonal dynamics.
Markus Giese, Yvan Caballero, Andreas Hartmann, and Jean-Baptiste Charlier
Hydrol. Earth Syst. Sci., 29, 3037–3054, https://doi.org/10.5194/hess-29-3037-2025, https://doi.org/10.5194/hess-29-3037-2025, 2025
Short summary
Short summary
Karst springs respond quickly to environmental changes, making them crucial to understanding climate impacts on groundwater. This study analyses long-term trends in precipitation, temperature, and discharge from more than 50 springs across Europe. Results show that while historical discharge trends align with those of rivers, recent changes are driven by rising temperatures rather than precipitation. These findings highlight climate-driven shifts in groundwater recharge and storage processes.
Pia Ebeling, Andreas Musolff, Rohini Kumar, Andreas Hartmann, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 29, 2925–2950, https://doi.org/10.5194/hess-29-2925-2025, https://doi.org/10.5194/hess-29-2925-2025, 2025
Short summary
Short summary
Groundwater is a crucial resource at risk due to droughts. To understand drought effects on groundwater levels in Germany, we grouped 6626 wells into six regional and two national patterns. Weather explained half of the level variations with varied response times. Shallow groundwater responds fast and is more vulnerable to short droughts (a few months). Dampened deep heads buffer short droughts but suffer from long droughts and recoveries. Two nationwide trend patterns were linked to human water use.
Robert Reinecke, Annemarie Bäthge, Ricarda Dietrich, Sebastian Gnann, Simon N. Gosling, Danielle Grogan, Andreas Hartmann, Stefan Kollet, Rohini Kumar, Richard Lammers, Sida Liu, Yan Liu, Nils Moosdorf, Bibi Naz, Sara Nazari, Chibuike Orazulike, Yadu Pokhrel, Jacob Schewe, Mikhail Smilovic, Maryna Strokal, Yoshihide Wada, Shan Zuidema, and Inge de Graaf
EGUsphere, https://doi.org/10.5194/egusphere-2025-1181, https://doi.org/10.5194/egusphere-2025-1181, 2025
Short summary
Short summary
Here we describe a collaborative effort to improve predictions of how climate change will affect groundwater. The ISIMIP groundwater sector combines multiple global groundwater models to capture a range of possible outcomes and reduce uncertainty. Initial comparisons reveal significant differences between models in key metrics like water table depth and recharge rates, highlighting the need for structured model intercomparisons.
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024, https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Short summary
We show the results of the 2022 Groundwater Time Series Modelling Challenge; 15 teams applied data-driven models to simulate hydraulic heads, and three model groups were identified: lumped, machine learning, and deep learning. For all wells, reasonable performance was obtained by at least one team from each group. There was not one team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Benedikt Heudorfer, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 525–543, https://doi.org/10.5194/hess-28-525-2024, https://doi.org/10.5194/hess-28-525-2024, 2024
Short summary
Short summary
We build a neural network to predict groundwater levels from monitoring wells. We predict all wells at the same time, by learning the differences between wells with static features, making it an entity-aware global model. This works, but we also test different static features and find that the model does not use them to learn exactly how the wells are different, but only to uniquely identify them. As this model class is not actually entity aware, we suggest further steps to make it so.
Andreas Hartmann, Jean-Lionel Payeur-Poirier, and Luisa Hopp
Hydrol. Earth Syst. Sci., 27, 1325–1341, https://doi.org/10.5194/hess-27-1325-2023, https://doi.org/10.5194/hess-27-1325-2023, 2023
Short summary
Short summary
We advance our understanding of including information derived from environmental tracers into hydrological modeling. We present a simple approach that integrates streamflow observations and tracer-derived streamflow contributions for model parameter estimation. We consider multiple observed streamflow components and their variation over time to quantify the impact of their inclusion for streamflow prediction at the catchment scale.
