Articles | Volume 28, issue 19
https://doi.org/10.5194/hess-28-4407-2024
https://doi.org/10.5194/hess-28-4407-2024
Research article
 | 
07 Oct 2024
Research article |  | 07 Oct 2024

Assessing groundwater level modelling using a 1-D convolutional neural network (CNN): linking model performances to geospatial and time series features

Mariana Gomez, Maximilian Nölscher, Andreas Hartmann, and Stefan Broda

Related authors

GEMS-GER: A Machine Learning Benchmark Dataset of Long-Term Groundwater Levels in Germany with Meteorological Forcings and Site-Specific Environmental Features
Marc Ohmer, Tanja Liesch, Bastian Habbel, Benedikt Heudorfer, Mariana Gomez, Patrick Clos, Maximilian Nölscher, and Stefan Broda
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-321,https://doi.org/10.5194/essd-2025-321, 2025
Preprint under review for ESSD
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Towards a global spatial machine learning model for seasonal groundwater level predictions in Germany
Stefan Kunz, Alexander Schulz, Maria Wetzel, Maximilian Nölscher, Teodor Chiaburu, Felix Biessmann, and Stefan Broda
Hydrol. Earth Syst. Sci., 29, 3405–3433, https://doi.org/10.5194/hess-29-3405-2025,https://doi.org/10.5194/hess-29-3405-2025, 2025
Short summary
The impact of geological structures on groundwater potential assessment in volcanic rocks in the Borena Sayint district, northwestern Ethiopian Plateau: a review
Bishaw Mihret and Ajebush Wuletaw
Hydrol. Earth Syst. Sci., 29, 2951–2959, https://doi.org/10.5194/hess-29-2951-2025,https://doi.org/10.5194/hess-29-2951-2025, 2025
Short summary
Numerical analysis of the effect of heterogeneity on CO2 dissolution enhanced by gravity-driven convection
Yufei Wang, Daniel Fernàndez-Garcia, and Maarten W. Saaltink
Hydrol. Earth Syst. Sci., 29, 2485–2503, https://doi.org/10.5194/hess-29-2485-2025,https://doi.org/10.5194/hess-29-2485-2025, 2025
Short summary
Multivariate and long-term time series analysis to assess the effect of nitrogen management policy on groundwater quality in Wallonia, BE
Elise Verstraeten, Alice Alonso, Louise Collier, and Marnik Vanclooster
Hydrol. Earth Syst. Sci., 29, 1829–1845, https://doi.org/10.5194/hess-29-1829-2025,https://doi.org/10.5194/hess-29-1829-2025, 2025
Short summary
Laboratory heat transport experiments reveal grain-size- and flow-velocity-dependent local thermal non-equilibrium effects
Haegyeong Lee, Manuel Gossler, Kai Zosseder, Philipp Blum, Peter Bayer, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 29, 1359–1378, https://doi.org/10.5194/hess-29-1359-2025,https://doi.org/10.5194/hess-29-1359-2025, 2025
Short summary

Cited articles

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., and Davis, A.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, Zenodo [code], https://doi.org/10.5281/zenodo.4724125, 2015. a
Ahmadi, A., Olyaei, M., Heydari, Z., Emami, M., Zeynolabedin, A., Ghomlaghi, A., Daccache, A., Fogg, G. E., and Sadegh, M.: Groundwater Level Modeling with Machine Learning: A Systematic Review and Meta-Analysis, Water, 14, 949, https://doi.org/10.3390/w14060949, 2022. a, b
Alibrahim, H., and Ludwig, S. A.: Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian Optimization, in: 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 28 June–1 July 2021, 1551–1559, https://doi.org/10.1109/CEC45853.2021.9504761, 2021. a
Armstrong, R. A.: Should Pearson's correlation coefficient be avoided?, Ophthal. Physl. Opt., 39, 316–327, https://doi.org/10.1111/opo.12636, 2019. a
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l'hydrologie du bassin versant, Hydrol. Sci. B., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. a
Download
Short summary
To understand the impact of external factors on groundwater level modelling using a 1-D convolutional neural network (CNN) model, we train, validate, and tune individual CNN models for 505 wells distributed across Lower Saxony, Germany. We then evaluate the performance of these models against available geospatial and time series features. This study provides new insights into the relationship between these factors and the accuracy of groundwater modelling.
Share