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Abstract. Groundwater level (GWL) forecasting with ma-
chine learning has been widely studied due to its gener-
ally accurate results and low input data requirements. Fur-
thermore, machine learning models for this purpose can be
set up and trained quickly compared to the effort required
for process-based numerical models. Despite demonstrating
high performance at specific locations, applying the same
model architecture to multiple sites across a regional area
can lead to varying accuracies. The reasons behind this dis-
crepancy in model performance have been scarcely exam-
ined in previous studies. Here, we explore the relationship
between model performance and the geospatial and time se-
ries features of the sites. Using precipitation (P ) and tem-
perature (T ) as predictors, we model monthly groundwa-
ter levels at approximately 500 observation wells in Lower
Saxony, Germany, applying a 1-D convolutional neural net-
work (CNN) with a fixed architecture and hyperparameters
tuned for each time series individually. The GWL observa-
tions range from 21 to 71 years, resulting in variable test and
training dataset time ranges. The performances are evaluated
against selected geospatial characteristics (e.g. land cover,
distance to waterworks, and leaf area index) and time se-
ries features (e.g. autocorrelation, flat spots, and number of
peaks) using Pearson correlation coefficients. Results indi-
cate that model performance is negatively influenced at sites
near waterworks and densely vegetated areas. Longer sub-
sequences of GWL measurements above or below the mean
negatively impact the model accuracy. Besides, GWL time
series containing more irregular patterns and with a higher
number of peaks might lead to higher model performances,

possibly due to a closer link with precipitation dynamics.
As deep learning models are known to be black-box models
missing the understanding of physical processes, our work
provides new insights into how geospatial and time series
features link to the input–output relationship of a GWL fore-
casting model.

1 Introduction

Understanding the dynamics of groundwater levels over time
has gained greater importance in recent years as a key tool
for groundwater management. This importance is driven by
the link between groundwater discharges to streams, where
even slight declines can significantly affect the environment,
as highlighted by de Graaf et al. (2019). Various modelling
approaches are valuable for estimating groundwater levels in
both the short and long term. These approaches allow for the
identification of over-exploitation based on depletion trends
(Daliakopoulos et al., 2005), enhance our knowledge of wa-
ter availability for drinking-water supply and agricultural ir-
rigation (Takafuji et al., 2019), and help delineate potential
soil subsidence zones due to extremely low groundwater lev-
els associated with droughts and water abstraction (Xu et al.,
2008). Furthermore, understanding these dynamics is cru-
cial for sustainable groundwater management in the face of
climate change and increasing water demands (Famiglietti,
2014).

Physical and numerical approaches have been widely
used as the primary tool to study groundwater level (GWL)
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(Goderniaux et al., 2015). However, achieving a desired
model calibration and/or validation requires extensive phys-
ical knowledge of the study area and large volumes of data
related to the aquifer properties, geology, and topography,
among others. In the last 2 decades, many publications have
shown that data-driven models are simpler and faster to de-
velop and provide more accurate results than physical or nu-
merical models under certain conditions (Tao et al., 2022;
Malik and Bhagwat, 2021; Ahmadi et al., 2022). Data-driven
models using machine learning (ML) techniques such as ar-
tificial neural networks (ANNs) have proven their suitability
for GWL forecasting (Wunsch et al., 2022) and their abil-
ity to capture the non-linearity of the aquifer’s dynamics, al-
though this is at the expense of having a physical understand-
ing of the process. Many studies address the former chal-
lenge by applying explainable AI methods such as SHAP to
elucidate the input–output non-linear dynamics (Chakraborty
et al., 2021; Zhang et al., 2023; Liu et al., 2022). In particu-
lar, ANNs are suitable for solving groundwater-related prob-
lems on a regional scale due to their low dependency on field
data accessibility. Many ANN approaches have been suc-
cessfully implemented, and recent developments in the field
of deep learning (DL) promise a significant improvement in
the already existing prediction approaches. High overall per-
formances have been obtained through ANN techniques in-
cluding feed-forward neural network (FFNN) (Roshni et al.,
2020), long short-term memory (LSTM) (Wunsch et al.,
2021), and convolutional neural network (CNN) models
(Mohanty et al., 2015; Ahmadi et al., 2022; Wunsch et al.,
2022). Besides DL techniques, shallow recurrent networks
such as non-linear auto-regressive networks with exogenous
input (NARX) have proven to be useful for modelling a wide
variety of dynamic systems (Guzman et al., 2017; Zanotti
et al., 2019; Fabio et al., 2022). Regarding accuracy and
calculation speed, the CNN models outperform the LSTM.
NARX models performed, on average, better than CNN mod-
els (Wunsch et al., 2021), mainly because NARX models
capture temporal dependencies on groundwater. However,
the CNN model has been shown to be faster with only a
slightly lower accuracy (Wunsch et al., 2021). Most ground-
water modelling has traditionally employed the previously
described approaches as single-station models. However, re-
cent studies (Heudorfer et al., 2024) have introduced a global
model incorporating multiple stations and static features.
Despite this advancement, the performance improvement is
modest compared to the progress seen in surface water mod-
elling (Kratzert et al., 2024).