Romane Berthelin, Tunde Olarinoye, Michael Rinderer, Matías Mudarra, Dominic Demand, Mirjam Scheller, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 27, 385–400, https://doi.org/10.5194/hess-27-385-2023, https://doi.org/10.5194/hess-27-385-2023, 2023
Short summary
Short summary
Karstic recharge processes have mainly been explored using discharge analysis despite the high influence of the heterogeneous surface on hydrological processes. In this paper, we introduce an event-based method which allows for recharge estimation from soil moisture measurements. The method was tested at a karst catchment in Germany but can be applied to other karst areas with precipitation and soil moisture data available. It will allow for a better characterization of karst recharge processes.
Tunde Olarinoye, Tom Gleeson, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5431–5447, https://doi.org/10.5194/hess-26-5431-2022, https://doi.org/10.5194/hess-26-5431-2022, 2022
Short summary
Short summary
Analysis of karst spring recession is essential for management of groundwater. In karst, recession is dominated by slow and fast components; separating these components is by manual and subjective approaches. In our study, we tested the applicability of automated streamflow recession extraction procedures for a karst spring. Results showed that, by simple modification, streamflow extraction methods can identify slow and fast components: derived recession parameters are within reasonable ranges.
Yan Liu, Jaime Fernández-Ortega, Matías Mudarra, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5341–5355, https://doi.org/10.5194/hess-26-5341-2022, https://doi.org/10.5194/hess-26-5341-2022, 2022
Short summary
Short summary
We adapt the informal Kling–Gupta efficiency (KGE) with a gamma distribution to apply it as an informal likelihood function in the DiffeRential Evolution Adaptive Metropolis DREAM(ZS) method. Our adapted approach performs as well as the formal likelihood function for exploring posterior distributions of model parameters. The adapted KGE is superior to the formal likelihood function for calibrations combining multiple observations with different lengths, frequencies and units.
Yong Chang, Benjamin Mewes, and Andreas Hartmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-77, https://doi.org/10.5194/hess-2022-77, 2022
Revised manuscript not accepted
Short summary
Short summary
This study presents a work to investigate the feasibility of using EC to predict the discharge in a typical karst catchment. We found that the spring discharge can be well predicted by EC in storms using LSTM (Long Short Term Memory) model, while the prediction has relatively large uncertainties in small recharge events. To establish a roust LSTM model for long-term discharge prediction from EC in ungauged catchments, the random or fixed-interval discharge monitoring strategy is recommended.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Tesfalem Abraham, Yan Liu, Sirak Tekleab, and Andreas Hartmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-271, https://doi.org/10.5194/hess-2021-271, 2021
Preprint withdrawn
Short summary
Short summary
In this study we demonstrate the use of global data products for the regionalization of model parameters. We combine three steps of uncertainty quantification from the parameter sampling, best parameter sets identification, and spatial cross-validation. Our results show the best validation parameters provide the most robust regionalization results, and the uncertainties from the regionalization in the ungauged catchments are higher than those obtained from simulations in the gauged catchments.
Andreas Wunsch, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 25, 1671–1687, https://doi.org/10.5194/hess-25-1671-2021, https://doi.org/10.5194/hess-25-1671-2021, 2021
Nicolas Massei, Daniel G. Kingston, David M. Hannah, Jean-Philippe Vidal, Bastien Dieppois, Manuel Fossa, Andreas Hartmann, David A. Lavers, and Benoit Laignel
Proc. IAHS, 383, 141–149, https://doi.org/10.5194/piahs-383-141-2020, https://doi.org/10.5194/piahs-383-141-2020, 2020
Short summary
Short summary
This paper presents recent thoughts by members of EURO-FRIEND Water project 3 “Large-scale-variations in hydrological characteristics” about research needed to characterize and understand large-scale hydrology under global changes. Emphasis is put on the necessary efforts to better understand 1 – the impact of low-frequency climate variability on hydrological trends and extremes, 2 – the role of basin properties on modulating the climate signal producing hydrological responses on the basin scale.
