Articles | Volume 27, issue 2
https://doi.org/10.5194/hess-27-401-2023
https://doi.org/10.5194/hess-27-401-2023
Research article
 | 
19 Jan 2023
Research article |  | 19 Jan 2023

The origin of hydrological responses following earthquakes in a confined aquifer: insight from water level, flow rate, and temperature observations

Shouchuan Zhang, Zheming Shi, Guangcai Wang, Zuochen Zhang, and Huaming Guo

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci., 28, 3519–3547, https://doi.org/10.5194/hess-28-3519-2024,https://doi.org/10.5194/hess-28-3519-2024, 2024
Short summary
High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation
Anna Pazola, Mohammad Shamsudduha, Jon French, Alan M. MacDonald, Tamiru Abiye, Ibrahim Baba Goni, and Richard G. Taylor
Hydrol. Earth Syst. Sci., 28, 2949–2967, https://doi.org/10.5194/hess-28-2949-2024,https://doi.org/10.5194/hess-28-2949-2024, 2024
Short summary
Towards understanding the influence of seasons on low-groundwater periods based on explainable machine learning
Andreas Wunsch, Tanja Liesch, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 28, 2167–2178, https://doi.org/10.5194/hess-28-2167-2024,https://doi.org/10.5194/hess-28-2167-2024, 2024
Short summary
Shannon entropy of transport self-organization due to dissolution–precipitation reaction at varying Peclet numbers in initially homogeneous porous media
Evgeny Shavelzon and Yaniv Edery
Hydrol. Earth Syst. Sci., 28, 1803–1826, https://doi.org/10.5194/hess-28-1803-2024,https://doi.org/10.5194/hess-28-1803-2024, 2024
Short summary
A high-resolution map of diffuse groundwater recharge rates for Australia
Stephen Lee, Dylan J. Irvine, Clément Duvert, Gabriel C. Rau, and Ian Cartwright
Hydrol. Earth Syst. Sci., 28, 1771–1790, https://doi.org/10.5194/hess-28-1771-2024,https://doi.org/10.5194/hess-28-1771-2024, 2024
Short summary

Cited articles

Anderson, M. P.: Heat as a Ground Water Tracer, Ground Water, 43, 951–968, https://doi.org/10.1111/J.1745-6584.2005.00052.X, 2010. 
Brodsky, E. E., Roeloffs, E., Woodcock, D., Gall, I., and Manga, M.: A mechanism for sustained groundwater pressure changes induced by distant earthquakes, J. Geophys. Res.-Sol. Ea., 108, 2390, https://doi.org/10.1029/2002jb002321, 2003. 
CEA: The observation method of earthquake-related underground fluid: Observation of water level in well, DB/T 48-2012, China Earthquake Administration, https://www.cea.gov.cn/eportal/fileDir/defaultCurSite/resource/cms/2018/03/2018030110383875846.pdf (last access: 13 January 2023), 2012. 
Chien, S. H. J., Chi, W. C., and Ke, C. C.: Precursory and coseismic groundwater temperature perturbation: An example from Taiwan, J. Hydrol., 582, 10, https://doi.org/10.1016/j.jhydrol.2019.124457, 2020. 
Deng, J., Wang, Q., Gao, L., He, W., Yang, Z., Zhang, S., Chang, L., Li, G., Sun, X., and Zhou, D.: Differential crustal rotation and its control on giant ore clusters along the eastern margin of Tibet, Geology, 49, 428–432, https://doi.org/10.1130/G47855.1, 2020. 
Download
Short summary
We documented the step-like increases of water level, flow rate, and water temperatures in a confined aquifer following multiple earthquakes. By employing tidal analysis and a coupled temperature and flow rate model, we find that post-seismic vertical permeability changes and recharge model could explain the co-seismic response. And co-seismic temperature changes are caused by mixing of different volumes of water, with the mixing ratio varying according to each earthquake.