Most studies have successfully applied these techniques
for GWL forecasting using meteorological variables as in-
puts. To date, research has focused on a comparative anal-
ysis among different AI techniques, resulting in slight dif-
ferences among models’ performances (Wunsch et al., 2021)
or in an improvement in the model’s accuracy as a result of
modifying its architecture (Gong et al., 2016). In many cases,
disregarding site geospatial characteristics can reduce model

accuracy or credibility, owing to the different responses de-
pending on the aquifer characteristics (Kløve et al., 2013),
unsaturated-zone conditions, and groundwater-contributing
area (Rust et al., 2018). Therefore, it is known that, in or-
der to achieve more accurate results in areas influenced by
natural and anthropogenic factors, river water level and hu-
man impact factors such as pumping rates should be consid-
ered as inputs (Lee et al., 2019). For instance, Gholizadeh
et al. (2023) applied an LSTM model including static input
features (e.g. hydraulic conductivity and soil depth) in an at-
tempt to model ungauged locations; the authors attribute the
satisfactory model performance to such inputs. However, as
highlighted by Tarasova et al. (2024), the lack of agreement
when it comes to evaluating hydrological catchment descrip-
tors hinders consensus on what are considered to be relevant
geospatial features, particularly for subsurface characteriza-
tion.

Since regional studies frequently lack supplementary in-
formation beyond meteorological data, this study explores
the link between model performance (using only precipita-
tion (P ) and temperature (T ) as inputs) and site-specific and
time series features that might help to understand the input–
output relation of a GWL DL model. Although many types
of ANN structures have been developed for GWL forecast-
ing, a 1-D CNN (LeCun et al., 2015) is applied here to eval-
uate the model performance due to its flexibility, calcula-
tion speed, and reliability. The model is trained, validated,
and tuned individually in 505 wells distributed throughout
the state of Lower Saxony, Germany. The research considers
geospatial and time series features based on their availability
and potential impact on groundwater records. New insights
are provided about the complexity of controlling factors on
the groundwater dynamics.

2 Study area and materials

2.1 Study area

The study area is located in Lower Saxony, Germany (Fig. 1),
where groundwater accounts for 86 % of the public wa-
ter supply (LSN, 2016). The groundwater bodies in this
area comprise a great extension of highly productive porous
aquifers and, in a lower proportion, fractured hard rock and
karst aquifers (LSN, 2016). The landscape is mainly dom-
inated by the lowlands in the northern and central regions,
whereas the south is predominantly hilly and mountainous.
Land use corresponds mainly to farming (∼ 47 %) and pas-
ture (∼ 15 %), concentrated in the western and northern re-
gions (NMUEK, 2015). The maritime influence in the coastal
region affects the precipitation distribution, decreasing from
the west (approx. 750 mmyr−1) to the east (< 600 mmyr−1).
In contrast, the annual precipitation exceeds 1500 mm in the
south (NMUEK, 2015).
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Figure 1. Hydrogeological areas of Lower Saxony: 1 : 500000 (modified from LBEG, 2016). The hydrological bodies towards the north
correspond to porous aquifers (nord- und mitteldeutsches Mittelpleistozän (north-central Middle Pleistocene), Niederungen im nord- un
mitteldeutschen Lockergesteinsgebiet (north-central lowlands in unconsolidated rock), Nordseemarchsen and Nordseeinseln und Watten
(North Frisian Wadden Sea, marsh islands, and halligen)). The south consists of fractured and karst aquifers (mitteldeutscher Buntsandstein
(central Bunter sandstone), mitteldeutsches Grundgebirge (central crystalline basement), Münsteländer Kreidebecken (Münsterland chalk
basin), nordwestdeutsches Bergland (northwestern Uplands), Sandmünsterland (sand Münsterland) and Subherzyne Senke (Subhercynian
Trough)).

Table 1. Data availability overview.

Data Temporal
resolution

Spatial
resolution

Time range Source

Groundwater level observations Monthly – Variable
(1950 : 2021)

The Lower Saxony State Office for
Mining, Energy and Geology (LBEG)

Precipitation and temperature Daily 15 km× 15 km
(pixels of
5 km× 5 km)

1951 : 2015 Rauthe et al. (2013); Frick et al. (2014)

From a broad perspective, the northern German Plain is
covered up to the edge of the low mountain range by glacial
deposits of varying thicknesses (LBEG, 2016), constituting
a great proportion of Lower Saxony. Hard rock areas in the
southern highlands are formed by sandstones and limestones
(BGR, 2019a). Highly heterogeneous geological structures
exist among these two groups, leading to groundwater avail-
ability at different depths with varying yields, especially in
karst aquifers (LBEG, 2016). The primary pressures on the
quantitative status of groundwater bodies arise from its long-
term abstraction, mainly for drinking water, irrigation, min-
ing or construction activities, and long-term hydraulic mea-
sures for groundwater remediation (NMUEK, 2015).

