Articles | Volume 27, issue 3
https://doi.org/10.5194/hess-27-761-2023
https://doi.org/10.5194/hess-27-761-2023
Research article
 | 
14 Feb 2023
Research article |  | 14 Feb 2023

Evidence-based requirements for perceptualising intercatchment groundwater flow in hydrological models

Louisa D. Oldham, Jim Freer, Gemma Coxon, Nicholas Howden, John P. Bloomfield, and Christopher Jackson

Related authors

Evaluation of a socio-hydrological water resource model for drought management in groundwater-rich areas
Doris Elise Wendt, Gemma Coxon, Saskia Salwey, and Francesca Pianosi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1645,https://doi.org/10.5194/egusphere-2025-1645, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
OLIGOTREND, towards a global database of multi-decadal chlorophyll-a and water quality timeseries for rivers, lakes and estuaries
Camille Minaudo, Andras Abonyi, Carles Alcaraz, Jacob Diamond, Nicholas J. K. Howden, Michael Rode, Estela Romero, Vincent Thieu, Fred Worrall, Qian Zhang, and Xavier Benito
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-58,https://doi.org/10.5194/essd-2025-58, 2025
Preprint under review for ESSD
Short summary
On the importance of discharge observation uncertainty when interpreting hydrological model performance
Jerom P. M. Aerts, Jannis M. Hoch, Gemma Coxon, Nick C. van de Giesen, and Rolf W. Hut
Hydrol. Earth Syst. Sci., 28, 5011–5030, https://doi.org/10.5194/hess-28-5011-2024,https://doi.org/10.5194/hess-28-5011-2024, 2024
Short summary
DECIPHeR-GW v1: A coupled hydrological model with improved representation of surface-groundwater interactions
Yanchen Zheng, Gemma Coxon, Mostaquimur Rahman, Ross Woods, Saskia Salwey, Youtong Rong, and Doris Wendt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-211,https://doi.org/10.5194/gmd-2024-211, 2024
Revised manuscript accepted for GMD
Short summary
Exploring the provenance of information across Canadian hydrometric stations: implications for discharge estimation and uncertainty quantification
Shervan Gharari, Paul H. Whitfield, Alain Pietroniro, Jim Freer, Hongli Liu, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 28, 4383–4405, https://doi.org/10.5194/hess-28-4383-2024,https://doi.org/10.5194/hess-28-4383-2024, 2024
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Causal relationships of vegetation productivity with root zone water availability and atmospheric dryness at the catchment scale
Guta Wakbulcho Abeshu, Hong-Yi Li, Mingjie Shi, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 29, 1847–1864, https://doi.org/10.5194/hess-29-1847-2025,https://doi.org/10.5194/hess-29-1847-2025, 2025
Short summary
Annual memory in the terrestrial water cycle
Wouter R. Berghuijs, Ross A. Woods, Bailey J. Anderson, Anna Luisa Hemshorn de Sánchez, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1319–1333, https://doi.org/10.5194/hess-29-1319-2025,https://doi.org/10.5194/hess-29-1319-2025, 2025
Short summary
Can system dynamics explain long-term hydrological behaviors? The role of endogenous linking structure
Xinyao Zhou, Zhuping Sheng, Kiril Manevski, Rongtian Zhao, Qingzhou Zhang, Yanmin Yang, Shumin Han, Jinghong Liu, and Yonghui Yang
Hydrol. Earth Syst. Sci., 29, 159–177, https://doi.org/10.5194/hess-29-159-2025,https://doi.org/10.5194/hess-29-159-2025, 2025
Short summary
Catchment hydrological response and transport are affected differently by precipitation intensity and antecedent wetness
Julia L. A. Knapp, Wouter R. Berghuijs, Marius G. Floriancic, and James W. Kirchner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-371,https://doi.org/10.5194/hess-2024-371, 2024
Revised manuscript accepted for HESS
Short summary
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using ensemble rainfall–runoff analysis (ERRA): proof of concept
James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4427–4454, https://doi.org/10.5194/hess-28-4427-2024,https://doi.org/10.5194/hess-28-4427-2024, 2024
Short summary

Cited articles

Adams, B. (Ed.): The Chalk Aquifer of the North Downs, British Geological Survey Research Report RR/08/02, 60 pp., ISBN 9780852725719, 2008. 
Allen, D. J., Brewerton, L. J., Coleby, L. M., Gibbs, B. R., Lewis, M. A., MacDonald, A. M., Wagstaff, S. J., and Williams, A. T.: The physical properties of major aquifers in England and Wales. British Geological Survey Technical Report WD/97/34, Environment Agency R&D Publication 8, 312 pp., https://nora.nerc.ac.uk/id/eprint/13137/ (last access: 7 April 2022), 1997. 
Allen, D. J., Darling, W. G., Gooddy, D. C., Lapworth, D. J., Newell, A. J., Williams, A. T., Allen, D., and Abesser, C.: Interaction between groundwater, surface water and the hyporheic zone in a Chalk stream, Hydrogeol. J., 18, 1125–1142, https://doi.org/10.1007/s10040-010-0592-2, 2010. 
Ameli, A. A., Gabrielli, C., Morgenstern, U., and McDonnell J. J.: Groundwater Subsidy From Headwaters to Their Parent Water Watershed: A Combined Field-Modeling Approach, Water Resour. Res., 54, 5110–5125, https://doi.org/10.1029/2017WR022356, 2018. 
Andreassian, V. and Perrin, C.: On the ambiguous interpretation of the Turc-Budyko nondimensional graph, Water Resour. Res., 48, W10601, https://doi.org/10.1029/2012WR012532, 2012. 
Download
Short summary
Water can move between river catchments via the subsurface, termed intercatchment groundwater flow (IGF). We show how a perceptual model of IGF can be developed with relatively simple geological interpretation and data requirements. We find that IGF dynamics vary in space, correlated to the dominant underlying geology. We recommend that IGF loss functions may be used in conceptual rainfall–runoff models but should be supported by perceptualisation of IGF processes and connectivities.
Share