Articles | Volume 27, issue 5
https://doi.org/10.5194/hess-27-1173-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-1173-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A comprehensive assessment of in situ and remote sensing soil moisture data assimilation in the APSIM model for improving agricultural forecasting across the US Midwest
Marissa Kivi
CORRESPONDING AUTHOR
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
Noemi Vergopolan
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
Related authors
No articles found.
Vishnu U. Krishnan, Noemi Vergopolan, Bhupendra Bahadur Singh, Jayaluxmi Indu, and Lanka Karthikeyan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-339, https://doi.org/10.5194/hess-2024-339, 2024
Revised manuscript under review for HESS
Short summary
Short summary
Soil moisture has high heterogeneity in areas with marginal agricultural farms. Traditional models do not account for these changes. This study implements a new land model for farm-scale soil moisture first time in India. We enhanced it with depth-varying soil properties and identified their importance for estimating soil moisture across depths and seasons. The modified model improves deep-layer soil moisture at 30 m resolution, with temporal changes consistent with coarse-resolution products.
Hamze Dokoohaki, Bailey D. Morrison, Ann Raiho, Shawn P. Serbin, Katie Zarada, Luke Dramko, and Michael Dietze
Geosci. Model Dev., 15, 3233–3252, https://doi.org/10.5194/gmd-15-3233-2022, https://doi.org/10.5194/gmd-15-3233-2022, 2022
Short summary
Short summary
We present a new terrestrial carbon cycle data assimilation system, built on the PEcAn model–data eco-informatics system, and its application for the development of a proof-of-concept carbon
reanalysisproduct that harmonizes carbon pools (leaf, wood, soil) and fluxes (GPP, Ra, Rh, NEE) across the contiguous United States from 1986–2019. Here, we build on a decade of work on uncertainty propagation to generate the most complete and robust uncertainty accounting available to date.
Nathaniel W. Chaney, Laura Torres-Rojas, Noemi Vergopolan, and Colby K. Fisher
Geosci. Model Dev., 14, 6813–6832, https://doi.org/10.5194/gmd-14-6813-2021, https://doi.org/10.5194/gmd-14-6813-2021, 2021
Short summary
Short summary
Although there have been significant advances in river routing and sub-grid heterogeneity (i.e., tiling) schemes in Earth system models over the past decades, there has yet to be a concerted effort to couple these two concepts. This paper aims to bridge this gap through the development of a two-way coupling between tiling schemes and river networks in the HydroBlocks land surface model. The scheme is implemented and tested over a 1 arc degree domain in Oklahoma, United States.
Noemi Vergopolan, Sitian Xiong, Lyndon Estes, Niko Wanders, Nathaniel W. Chaney, Eric F. Wood, Megan Konar, Kelly Caylor, Hylke E. Beck, Nicolas Gatti, Tom Evans, and Justin Sheffield
Hydrol. Earth Syst. Sci., 25, 1827–1847, https://doi.org/10.5194/hess-25-1827-2021, https://doi.org/10.5194/hess-25-1827-2021, 2021
Short summary
Short summary
Drought monitoring and yield prediction often rely on coarse-scale hydroclimate data or (infrequent) vegetation indexes that do not always indicate the conditions farmers face in the field. Consequently, decision-making based on these indices can often be disconnected from the farmer reality. Our study focuses on smallholder farming systems in data-sparse developing countries, and it shows how field-scale soil moisture can leverage and improve crop yield prediction and drought impact assessment.
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Short summary
We evaluated the largest and most diverse set of surface soil moisture products ever evaluated in a single study. We found pronounced differences in performance among individual products and product groups. Our results provide guidance to choose the most suitable product for a particular application.
Cited articles
Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E.: From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations, Hydrol. Earth Syst. Sci., 12, 1323–1337, https://doi.org/10.5194/hess-12-1323-2008, 2008.
Brilli, L., Bechini, L., Bindi, M., Carozzi, M., Cavalli, D., Conant, R., Dorich, C. D., Doro, L., Ehrhardt, F., Farina, R., Ferrise, R., Fitton, N., Francaviglia, R., Grace, P., Iocola, I., Klumpp, K., Léonard, J., Martin, R., Massad, R. S., Recous, S., Seddaiu, G., Sharp, J., Smith, P., Smith, W. N., Soussana, J.-F., and Bellocchi, G.: Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes, Sci. Total Environ., 598, 445–470, https://doi.org/10.1016/j.scitotenv.2017.03.208, 2017.