2.2 Data

GWL observations and meteorological information are avail-
able throughout the state of Lower Saxony. Table 1 shows the
data overview. The GWL is at a monthly resolution with a
variable time range, and historical records of meteorological
variables are available at a daily resolution of 5 km× 5 km.
The GWL time series consists of 505 wells that are unevenly
distributed, with more information available in the central re-
gion of the study area. Besides the irregular spatial distribu-
tion, there are data gaps depending on the well (Fig. 2a), and
the time range of the groundwater records varies between 21
and 71 (Fig. 2b) years from 1950 to 2021, resulting in differ-
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Figure 2. Location of the 505 wells with GWL time series observations used in the study. (a) Maximum gap length and (b) time range of the
GWL time series. Author-generated map.

ences in the start–end dates of the time series (Fig. A1 in the
Appendix).

As observed in Fig. 3a, fewer data are available for frac-
tured aquifers, limiting the interpretation in terms of different
hydrogeological units. This uneven spatial distribution of the
wells reflects the differences in hydraulic properties between
porous and fractured aquifers. In the latter, water primarily
flows through conduits and cavities, creating a more complex
system that could increase the construction and maintenance
costs of wells, reducing their number in the area. Almost half
of the wells are located in sandy-gravel material (Fig. 3b), as-
sociated with high hydraulic conductivity and stronger varia-
tions of GWL. The other half of the wells are in finer materi-
als but still with a high sand portion. Regarding geomorphol-
ogy, the predominant category is low relief with a high to
moderate soil moisture index (SMI), followed by sink areas
with a high SMI (Fig. 3c). The SMI serves to measure how
wet or dry the soil is at any given time based on the minimum
and maximum moisture levels that the soil can hold (Hunt
et al., 2009). Most wells are in non-irrigated arable lands and
pastures (Fig. 3d). Overall, the study area characteristics as-
sociated with each well are relatively homogeneous in terms
of hydrogeology, geomorphology, and land use. Most wells
are located below 100 m.a.s.l. (northern area), and higher el-
evations relate to wells in the southern mountainous regions.
According to the filter depth, most analysed wells relate to
shallow aquifers (Fig. A2).

The historical records of meteorological information in
Germany are available as an observational dataset (HYRAS
dataset, Rauthe et al., 2013; Frick et al., 2014). This cor-
responds to gridded hydrometeorological information based
on a compilation of variables across Germany and adjacent
river basins (Razafimaharo et al., 2020). The dataset con-

sists of daily precipitation (interpolated according to Rauthe
et al., 2013) and temperature from 1951 to 2015. The Ger-
man Weather Service (DWD) adapted and improved the
raster data based on more than 1300 stations and with a di-
rect station–grid comparison, making the data highly reliable
(Razafimaharo et al., 2020). The daily dataset is provided
free of charge for academic and non-commercial purposes
(DWD).

3 Methods

Figure 4 presents the methodological flow chart. the first
stage consists of pre-processing the available information
jointly with exploratory data analysis and data mining. The
procedure starts with the GWL observations involving the
filtering, data imputation, and jump detection steps. Simulta-
neously, the meteorological variables are extracted per well
location and are re-sampled from a daily to monthly resolu-
tion. As a result, there is an input dataset per well relating
GWL, P , and T . In the second stage, a CNN model is imple-
mented, validated, optimized, and tuned through a Bayesian
optimization process (Snoek et al., 2012; Nogueira, 2014).
The latter corresponds to an optimization method based on
Bayesian inference and a Gaussian process to maximize the
sum of performance metrics, in this case the Nash–Sutcliffe
efficiency (NSE) and R2. The following step is concerned
with the performance evaluation and interpretability, relat-
ing geospatial and time series features with the performance
metrics. To achieve the objectives, several Python libraries
are used, namely pandas 2.0 (Reback, 2020), NumPy 1.23
(Van Der Walt et al., 2011), SciPy (Virtanen et al., 2020),
Matplotlib (Hunter, 2007), GeoPandas 0.14 (Jordahl et al.,
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Figure 3. The bar plots show the distribution of well characteristics in the study area: (a) aquifer type, (b) aquifer material (BGR, 2019b),
(c) geomorphology (SMI: soil moisture index) (BGR, 2006), and (d) CORINE land cover (Copernicus, 2018).

Figure 4. Methodological flow chart.

2020), and TensorFlow 2.7 (Abadi et al., 2015) as the most
relevant throughout the process. Additional specific libraries
are mentioned later for each methodological step.

3.1 Pre-processing

The initially available GWL information consists of 962
wells. A pre-selection was done based on the categorization
performed by Wriedt and NLWKN (2020), which consid-
ered the agreement between theoretical and observed hydro-
graphs, as well as visual indications of anthropogenic influ-
ences. This process aimed to exclude wells under strong an-
thropogenic influences, such as pumping, to better capture
the dependency between meteorological input features and
observed groundwater levels. After applying this filter, a total
of 745 wells remain. A second selection removes time series
with gap lengths above two consecutive missing values, ob-
taining 505 wells, with 241 (48 %) being a complete series,
254 (50 %) having one missing value, and 10 (2 %) having
two missing values. To provide the CNN model with continu-
ous time series, we performed data imputation using multiple
linear regression (MLR). This method is applied only when