Cited articles
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., and Davis, A.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, Zenodo [code], https://doi.org/10.5281/zenodo.4724125, 2015. a
Ahmadi, A., Olyaei, M., Heydari, Z., Emami, M., Zeynolabedin, A., Ghomlaghi, A., Daccache, A., Fogg, G. E., and Sadegh, M.: Groundwater Level Modeling with Machine Learning: A Systematic Review and Meta-Analysis, Water, 14, 949, https://doi.org/10.3390/w14060949, 2022. a, b
Alibrahim, H., and Ludwig, S. A.: Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian Optimization, in: 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 28 June–1 July 2021, 1551–1559, https://doi.org/10.1109/CEC45853.2021.9504761, 2021. a
Armstrong, R. A.: Should Pearson's correlation coefficient be avoided?, Ophthal. Physl. Opt., 39, 316–327, https://doi.org/10.1111/opo.12636, 2019. a
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l'hydrologie du bassin versant, Hydrol. Sci. B., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. a
BGR: Geomorphographische Einheiten von Deutschland, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, https://geoportal.bgr.de/mapapps/resources/apps/geoportal/index .html?lang=de#/datasets/portal/60ab5e4e-9493-44b0-9cae-d9ce603de742 (last access: 15 June 2024), 2006. a, b
BGR: Geologische Übersichtskarte der Bundesrepublik Deutschland 1:250.000 (GÜK250), Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, https://produktcenter.bgr.de/terraCatalog/DetailResult.do?fileIde ntifier=0f2e1b5b-fc02-4491-a12b-2178473f5c84 (last access: 15 June 2024), 2019a. a
BGR: Hydrogeologische Übersichtskarte 1:250.000 von Deutschland (HÜK250), Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, https://geoportal.bgr.de/mapapps/resources/apps/geoportal/index .html?lang=de#/datasets/portal/61ac4628-6b62-48c6-89b8-46270819f0d6 (last access: 15 June 2024), 2019b. a
BKG: Digitales Geländemodell Gitterweite 1000 m (DGM1000), Bundesamt für Kartographie und Geodäsie, Frankfurt am Main, https://gdz.bkg.bund.de/index.php/default/digitale-geodaten/digitale-gelandemodelle/digitales-gelandemodell-gitterweite-1000-m-dgm1000.html (last access: 15 June 2024), 2021. a, b, c
Chakraborty, D., Başağaoğlu, H., Gutierrez, L., and Mirchi, A.: Explainable AI reveals new hydroclimatic insights for ecosystem-centric groundwater management, Environ. Res. Lett., 16, 114024, https://doi.org/10.1088/1748-9326/ac2fde, 2021. a, b
Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr, A. W.: Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh – A Python package), Neurocomputing, 307, 72–77, https://doi.org/10.1016/j.neucom.2018.03.067, 2018. a
Copernicus: CORINE Land Cover 2018 (vector/raster 100 m), Europe, 6-yearly, European Environment Agency, https://doi.org/10.2909/960998c1-1870-4e82-8051-6485205ebbac, 2018. a, b
Copernicus: Index Corine Land Cover (CLC), European Environment Agency, https://land.copernicus.eu/content/corine-land-cover-nomenclature-guidelines/html/ (last access: 15 June 2024), 2022. a
Daliakopoulos, I. N., Coulibaly, P., and Tsanis, I. K.: Groundwater level forecasting using artificial neural networks, J. Hydrol., 309, 229–240, https://doi.org/10.1016/j.jhydrol.2004.12.001, 2005. a
de Graaf, I., Gleeson, T., Rens van Beek, L., Sutanudjaja, E., and Bierkens, M.: Environmental flow limits to global groundwater pumping, Nature, 574, 90–94, https://doi.org/10.1038/s41586-019-1594-4, 2019. a
DWD: Climate Data Center – Grids Germany- HYRAS dataset, https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/hyras_de/, last access: 15 June 2024. a