Chakrabarti, S., Bongiovanni, T., Judge, J., Zotarelli, L., and Bayer, C.:
Assimilation of SMOS soil moisture for quantifying drought impacts on crop
yield in agricultural regions, IEEE J. Select. Top. Appl., 7, 3867–3879,
https://doi.org/10.1109/JSTARS.2014.2315999, 2014.
Chen, Y., Zhang, Z., and Tao, F. : Improving regional winter wheat yield
estimation through assimilation of phenology and leaf area index from remote
sensing data, Eur. J. Agron., 101, 163–173, https://doi.org/10.1016/j.eja.2018.09.006, 2018.
Chighladze, G., Abendroth, L. J., Herzmann, D., Helmers, M., Ahiablame, L.,
Allred, B., Bowling, L., Brown, L., Fausey, N., Frankenberger, J., Jaynes,
D., Jia, X., Kjaersgaard, J., King, K., Kladivko, E., Nelson, K., Pease, L.,
Reinhart, B., Strock, J., and Youssef, M.: Transforming Drainage Research
Data (USDA-NIFA Award No. 2015-68007-23193), National Agricultural Library
– ARS – USDA, https://doi.org/10.15482/USDA.ADC/1521092, 2021.
Crow, W. T., Berg, A. A., Cosh, M. H., Loew, A., Mohanty, B. P., Panciera, R., de Rosnay, P., Ryu, D., and Walker, J. P.: Upscaling sparse ground-based
soil moisture observations for the validation of coarse-resolution satellite
soil moisture products: UPSCALING SOIL MOISTURE, Rev. Geophys.,
50, RG2002, https://doi.org/10.1029/2011RG000372, 2012.
Curnel, Y., de Wit, A. J. W., Duveiller, G., and Defourny, P.: Potential performances of remotely sensed LAI assimilation in WOFOST model based on an OSS Experiment, Agr. Forest Meteorol., 151, 1843–1855, https://doi.org/10.1016/j.agrformet.2011.08.002, 2011.
Das, N. N., Entekhabi, D., Dunbar, R. S., Chaubell, M. J., Colliander, A.,
Yueh, S., Jagdhuber, T., Chen, F., Crow, W., O'Neill, P. E., Walker, J. P.,
Berg, A., Bosch, D. D., Caldwell, T., Cosh, M. H., Collins, C. H., Lopez-Baeza, E., and Thibeault, M.: The SMAP and Copernicus Sentinel 1A/B
microwave active-passive high resolution surface soil moisture product,
Remote Sens. Environ., 233, 111380, https://doi.org/10.1016/j.rse.2019.111380, 2019.
de Lannoy, G. J. M., Houser, P. R., Pauwels, V. R. N., and Verhoest, N. E. C.: State and bias estimation for soil moisture profiles by an ensemble Kalman filter: Effect of assimilation depth and frequency, Water Resour. Res., 43, W06401, https://doi.org/10.1029/2006WR005100, 2007.
de Valpine, P., Turek, D., Paciorek, C., Anderson-Bergman, C., Temple Lang,
D., and Bodik, R.: Programming with models: writing statistical algorithms for general model structures with NIMBLE, J. Comput. Graph. Stat., 26, 403–413, https://doi.org/10.1080/10618600.2016.1172487, 2017.
de Valpine, P., Paciorek, C., Turek, D., Michaud, N., Anderson-Bergman, C.,
Obermeyer, F., Wehrhahn Cortes, C., Rodrìguez, A., Temple Lang, D., and
Paganin, S.: NIMBLE: MCMC, Particle Filtering, and Programmable Hierarchical
Modeling, doi”10.5281/zenodo.1211190, R package version 0.12.2, https://cran.r-project.org/package=nimble (last access: October 2021), 2022.
de Wit, A. J. W. and van Diepen, C. A.: Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts, Agr. Forest Meteorol., 146, 38–56, 2007.