the wells exhibit similar behaviour in their time series, as de-
termined by Euclidean distance. The distance is calculated
between GWL time series after standardizing each series to
be zero-centred with a standard deviation of 1, followed by
detrending to remove linear trends. This approach ensures
that the comparison focuses on the primary fluctuations in
the data. We refined this approach in the analysis, selecting
wells with the smallest Euclidean distances (below the 10th
percentile) for MLR, ensuring a model R2 score above 0.7.
If the score is not met, we use the piecewise cubic Hermite
interpolating polynomial (PCHIP) for gap filling (Virtanen
et al., 2020; Fritsch and Butland, 1984). Overall, the time se-
ries have less than 5 % gap-filled values. Additionally, jumps
(sudden changes in the time series) are identified at 28 wells
and might be associated with measurement instruments or
other technical problems (Post and von Asmuth, 2013; Retike
et al., 2022). We identified the observations displaying these
anomalies by finding the highest slope in the cumulative sum
and removing the time series before 1990 for those wells.
This is because we are aware of changes due to measurement
devices around this time. Finally, to extract the meteorolog-
ical information, an average of 3 pixels× 3 pixels is used to
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reduce uncertainty related to the grid cell size following the
suggestion of Linke (2017).

3.2 Modelling

The 1- CNN structure is implemented based on Wunsch et al.
(2022). This type of network was specifically designed to
process and analyse sequential data, capturing local patterns
and temporal dependencies through convolutional layers. In
this implementation, the input data are scaled between −1
and 1 to enhance the learning process. The inputs are di-
vided into sequences of a defined length. These sequences
pass through a 1-D convolutional layer, where a fixed ker-
nel window convolves through the data. The maximum value
from each convolution operation is extracted to form the
max pooling layer, reducing dimensionality and highlighting
the most significant features. To prevent overfitting, a Monte
Carlo dropout of 50 % is applied. Following this, a flattened
layer converts the pooled features into a one-dimensional ar-
ray, which is then processed by a fully connected dense layer
using the rectified linear unit (ReLU) as the activation func-
tion.

The CNN model is applied to each GWL time series, en-
compassing the phases of training, validation, optimization,
and hyperparameter tuning, which are also carried out per
well. The available groundwater data prior to 2012 are split
between the training (80 %), validation (10 %), and hyper-
parameter tuning (10 %) dataset, while the 2012–2015 pe-
riod serves as the test set. Each subset differs depending on
the time range of GWL observations, which vary from 21
to 71 years. Thus, the input features, time range, and specific
model parameters create a unique representation of the GWL
for each location. An Adam optimizer is applied with 100
training epochs, an initial learning rate of 0.001, and the early
stopping of 15 patience. In this case, the loss is minimized
with the mean squared error (MSE) through each epoch for
the validation process. The hyperparameter tuning is done
with a Bayesian optimization (Snoek et al., 2012; Nogueira,
2014) to maximize the sum of the squared Pearson (R2) and
the Nash–Sutcliffe efficiency (NSE) coefficients, measuring
the deviation of observed GWL from predicted GWL over
the total observations. The hyperparameters correspond to
kernel size (fixed at 3), sequence length (1–12 months), num-
ber of filters (1–256), density size (1–256), and batch size
(1–256). Owing to the dataset’s monthly resolution, the se-
quence length boundaries are set between 1 and 12 months, a
time range that can include significant variabilities in the sub-
sequences. For comparison, we employed a baseline model
consisting of a sinusoidal function added to the precipitation
trend from the last 9 months. This baseline model was opti-
mized using the same Bayesian optimization method, maxi-
mizing the NSE and R2 metrics.

3.3 Performance evaluation

The model performance can be significantly or slightly af-
fected, depending on the well location, by natural and an-
thropogenic factors, such as the distance to waterworks or
watercourses, the type of land cover, and the geomorphol-
ogy. Besides, the intrinsic patterns present in the observation
time series might reveal external effects on the GWL model.
Table 2 describes the geospatial features considered. The se-
lection was made based on data availability and their poten-
tial impact on groundwater records. We also performed the
analysis with further geospatial features, such as distance to
the surface waterbodies, but no statistically significant corre-
lation with model performance was found, and, therefore, the
results are not shown here. Among the reported ones, the dis-
tance to the waterworks is expected to modify groundwater
flow and, consequently, the GWL nearby in the surround-
ing wells. Here, we assume that Open Street Map (OSM,
2022) includes a significant proportion of all waterworks in
the study area, but a comprehensive dataset including the lo-
cations of all waterworks or information regarding pumping
rates is still missing. Regarding categorical variables, the pro-
portion of a 1 km radius around the well is taken as it has
been shown to adequately represent the contributing area of a
monitoring site, especially when detailed information about
groundwater conditions is lacking (Knoll et al., 2019). The
Python packages of tsfeatures (Yang and Hyndman, 2020)
and tsfresh (Christ et al., 2018) are used to extract multi-
ple GWL time series features automatically. A selection is
made from the long list of features (available in each pack-
age) according to their Pearson correlation coefficient in rela-
tion to the model performance metrics (R2 and NSE) and the
value added to the analysis (interpretability in the context of
groundwater level). We are aware that Pearson correlations
provide linear relationships, and so we also computed Spear-
man rank correlation coefficients. However, since the Spear-
man rank did not yield higher correlations, we chose to con-
tinue using Pearson correlations. Table 3 shows an overview
of the selected time series features, descriptions, and ranges
of values, as well as guidelines regarding their occurrence in
the GWL time series (for a detailed description of the esti-
mation procedure, please refer to the package manual). We
incorporated the Fourier power spectral density over a period
of 1 year to measure the influence of annual climate seasonal-
ity on the GWL. Higher values indicate a greater annual sea-
sonality. High autocorrelation values indicate patterns con-
stantly repeating in the time series. High stability values im-
ply that GWL remains within a consistent range without sig-
nificant variations or trends. The more flat spots represent
the more relatively constant values over extended periods.
Approximate entropy and the number of peaks act as mea-
sures of the complexity of the time series. A high value of
the former indicates that the GWL time series contains mul-
tiple irregular patterns, making it harder to predict. A higher
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Table 2. Overview of geospatial features considered for the performance evaluation.