Earman, S. and Dettinger, M.: Potential impacts of climate change on groundwater resources – A global review, J. Water Clim. Change, 2, 213–229, https://doi.org/10.2166/wcc.2011.034, 2011. a
Fabio, D. N., Abba, S. I., Pham, B. Q., Towfiqul Islam, A. R. M., Talukdar, S., and Francesco, G.: Groundwater level forecasting in Northern Bangladesh using nonlinear autoregressive exogenous (NARX) and extreme learning machine (ELM) neural networks, Arab. J. Geosci., 15, 647, https://doi.org/10.1007/s12517-022-09906-6, 2022. a
Famiglietti, J. S.: The global groundwater crisis, Nat. Clim. Change, 4, 945–948, https://doi.org/10.1038/nclimate2425, 2014. a
Frick, C., Steiner, H., Mazurkiewicz, A., Riediger, U., Rauthe, M., Reich, T., and Gratzki, A.: Central European high-resolution gridded daily data sets (HYRAS): Mean temperature and relative humidity, Meteorol. Z., 23, 15–32, https://doi.org/10.1127/0941-2948/2014/0560, 2014. a, b
Fritsch, F. N. and Butland, J.: A Method for Constructing Local Monotone Piecewise Cubic Interpolants, SIAM J. Sci. Stat. Comp., 5, 300–304, https://doi.org/10.1137/0905021, 1984. a
Gholizadeh, H., Zhang, Y., Frame, J., Gu, X., and Green, C. T.: Long short-term memory models to quantify long-term evolution of streamflow discharge and groundwater depth in Alabama, Sci. Total Environ., 901, 165884, https://doi.org/10.1016/j.scitotenv.2023.165884, 2023. a
Goderniaux, P., Brouyère, S., Wildemeersch, S., Therrien, R., and Dassargues, A.: Uncertainty of climate change impact on groundwater reserves – Application to a chalk aquifer, J. Hydrol., 528, 108–121, https://doi.org/10.1016/j.jhydrol.2015.06.018, 2015. a
Gomez, M.: mgomezo12/Performance_CNN_v3: Assessing Groundwater Level Modelling using a 1D-CNN: Linking Model Performances to Geospatial and Time Series Features (Version 3), Zenodo [code and data set], https://doi.org/10.5281/zenodo.12531372, 2024. a, b
Gong, Y., Zhang, Y., Lan, S., and Wang, H.: A Comparative Study of Artificial Neural Networks, Support Vector Machines and Adaptive Neuro Fuzzy Inference System for Forecasting Groundwater Levels near Lake Okeechobee, Florida, Water Resour. Manag., 30, 375–391, https://doi.org/10.1007/s11269-015-1167-8, 2016. a, b
Guzman, S. M., Paz, J. O., and Tagert, M. L. M.: The Use of NARX Neural Networks to Forecast Daily Groundwater Levels, Water Resour. Manag., 31, 1591–1603, https://doi.org/10.1007/s11269-017-1598-5, 2017. a
Heudorfer, B., Liesch, T., and Broda, S.: On the challenges of global entity-aware deep learning models for groundwater level prediction, Hydrol. Earth Syst. Sci., 28, 525–543, https://doi.org/10.5194/hess-28-525-2024, 2024. a
Hunt, E. D., Hubbard, K. G., Wilhite, D. A., Arkebauer, T. J., and Dutcher, A. L.: The development and evaluation of a soil moisture index, Int. J. Climatol., 29, 747–759, https://doi.org/10.1002/joc.1749, 2009. a
Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Jordahl, K., Van den Bossche, J., Fleischmann, M., Wasserman, J., McBride, J., and Gerard, J.: geopandas/geopandas: v0.8.1, Zenodo [code], https://doi.org/10.5281/zenodo.3946761, 2020. a
Kløve, B., Ala-Aho, P., Bertrand, G., Gurdak, J. J., Kupfersberger, H., Kværner, J., Muotka, T., Mykrä, H., Preda, E., Rossi, P., Uvo, C. B., Velasco, E., and Pulido-Velazquez, M.: Climate change impacts on groundwater and dependent ecosystems, J. Hydrol., 518, 250–266, https://doi.org/10.1016/j.jhydrol.2013.06.037, 2013. a, b, c, d, e
Knoll, L., Breuer, L., and Bach, M.: Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning, Sci. Total Environ., 668, 1317–1327, https://doi.org/10.1016/j.scitotenv.2019.03.045, 2019. a