Dietze, M.: Ecological Forecasting, Princeton University Press, Princeton, https://doi.org/10.1515/9781400885459, 2017.
Dokoohaki, H., Miguez, F. E., Archontoulis, S., and Laird, D: Use of inverse
modelling and Bayesian optimization for investigating the effect of biochar
on soil hydrological properties, Agr. Water Manage., 208, 268–274, 2018.
Dokoohaki, H., Kivi, M. S., Martinez-Feria, R., Miguez, F. E., and Hoogenboom, G.: A comprehensive uncertainty quantification of large-scale
process-based crop modeling frameworks, Environ. Res. Lett., 16, 084010, https://doi.org/10.1088/1748-9326/ac0f26, 2021.
Dokoohaki, H., Morrison, B. D., Raiho, A., Serbin, S. P., Zarada, K., Dramko, L., and Dietze, M.: Development of an open-source regional data assimilation system in PEcAn v. 1.7.2: application to carbon cycle reanalysis across the contiguous US using SIPNET, Geosci. Model Dev., 15, 3233–3252, https://doi.org/10.5194/gmd-15-3233-2022, 2022a.
Dokoohaki, H., Rai, T., Kivi, M., Lewis, P., Gomez-Dans, J., and Yin, F.:
Linking Remote Sensing with APSIM through Emulation and Bayesian Optimization to Improve Maize Yield Prediction in the US Midwest, Remote Sens., 14, 5389, https://doi.org/10.3390/rs14215389, 2022b.
Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L.,
Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y., Miralles, D., Lecomte, P., ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions, Remote Sens. Environ., 203, 185–215, https://doi.org/10.1016/j.rse.2017.07.001, 2017.
Dorigo, W. A., Zurita-Milla, R., de Wit, A. J. W., Brazile, J., Singh, R.,
and Schaepman, M. E.: A review on reflective remote sensing and data
assimilation techniques for enhanced agroecosystem modelling, Int. J. Appl. Earth Obs., 9, 165–193, https://doi.org/10.1016/j.jag.2006.05.003, 2007.
Evensen, G.: The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynam., 53, 343–367, https://doi.org/10.1007/s10236-003-0036-9, 2003.
Fer, I., Gardella, A. K., Shiklomanov, A. N., Campbell, E. E., Cowdery, E.
M., De Kauwe, M. G., Desai, A., Duveneck, M. J., Fisher, J. B., Haynes, K.
D., Hoffman, F. M., Johnston, M. R., Kooper, R., LeBauer, D. S., Mantooth,
J., Parton, W. J., Poulter, B., Quaife, T., Raiho, A., and Dietze, M. C.: Beyond ecosystem modeling: A roadmap to community cyberinfrastructure for
ecological data-model integration, Global Change Biol., 27, 13–26,
https://doi.org/10.1111/gcb.15409, 2021.
Folberth, C., Skalský, R., Moltchanova, E., Balkovič, J., Azevedo, L. B., Obersteiner, M., and Van Der Velde, M.: Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations, Nat. Commun., 7, 11872, https://doi.org/10.1038/ncomms11872, 2016.
Gao, F. and Zhang, X.: Mapping Crop Phenology in Near Real-Time Using
Satellite Remote Sensing: Challenges and Opportunities, J. Remote Sens., 2021, 1–14, https://doi.org/10.34133/2021/8379391, 2021.
Helmers, M. J., Abendroth, L., Reinhart, B., Chighladze, G., Pease, L., Bowling, L., Youssef, M., Ghane, E., Ahiablame, L., Brown, L., Fausey, N.,
Frankenberger, J., Jaynes, D., King, K., Kladivko, E., Nelson, K., and Strock, J.: Impact of controlled drainage on subsurface drain flow and nitrate load: A synthesis of studies across the U.S. Midwest and Southeast,
Agr. Water Manage., 259, 107265, https://doi.org/10.1016/j.agwat.2021.107265, 2022.
Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G.