Feature Description Source

Distance to waterworks Distance to water supply systems up to 10 km OSM (2022)

Distance to the coastline within 25 km Distance to Lower Saxony coastline OSM (2022)

CORINE land cover Proportion in a 1 km radius of the most relevant categories: non-
irrigated arable land, pastures, coniferous forest, discontinuous
urban fabric

Copernicus (2018);
Copernicus (2022)

Geomorphology Proportion in 1 km radius of the most relevant categories: low-
relief/medium–high SMI, sink areas/low–high SMI, moderate-
relief/low SMI

BGR (2006)

Leaf area index (LAI) Proportion in 1 km radius: monthly average of green-leaf area
per unit of the ground surface

Pistocchi (2015)

Slope Average slope in 1 km radius BKG (2021)

Drainage density Drainage density in 1 km radius BKG (2021)

Topographic wetness index (TWI) Average TWI in 1 km radius Beven and Kirkby (1979);
BKG (2021)

number of peaks indicates multiple local maximums, imply-
ing stronger fluctuations in GWL observations.

To evaluate the impact of external factors on the model
performance, the geospatial and time series features are ex-
tracted per well and are correlated with the accuracy metrics
(R2, NSE, and bias) through the Pearson correlation coeffi-
cient. An R2 and NSE value closer to 1 indicate a higher sim-
ilarity between modelled and observed GWL, whereas the
closer the bias is to zero, the more similar the simulations are
to the observed data; negative bias refers to a model with un-
derestimation. To enhance the robustness of the correlations,
we took the mean correlation coefficient after bootstrap sam-
pling with 100 re-sampling datasets. We report only those
correlations that demonstrate statistical significance, ensur-
ing that they fall within a 90 % confidence interval to guar-
antee the reliability of our findings. The main objective is to
notice positive or negative effects on the model performance.

4 Results

4.1 Modelling

The performance per well is presented in Fig. 5. According
to our results, a total of 212 wells show R2 and NSE val-
ues above 0.7 and 0.6, respectively (Fig. 5), which we would
consider to be an acceptable model fit (Moriasi et al., 2015).
Lower performance is seen mainly in the south, related to the
fractured aquifers, where both metrics (R2 and NSE) are be-
low 0.5. The highest positive and negative bias also occurs in
those hydrogeological areas. These wells correspond to the
shortest data length. Most of the best-performing models are
found for the wells in the central region of the study area.

Contrarily, some models exhibit low performance near the
coast in terms of R2 and NSE, with a bias is between ± 0.2.

After visually comparing most of the CNN models with
GWL observations, a degree of agreement can be noted be-
tween the simulated and observed GWL (Fig. A5). Figure 6
shows examples where the optimized model performs well
and where the model does not correctly reproduce GWL vari-
ability. The baseline model captures the general pattern of
GWL fluctuations where the CNN performs better, but it fails
to capture smaller variations. The CNN model occasionally
underestimates or overestimates the peaks and troughs, par-
ticularly struggling with steep peaks, which are often under-
estimated. In most cases, local variations in the time series
are ignored. Occasionally, in poorly performing models, the
pattern of the GWL observations has been generally learned
but with a strong bias (around 10 % of the wells show a bias
above 0.13). The well-performing cases show how the CNN
model can represent low peaks for some wells. Additionally,
model overfitting is low, as seen in Fig. A3, along with the
effects of the lengths of the training, validation, and testing
periods, as shown by Fig. A4.

4.2 Performance assessment

The correlation coefficients between the geospatial and time
series features and the model performance are shown in
Fig. 7. Only significant correlations with a 90 % confidence
interval are displayed. Although the correlation coefficients
are statistically significant, they do not exceed 0.53 for time
series features. Correlations for the geospatial features are
weaker, serving, in both cases, more as an indication rather
than providing strong evidence. One of the highest correla-
tions is the distance to the waterworks, corresponding to 0.43
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Table 3. Overview of time series features considered for the performance evaluation.