Kratzert, F., Gauch, M., Klotz, D., and Nearing, G.: HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin, Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, 2024. a
LBEG: Hydrogeologische Räume und Teilräume in Niedersachsen, Landesamt für Bergbau, Energie und Geologie, Hannover, https://www.umwelt.niedersachsen.de/startseite/themen/wasser/grundwasser/grundwasserbericht_niedersachsen/nutzung_schutz_und_uberwachung/hydrogeologischer_uberblick/ (last access: 15 June 2024), 2016. a, b, c
LeCun, Y., Hinton, G., and Bengio, Y.: Deep learning, Nature, 521, 436–444, https://doi.org/10.1038/nature14539, 2015. a
Lee, S., Lee, K. K., and Yoon, H.: Using artificial neural network models for groundwater level forecasting and assessment of the relative impacts of influencing factors, Hydrogeol. J., 27, 567–579, https://doi.org/10.1007/s10040-018-1866-3, 2019. a, b
Lerner, D. N. and Harris, B.: The relationship between land use and groundwater resources and quality, Land Use Policy, 26, 265–273, https://doi.org/10.1016/j.landusepol.2009.09.005, 2009. a
Linke, C.: Leitlinien zur Interpretation regionaler Klimamodelldaten des Bund-Länder-Fachgespräches “Interpretation regionaler Klimamodelldaten”, Landesamt für Umwelt Brandenburg, Potsdam, https://lfu.brandenburg.de/cms/media.php/lbm1.a.3310.de/blfg_leitlinie_klima.pdf (last access: 15 June 2024), 2017. a
Liu, Q., Gui, D., Zhang, L., Niu, J., Dai, H., Wei, G., and Hu, B. X.: Simulation of regional groundwater levels in arid regions using interpretable machine learning models, Sci. Total Environ., 831, 154902, https://doi.org/10.1016/j.scitotenv.2022.154902, 2022. a
LSN: Öffentliche Wasserversorgung und Abwasserbeseitigung, Tech. rep., Landesamt für Statistik Niedersachsen, Hannover, https://www.statistik. niedersachsen.de/startseite/themen/umwelt_und_energie/umwel t-und-energie-in-niedersachsen-statistische-berichte-q-i-2-178924.html (last access: 15 June 2024), 2016. a, b
Malik, A. and Bhagwat, A.: Modelling groundwater level fluctuations in urban areas using artificial neural network, Groundwater for Sustainable Development, 12, 100484, https://doi.org/10.1016/j.gsd.2020.100484, 2021. a
Mohanty, S., Jha, M. K., and Raul, S. K.: Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites, Water Resour. Manag., 29, 5521–5532, https://doi.org/10.1007/s11269-015-1132-6, 2015. a
Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P.: Hydrologic and water quality models: Performance measures and evaluation criteria, T. ASABE, 58, 1763–1785, https://doi.org/10.13031/trans.58.10715, 2015. a
NMUEK: Lower Saxony contribution to the management plans 2015 to 2021 for the Elbe, Weser, Ems, and Rhine river basins, Niedersächsisches Ministerium für Umwelt, Energie und Klimaschutz, Hannover, https://www.nlwkn.niedersachsen.de/download/109179/Management_plans_2015_to_2021.pdf (last access: 15 June 2024), 2015. a, b, c
Pan, Y., Gong, H., Zhou, D., Li, X., and Nakagoshi, N.: Impact of land use change on groundwater recharge in Guishui River Basin, China, Chinese Geogr. Sci., 21, 734–743, https://doi.org/10.1007/s11769-011-0508-7, 2011. a
Pistocchi, A.: Leaf Area Index (MAPPE model), Tech. rep., European Commission, Joint Research Centre (JRC), https://data.jrc.ec.europa.eu/dataset/jrc-mappe-europe-setup-d-18-lai (last access: 15 June 2024), 2015. a
Post, V. E. and von Asmuth, J. R.: Revue : Mesure du niveau piézométrique-nouvelles technologies, pièges classiques, Hydrogeol. J., 21, 737–750, https://doi.org/10.1007/s10040-013-0969-0, 2013. a
Rajaveni, S. P., Brindha, K., and Elango, L.: Geological and geomorphological controls on groundwater occurrence in a hard rock region, Applied Water Science, 7, 1377–1389, https://doi.org/10.1007/s13201-015-0327-6, 2017. a
Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz, A., and Gratzki, A.: A Central European precipitation climatology – Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS), Meteorol. Z., 22, 235–256, https://doi.org/10.1127/0941-2948/2013/0436, 2013. a, b, c
Razafimaharo, C., Krähenmann, S., Höpp, S., Rauthe, M., and Deutschländer, T.: New high-resolution gridded dataset of daily mean, minimum, and maximum temperature and relative humidity for Central Europe (HYRAS), Theor. Appl. Climatol., Springer, Berlin, https://doi.org/10.1007/s00704-020-03388-w, 2020. a, b
Reback, J., McKinney, W., Jbrockmendel, Van den Bossche, J., Augspurger, T., Cloud, P., Hawkins, S., Tratner, J., She, C., Ayd, W., Hoefler, P., Klein, A., Petersen, T., Roeschke, M., Schendel, J., Seabold, S., Sinhrks, and Waucomont, F.: pandas-dev/pandas: Pandas 1.4.2, Zenodo [code], https://doi.org//10.5281/zenodo.6702671, 2020. a
Reichenau, T. G., Korres, W., Montzka, C., Fiener, P., Wilken, F., Stadler, A., Waldhoff, G., and Schneider, K.: Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA), PLOS ONE, 11, 158451, https://doi.org/10.1371/journal.pone.0158451, 2016. a
Retike, I., Bikše, J., Kalvāns, A., Dēliņa, A., Avotniece, Z., Zaadnoordijk, W. J., Jemeljanova, M., Popovs, K., Babre, A., Zelenkevičs, A., and Baikovs, A.: Rescue of groundwater level time series: How to visually identify and treat errors, J. Hydrol., 605, 127294, https://doi.org/10.1016/j.jhydrol.2021.127294, 2022. a
Roshni, T., Jha, M. K., and Drisya, J.: Neural network modeling for groundwater-level forecasting in coastal aquifers, Neural Comput. Appl., 32, 12737–12754, https://doi.org/10.1007/s00521-020-04722-z, 2020. a
Rust, W., Holman, I., Corstanje, R., Bloomfield, J., and Cuthbert, M.: A conceptual model for climatic teleconnection signal control on groundwater variability in Europe, Earth-Sci. Rev., 177, 164–174, https://doi.org/10.1016/j.earscirev.2017.09.017, 2018. a
Snoek, J., Larochelle, H., and Adams, R. P.: Practical Bayesian optimization of machine learning algorithms, in: Advances in Neural Information Processing Systems, vol. 4, edited by: Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., Curran Associates, Inc., ISBN 978-1627480031, 2012. a, b, c
Takafuji, E. H. de M., da Rocha, M. M., and Manzione, R. L.: Groundwater Level Prediction/Forecasting and Assessment of Uncertainty Using SGS and ARIMA Models: A Case Study in the Bauru Aquifer System (Brazil), Nat. Resour. Res., 28, 487–503, https://doi.org/10.1007/s11053-018-9403-6, 2019. a
Tao, H., Hameed, M. M., Marhoon, H. A., Zounemat-Kermani, M., Heddam, S., Sungwon, K., Sulaiman, S. O., Tan, M. L., Sa'adi, Z., Mehr, A. D., Allawi, M. F., Abba, S. I., Zain, J. M., Falah, M. W., Jamei, M., Bokde, N. D., Bayatvarkeshi, M., Al-Mukhtar, M., Bhagat, S. K., Tiyasha, T., Khedher, K. M., Al-Ansari, N., Shahid, S., and Yaseen, Z. M.: Groundwater level prediction using machine learning models: A comprehensive review, Neurocomputing, 489, 271–308, https://doi.org/10.1016/j.neucom.2022.03.014, 2022. a
Tarasova, L., Gnann, S., Yang, S., Hartmann, A., and Wagener, T.: Catchment characterization: Current descriptors, knowledge gaps and future opportunities, Earth-Sci. Rev., 241, 104739, https://doi.org/10.1016/j.earscirev.2024.104739, 2024. a
Treidel, H., Martin-Bordes, J. L., and Gurdak, J. J.: Climate change effects on groundwater resources: A global synthesis of findings and recommendations, International Association of Hydrogeologists, Taylor & Francis Group, Boca Raton, FL, ISBN 978-0-415-63152-2, 2011. a