B. M., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G. B., Walsh,
M. G., and Gonzalez, M. R. : SoilGrids1km – Global Soil Information Based on
Automated Mapping, PloS ONE, 9, e105992, https://doi.org/10.1371/journal.pone.0105992, 2014.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hu, K., Li, B., Chen, D., Zhang, Y., and Edis, R.: Simulation of nitrate leaching under irrigated maize on sandy soil in desert oasis in Inner Mongolia, China, Agr. Water Manage., 95, 1180–1188, https://doi.org/10.1016/j.agwat.2008.05.001, 2008.
Huang, J., Ma, H., Su, W., Zhang, X., Huang, Y., Fan, J., and Wu, W.: Jointly Assimilating MODIS LAI and ET Products Into the SWAP Model for Winter Wheat Yield Estimation, IEEE J. Select. Top. Appl., 8, 4060–4071, https://doi.org/10.1109/JSTARS.2015.2403135, 2015.
Huang, J., Gómez-Dans, J. L., Huang, H., Ma, H., Wu, Q., Lewis, P. E.,
Liang, S., Chen, Z., Xue, J.-H., Wu, Y., Zhao, F., Wang, J., and Xie, X.:
Assimilation of remote sensing into crop growth models: Current status and
perspectives, Agr. Forest Meteorol., 276–277, 107609,
https://doi.org/10.1016/j.agrformet.2019.06.008, 2019.
Ines, A. V. M., Das, N. N., Hansen, J. W., and Njoku, E. G.: Assimilation of
remotely sensed soil moisture and vegetation with a crop simulation model
for maize yield prediction, Remote Sens. Environ., 138, 149–164,
https://doi.org/10.1016/j.rse.2013.07.018, 2013.
Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P. J.,
Asner, G. P., François, C., and Ustin, S. L.: PROSPECT+SAIL models: A
review of use for vegetation characterization, Remote Sens. Environ., 113, S56–S66, 2009.
Kivi, M. S., Blakely, B., Masters, M., Bernacchi, C. J., Miguez, F. E., and
Dokoohaki, H.: Development of a data-assimilation system to forecast agricultural systems: A case study of constraining soil water and soil
nitrogen dynamics in the APSIM model, Sci. Total Environ., 820, 153192, https://doi.org/10.1016/j.scitotenv.2022.153192, 2022.
Kumar, S. V., Dirmeyer, P. A., Peters-Lidard, C. D., Bindlish, R., and Bolten, J.: Information theoretic evaluation of satellite soil moisture retrievals, Remote Sens. Environ., 204, 392–400, https://doi.org/10.1016/j.rse.2017.10.016, 2018.
Lehnert, L. W., Meyer, H,, Obermeier, W. A., Silva, B., Regeling, B., Thies, B., and Bendix, J.: Hyperspectral Data Analysis in R: The hsdar Package, J. Stat. Softw., 89, 1–23, https://doi.org/10.18637/jss.v089.i12, 2019.
Lievens, H., Reichle, R. H., Liu, Q., De Lannoy, G. J. M., Dunbar, R. S.,
Kim, S. B., Das, N. N., Cosh, M., Walker, J. P., and Wagner, W. : Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates,
Geophys. Res. Lett., 44, 6145–6153, https://doi.org/10.1002/2017GL073904, 2017.
Linker, R. and Ioslovich, I. : Assimilation of canopy cover and biomass
measurements in the crop model AquaCrop, Biosyst. Eng., 162, 57–66, https://doi.org/10.1016/j.biosystemseng.2017.08.003, 2017.
Liu, Y., Wang, W., and Hu, Y.: Investigating the impact of surface soil
moisture assimilation on state and parameter estimation in SWAT model based on the ensemble Kalman filter in upper Huai River basin, J. Hydrol. Hydromech., 65, 123–133, https://doi.org/10.1515/johh-2017-0011, 2017.
Liu, Y., Wang, W., and Liu, Y.: ESA CCI Soil Moisture Assimilation in SWAT
for Improved Hydrological Simulation in Upper Huai River Basin, Adv. Meteorol., 2018, 1–13, https://doi.org/10.1155/2018/7301314, 2018.
Liu, Z., Xu, Z., Bi, R., Wang, C., He, P., Jing, Y., and Yang, W.: Estimation of Winter Wheat Yield in Arid and Semiarid Regions Based on Assimilated Multi-Source Sentinel Data and the CERES-Wheat Model, Sensors, 21, 1247, https://doi.org/10.3390/s21041247, 2021.