Feature Description Range of values Implications for the GWL

Autocorrelation Degree of similarity between a time se-
ries and a lagged version of itself –
here, we used a lag of six time steps
(6 months)

−1 to 1 Temporal dependence and persistent
patterns throughout the records

Stability Variance of the means through overlap-
ping windows of 10 values

0–∞ Low values indicate greater stability,
meaning that the GWL remains within
a certain range without substantial vari-
ations or trends

Flat spots The maximum number of consecutive
observations within equal-sized inter-
vals

0–TSL GWL relatively constant over an ex-
tended period

Longest strike below the mean The length of the longest consecutive
subsequence lower than the mean

0–TSL Sustained period of GWL consistently
lower than the mean

Longest strike above the mean The length of the longest consecutive
subsequence higher than the mean

0–TSL Sustained period of GWL consistently
higher than the mean

Series length Number of observations in the time se-
ries

TSL n/a

Approximate entropy Regularity of the time series based on
the existence of patterns

0–+∞ Observations exhibit more irregular and
unpredictable patterns

Number of peaks Number of values bigger than their
two neighbours in a five-value subse-
quence

0–(TSL-2) Potential proxy for how directly the
GWL reacts to forcings such as precipi-
tation events – higher values can indi-
cate good hydraulic connection to the
surface

Fourier power spectral density Value of the power spectrum of the
fast Fourier transform at a frequency of
1 yr−1

0–+∞ Higher values indicate a strong annual
periodicity in GWL variability, which
may be influenced by annual climatic
factors

∗ TSL – time series length. n/a: not applicable

(R2) and 0.29 (NSE). Although there is no clear spatial pat-
tern followed by R2 and NSE, the Pearson correlation sug-
gests that model performance improves with increasing dis-
tance from the coastline. The proportion of the most common
land cover type in the study area (non-irrigated arable land)
suggests a positive relationship with model performance.
Conversely, wells surrounded by significant areas of forest
or a high leaf area index (LAI) tend to show lower correla-
tions. Sink and low-relief areas with medium to high SMI
may negatively impact performance. Hilly regions might in-
dicate lower accuracy, while areas with high drainage den-
sity or a high topographic wetness index suggest better model
performance.

Regarding time series features, autocorrelation may re-
duce model performance. This might not be the case
when using antecedent GWL as an additional input feature,
where GWL shows the highest influence on model output
(Chakraborty et al., 2021), better explaining the current state

based on the past one if the time series is highly autocorre-
lated. Similarly, higher variance of the means through over-
lapping windows (as indicated by the stability feature de-
fined by Yang and Hyndman, 2020) may reduce model per-
formance. Increasing flat spots and long strikes above or be-
low the mean are negatively correlated, particularly with the
NSE metric. Positive correlations are mainly associated with
complexity measures such as approximate entropy and the
number of peaks. The time series length positively corre-
lates with R2 but does not correlate with NSE. Higher values
of the Fourier power spectral density at 1 year (indicating
stronger annual seasonality in the observed GWL) result in
higher model performance.
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Figure 5. Spatial distribution of model performance metrics (R2, NSE, and bias) per well and their respective histogram. Author-generated
map.

5 Discussion

The analysed wells are located in a relatively homogeneous
area in terms of hydrogeology, associated with a major pro-
portion of porous material and shallow aquifers, improving
the model’s capacity to express GWL only in terms of mete-
orological inputs (Kløve et al., 2013). There are a few wells
in the fractured and karst aquifers, but those are frequently

associated with greater depths (Wunsch et al., 2022). A more
diverse distribution of wells is observed with regard to land
cover and geomorphology, resulting in distinct interactions
between climate, land use, and groundwater (Kløve et al.,
2013; Treidel et al., 2011), potentially influencing the model
performance.

The primary source of uncertainty in the current analysis
is the inability to separate the effects of each external feature
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Figure 6. Examples of the observations, CNN model, and baseline model (sinusoidal curve plus precipitation trend) for cases of (a) high
performance and (b) low performance.

affecting observations, particularly geospatial features. This
uncertainty is highly dependent on the aquifer size (Kløve
et al., 2013), the amount of available information, and the
reliability of the information. Furthermore, time resolution
may introduce additional uncertainty as the magnitude of
GWL fluctuations varies significantly from season to season
(Taylor and Alley, 2001). Certain patterns in groundwater
dynamics, especially in karst aquifers or those with strong
secondary porosity, become more evident at weekly or daily
time steps. Consequently, the use of a monthly resolution in

our study may not fully capture these dynamics. Addition-
ally, because the vast majority of the wells used in this anal-
ysis are located in porous aquifers, our results are primarily
representative of these conditions.