Van Der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy array: A structure for efficient numerical computation, Comput. Sci. Eng., 13, 22–30, https://doi.org/10.1109/MCSE.2011.37, 2011. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A. P., Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C. N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D. A., Hagen, D. R., Pasechnik, D. V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G. A., Ingold, G.-L., Allen, G. E., Lee, G. R., Audren, H., Probst, I., Dietrich, J. P., Silterra, J., Webber, J. T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J. L., de Miranda Cardoso, J. V., Reimer, J., Harrington, J., Rodríguez, J. L. C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P. A., Lee, P., McGibbon, R. T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T. J., Robitaille, T. P., Spura, T., Jones, T. R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y. O., and Vázquez-Baeza, Y.: SciPy 1.0: fundamental algorithms for scientific computing in Python, Nature Meth., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a, b
Wendt, D. E., Van Loon, A. F., Bloomfield, J. P., and Hannah, D. M.: Asymmetric impact of groundwater use on groundwater droughts, Hydrol. Earth Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020, 2020. a
Wriedt, G., and NLWKN: Grundwasser Grundwasserbericht Niedersachsen Sonderausgabe zur Grundwasserstandssituation in den Trockenjahren 2018 und 2019, Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz, Hannover, https://www.nlwkn.niedersachsen.de/download/156169/NLWKN_2020_Grundwasserbericht_Niedersachsen_Sonderausgabe_zur_Grundwasserstandssituation_in_den_Trockenjahren_2018_und_2019_Band_41_.pdf (last access: 15 June 2024), 2020. a
Wunsch, A., Liesch, T., and Broda, S.: Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX), Hydrol. Earth Syst. Sci., 25, 1671–1687, https://doi.org/10.5194/hess-25-1671-2021, 2021. a, b, c, d, e
Wunsch, A., Liesch, T., and Broda, S.: Deep learning shows declining groundwater levels in Germany until 2100 due to climate change, Nat. Commun., 13, 1206, https://doi.org/10.1038/s41467-022-28770-2, 2022. a, b, c, d
Xu, Y. S., Shen, S. L., Cai, Z. Y., and Zhou, G. Y.: The state of land subsidence and prediction approaches due to groundwater withdrawal in China, Nat. Hazards, 45, 123–135, https://doi.org/10.1007/s11069-007-9168-4, 2008. a
Zanotti, C., Rotiroti, M., Sterlacchini, S., Cappellini, G., Fumagalli, L., Stefania, G. A., Nannucci, M. S., Leoni, B., and Bonomi, T.: Choosing between linear and nonlinear models and avoiding overfitting for short and long term groundwater level forecasting in a linear system, J. Hydrol., 578, 124015, https://doi.org/10.1016/j.jhydrol.2019.124015, 2019. a
Zhang, Q., Li, P., Ren, X., Ning, J., Li, J., Liu, C., Wang, Y., and Wang, G.: A new real-time groundwater level forecasting strategy: Coupling hybrid data-driven models with remote sensing data, J. Hydrol., 625, 129962, https://doi.org/10.1016/j.jhydrol.2023.129962, 2023. a
Short summary
To understand the impact of external factors on groundwater level modelling using a 1-D convolutional neural network (CNN) model, we train, validate, and tune individual CNN models for 505 wells distributed across Lower Saxony, Germany. We then evaluate the performance of these models against available geospatial and time series features. This study provides new insights into the relationship between these factors and the accuracy of groundwater modelling.
To understand the impact of external factors on groundwater level modelling using a 1-D...