Lu, Y., Dong, J., and Steele-Dunne, S. C.: Impact of Soil Moisture Data Resolution on Soil Moisture and Surface Heat Flux Estimates through Data
Assimilation: A Case Study in the Southern Great Plains, J. Hydrometeorol., 20, 715–730, https://doi.org/10.1175/JHM-D-18-0234.1, 2019.
Lu, Y., Chibarabada, T. P., Ziliani, M. G., Onema, J. M. K., McCabe, M. F.,
and Sheffield, J. : Assimilation of soil moisture and canopy cover data
improves maize simulation using an under-calibrated crop model, Agr. Water Manage., 252, 106884, https://doi.org/10.1016/j.agwat.2021.106884, 2021.
Luce, G. A.: Optimum corn planting depth – Don't plant your corn too shallow, 6 April 2016, University of Missouri Integrated Pest and Crop Management, https://ipm.missouri.edu/cropPest/2016/4/Optimum_Corn_Planting_Depth-Dont_Plant_Your_Corn_Too_Shallow/#:~:text=Check planting depth when starting,safe and successful planting season (last access: May 2021), 2016.
Ma, G., Huang, J., Wu, W., Fan, J., Zou, J., and Wu, S.: Assimilation of
MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield,
Math. Comput. Model., 58, 634–643, https://doi.org/10.1016/j.mcm.2011.10.038, 2013.
Malone, R. W., Huth, N., Carberry, P. S., Ma, L., Kaspar, T. C., Karlen, D.
L., Meade, T., Kanwar, R. S., and Heilman, P.: Evaluating and predicting
agricultural management effects under tile drainage using modified APSIM,
Geoderma, 140, 310–322, https://doi.org/10.1016/j.geoderma.2007.04.014, 2007.
Mishra, V., Cruise, J. F., and Mecikalski, J. R.: Assimilation of coupled
microwave/thermal infrared soil moisture profiles into a crop model for robust maize yield estimates over Southeast United States, Eur. J. Agron., 123, 126208, https://doi.org/10.1016/j.eja.2020.126208, 2021.
Miyoshi, T., Kalnay, E., and Li, H. : Estimating and including observation-error correlations in data assimilation, Inverse Probl. Sci. Eng., 21, 387–398, https://doi.org/10.1080/17415977.2012.712527, 2013.
Monsivais-Huertero, A., Graham, W. D., Judge, J., and Agrawal, D.: Effect of
simultaneous state–parameter estimation and forcing uncertainties on root-zone soil moisture for dynamic vegetation using EnKF, Adv. Water
Resour., 33, 468–484, https://doi.org/10.1016/j.advwatres.2010.01.011, 2010.
Moore, C. E., Haden, A. C., Burnham, M. B., Kantola, I. B., Gibson, C. D.,
Blakely, B. J., Dracup, E. C., Masters, M. D., Yang, W. H., DeLucia, E. H.,
and Bernacchi, C. J.: Ecosystem-scale biogeochemical fluxes from three bioenergy crop candidates: How energy sorghum compares to maize and miscanthus, GCB Bioenergy, 13, 445–458, https://doi.org/10.1111/gcbb.12788, 2021.
Mourtzinis, S. and Conley, S. P. : Delineating Soybean Maturity Groups across the United States, Agron. J., 109, 1397–1403, https://doi.org/10.2134/agronj2016.10.0581, 2017.
Naz, B. S., Kurtz, W., Montzka, C., Sharples, W., Goergen, K., Keune, J., Gao, H., Springer, A., Hendricks Franssen, H.-J., and Kollet, S.: Improving soil moisture and runoff simulations at 3 km over Europe using land surface data assimilation, Hydrol. Earth Syst. Sci., 23, 277–301, https://doi.org/10.5194/hess-23-277-2019, 2019.
Nearing, G. S., Crow, W. T., Thorp, K. R., Moran, M. S., Reichle, R. H., and
Gupta, H. V.: Assimilating remote sensing observations of leaf area index and soil moisture for wheat yield estimates: An observing system simulation experiment, Water Resour. Res., 48, W05525, https://doi.org/10.1029/2011WR011420, 2012.