The GWL behaviour follows the interactions between cli-
mate, topography, hydrogeology, and land use, among others
(Earman and Dettinger, 2011). Estimating GWL solely with
meteorological variables brings uncertainty, especially in ar-
eas with more significant human impacts. Additionally, there
are uncertainties related to the model realizations, which, in
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Figure 7. Pearson correlation coefficients between the geospatial features, the GWL time series features, and the model performance. Signif-
icant correlations are displayed with a confidence level of 90 %. Blank spaces correspond to non-significant correlations. Correlations with
the distance to waterworks are done with 90 wells located in the 10 km buffer and with 50 wells located up to 25 km away from the coastline.

this case, are solved by using several random initialization
seeds. As a result, the model precision is generally high,
and we only use the best-performing optimized models. Re-
garding the geospatial relations with the model performance,
there are uncertainties based on the variable scale and the
definition of influential radius (assumed to be 1 km for the
geomorphology and land use and 10 km for the waterworks),
as well as on the reliability of the primary information.

5.1 Modelling

Overall, the CNN model was able to simulate, to a signifi-
cant extent, the GWL changes for more than 200 wells with
good overall performance (R2 > 0.7 and NSE > 0.6). Thus,
the remaining wells account for at least one metric with non-
acceptable performance, and, in those cases, further hydro-
logical or anthropogenic factors might influence the GWL
behaviour. The Bayesian optimization currently maximizes
the sum of R2 and NSE, occasionally causing contrasting
values for both metrics at specific wells. Thus, constrain-
ing both values to define model performance guarantees ad-
equate results, even when individual accuracy is lower than
the acceptable criteria (Gong et al., 2016). Different combi-
nations of metrics can also be explored against model im-
provements. As explained, Bayesian inference and a Gaus-
sian process (Snoek et al., 2012; Nogueira, 2014) are used to
tune the hyperparameters (external parameters that cannot be
learned from the data). However, additional tuning strategies
such as genetic algorithm and grid search have shown better

results (Alibrahim and Ludwig, 2021). Therefore, modifying
the optimization strategy and adjusting the network architec-
ture can enhance the results. Alternative networks, such as
LSTM or FFNN, may further improve the learning process.
However, in this study, our priority is to understand the link
between GWL and geospatial and time series features rather
than focusing on optimizing the network architecture.

Generalizing the model inputs for all wells throughout the
state influences the scores, especially at sites where GWL is
not driven by P and T only. Even with a low performance,
sometimes, the model can learn the GWL variations but in-
corporates a bias. Around 10 % of the wells show strong
bias (> 0.3), meaning the model has little or no intersec-
tions with observations. Differences in spatial resolution be-
tween the input data (gridded P and T ) and the GWL ob-
servations can cause this bias at some stations. When both
metrics used for the optimization (R2 and NSE) are high,
the model is seen to fit the observations adequately. At cer-
tain times, the model misses the small spikes on the observa-
tions. However, a model that adequately represents the lower
and higher periods due to dry or wet years holds higher rel-
evance for groundwater management. Even though the re-
ceived dataset excluded highly impacted anthropogenic time
series, low performance is primarily observed when a signif-
icant anthropogenic or non-periodic signal is present in the
time series. Models that do not accurately learn from meteo-
rological inputs might be treated independently. Specific ex-
ternal forcings influencing GWL variability might be studied,
and particular cases should be re-trained with the additional
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influencing variables. Lastly, while model overfitting appears
to be small (Fig. A3), the low performance on the test data
may still be attributed to overfitting at some stations.

5.2 Performance evaluation

The weak correlations between the geospatial features and
the model performance can be related to the regional scale of
the analysis and to the multiple drivers controlling the GWL
at a specific location. Factors such as the spatial resolution
of the geospatial features or the large numbers of observa-
tion pairs could also reduce the correlation coefficients (Arm-
strong, 2019). For instance, a skewed probability distribution
in the filter depth, which is below 50 m in most wells, ex-
cludes deeper aquifers from the analysis and can hinder the
relation. Even though we reported a directly proportional re-
lationship between model performance and distance to water-
works, the correlation might be weaker due to non-reported
abstractions. However, it is inferred that wells outside the in-
fluence area of the waterworks are more prone to being rep-
resented by only meteorological variables. Contrarily, wells
located in the influence area of the waterworks system should
include variables such as abstraction rates to keep the learn-
ing process stable (Lee et al., 2019)

The land cover can influence the recharge and the GWL
dynamics. When the surface is sealed, the aquifer recharge
decreases, and the GWL diminishes. In the same way,
groundwater recharge is significantly reduced through evap-
otranspiration wherever dense vegetation is present, such as
in a native forest (Lerner and Harris, 2009). In this case,
most wells are located in non-irrigated arable land, which
consists of rainfed crops, meaning a more direct response of
GWL to meteorological variables is feasible. This supports
the positive correlation suggested in Fig. 7 between model
performance and wells located in non-irrigated arable land.
Contrarily, model performance is reduced as LAI increases.
LAI indicates the vegetation canopy, and, therefore, it gov-
erns the interception of precipitation, largely controlling the
partitioning of infiltrated water into evapotranspiration and
percolation (Reichenau et al., 2016). Thus, the interception
process can hamper a direct response of GWL to precipita-
tion (Pan et al., 2011), affecting model performance as a re-
sult. Regarding geomorphology, areas of accumulation (sink
areas) with low to medium SMI positively affect the perfor-
mance, but this effect is negative when the SMI is high. Sites
with higher relief and SMI present lower performance. Ac-
cording to Rajaveni et al. (2017), geomorphological features
referring to the accumulation process (pediment and valley
fill) have a good groundwater potential and are, therefore,
more prone to react to meteorological inputs. Accumulation
areas are also represented by the increased drainage density
and topographic wetness index (TWI) because these areas
are likely to respond quicker to meteorological inputs. We
also expected the model’s fitness to decrease as the slope in-
creases since steeper areas account for higher runoff, reduc-

ing the influence of precipitation dynamics over GWL obser-
vations.

As the geospatial characteristics surrounding the ground-
water well influence observations, investigating the patterns
encountered in the time series by extracting selected fea-
tures can provide insights into model performance affecta-
tions. For instance, the recurrent presence of flat spots on
the observations, seen as relatively constant values over ex-
tended periods, reduces model performance. This might in-
dicate an aquifer that is less responsive to climate variabil-
ity, which is often the case with large aquifers (Kløve et al.,
2013). We can apply a similar argument to the reduction in
performance when there is an increase in time series stabil-
ity. This means that the GWL remains within a specific range
of values without significant variations. Thus, even if there
are upward or downward changes in precipitation, the ob-
servations of GWL do not exhibit similar patterns. Conse-
quently, the proposed model using only P and T would fail
to reproduce the GWL patterns adequately. We found that
the learning process is reduced as long consecutive subse-
quences above or below the mean occur. Direct human influ-
ences such as managed aquifer recharge can keep the GWL
above the average and modify its response to meteorologi-
cal variables. The opposite happens when groundwater ab-
stractions exceed recharge and when the aquifer levels drop
for a more-or-less-continuous period (Wendt et al., 2020). In
both situations, the anthropogenic effects on GWL reduce
the performance. Natural climate variability might also re-
sult in a similar effect, negatively affecting performance. For
instance, if wetter or drier periods occur during testing but
not in the training phase, the model is unlikely to learn the
consequent patterns. Additionally, the time series complexity
measures (approximate entropy and the number of peaks) in-
dicate a directly proportional relationship with model perfor-
mance, meaning that the more complex the GWL time series
is (more irregular patterns), the better the fit is between sim-
ulations and observations. Complex GWL time series might
reflect a good response to precipitation.

Previous studies have shown little or no correlation be-
tween the time series length and the model performance
(Wunsch et al., 2021). However, at least, observations over
decades are required to cover groundwater dynamics due to
climate variability (Taylor and Alley, 2001), especially when
considering a monthly temporal resolution. In this sense, the
model can incorporate more information into the learning
process, and model performance might increase with longer
time series. However, conclusions about this relation should
be further studied.

6 Conclusions

Fluctuations in the GWL observations are influenced by a
combination of natural and anthropogenic factors, challeng-
ing the modelling of groundwater systems. An alternative to
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highly data-requiring physical and numerical models is DL
techniques. Many DL models have been applied to GWL
modelling, but the main concern with regard to using these
models remains a lack of physical understanding. Owing
to the complex system between climate, GWL, and exter-
nal drivers, model performance can be directly or indirectly
affected outside of what the model can explain, limited by
the input features. Our study brings about insights into how
model performance is affected by geospatial features and in-
trinsic time series characteristics. We selected a 1-D CNN
model to simulate monthly GWL time series per well in
northern Germany, using P and T as inputs. Our results in-
dicate low performances in wells near waterworks, which is
an expected result as GWL is modified by pumping rates. An
increased LAI or forest land cover might lead to lower per-
formance by hindering the P and T relation with the GWL.
Complex time series relate to a better performance, possi-
bly linked to a closer relationship between GWL and P pat-
terns. More extended continuous GWL measurements above
or below the mean negatively impact the metrics and can be
associated with artificial recharge, pumping imposed in the
time series, or natural events such as wetter and drier sea-
sons. Even though only P and T are used as model inputs,
the performances obtained are considered to be acceptable
(R2 > 0.7 and NSE > 0.6) for more than 200 wells. Nonethe-
less, incorporating explainable AI techniques in future stud-
ies is recommended to enhance the interpretation of the non-
linear behaviour between groundwater and its influencing
factors.

As the study covers regional areas, local variabilities in cli-
mate and human–water interactions might occur. Therefore,
model performance should be evaluated at locations with
greater data availability to strengthen the current research.
Moreover, correlations might vary depending on the model
architecture selected or the temporal resolution of GWL ob-
servations. For instance, a daily resolution can better in-
clude groundwater dynamics showing stronger correlations.
Our results encourage the joint analysis of physically related
characteristics and DL GWL modelling as an essential path
to improve the reliability of data-driven models.

Appendix A

Figure A1. Time range of GWL observations. The blank spaces
correspond to missing data.
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Figure A2. Filter depth (metres below ground level) and elevation (metres above sea level) of all the wells in the study area.

Figure A3. Difference in model performance (RMSE) between validation and testing periods.
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Figure A4. Model performance (RMSE) difference between validation and testing period for 3, 4, and 5 years of testing ranges.

Figure A5. Scatterplot of simulated vs. observed values for the 505 wells for the test period.
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