Ojeda, J. J., Volenec, J. J., Brouder, S. M., Caviglia, O. P., and Agnusdei, M. G.: Modelling stover and grain yields, and subsurface artificial drainage from long-term corn rotations using APSIM, Agr. Water Manage., 195, 154–171, https://doi.org/10.1016/j.agwat.2017.10.010, 2018.
Pauwels, V. R. N., Verhoest, N. E. C., De Lannoy, G. J. M., Guissard, V., Lucau, C., and Defourny, P.: Optimization of a coupled hydrology-crop growth model through the assimilation of observed soil moisture and leaf area index values using an ensemble Kalman filter: Assimilation Of LAI And Soil Moisture, Water Resour. Res., 43, W04421, https://doi.org/10.1029/2006WR004942, 2007.
Peng, J., Loew, A., Merlin, O., and Verhoest, N. E. C. : A review of spatial
downscaling of satellite remotely sensed soil moisture: Downscale Satellite-Based Soil Moisture, Rev. Geophys., 55, 341–366, https://doi.org/10.1002/2016RG000543, 2017.
Peng, J., Albergel, C., Balenzano, A., Brocca, L., Cartus, O., Cosh, M. H., Crow, W. T., Dabrowska-Zielinska, K., Dadson, S., Davidson, M. W. J., de Rosnay, P., Dorigo, W., Gruber, A., Hagemann, S., Hirschi, M., Kerr, Y. H., Lovergine, F., Mahecha, M. D., Marzahn, P., Mattia, F., Musial, J. P., Preuschmann, S., Reichle, R. H., Satalino, G., Silgram, M., van Bodegom, P. M., Verhoest, N. E. C., Wagner, W., Walker, J. P., Wegmüller, U., and Loew, A.: A roadmap for high-resolution satellite soil moisture applications – confronting product characteristics with user requirements, Remote Sens. Environ., 252, 112162, https://doi.org/10.1016/j.rse.2020.112162, 2021.
Raiho, A., Dietze, M., Dawson, A., Rollinson, C. R., Tipton, J., and McLachlan, J.: Towards understanding predictability in ecology: A forest gap
model case study, Ecology, https://doi.org/10.1101/2020.05.05.079871, in press, 2020.
Sharp, J. M., Thomas, S. M., and Brown, H. E. : A validation of APSIM nitrogen balance and leaching predictions, Agronomy New Zealand, 12 pp., https://www.agronomysociety.org.nz/uploads/94803/files/2011_7._A_validation_of_APSIM.pdf
(last access: May 2021), 2011.
Silva, J. V. and Giller, K. E.: Grand challenges for the 21st century: What
crop models can and can't (yet) do, J. Agr. Sci., 158, 794–805, https://doi.org/10.1017/S0021859621000150, 2021.
Staton, M.: Pay close attention to soybean planting depth, 9 May 2012, Michigan State University Extension, https://www.canr.msu.edu/news/pay_close_attention_to_soybean_planting_depth#:~:text=Never plant soybean seed deeper,the cotyledons above the soil (last access: May 2021), 2012.
Stewart, L. K., Charlesworth, P. B., Bristow, K. L., and Thorburn, P. J.: Estimating deep drainage and nitrate leaching from the root zone under sugarcane using APSIM-SWIM, Agr. Water Manage., 81, 315–334, https://doi.org/10.1016/j.agwat.2005.05.002, 2006.
van der Laan, M., Annandale, J. G., Bristow, K. L., Stirzaker, R. J., du Preez, C. C., and Thorburn, P. J.: Modelling nitrogen leaching: Are we getting the right answer for the right reason?, Agr. Water Manage., 133,
74–80, https://doi.org/10.1016/j.agwat.2013.10.017, 2014.
Vergopolan, N., Chaney, N. W., Beck, H. E., Pan, M., Sheffield, J., Chan, S., and Wood, E. F.: Combining hyper-resolution land surface modeling with SMAP brightness temperatures to obtain 30-m soil moisture estimates, Remote Sens. Environ., 242, 111740, https://doi.org/10.1016/j.rse.2020.111740, 2020.
Vergopolan, N., Xiong, S., Estes, L., Wanders, N., Chaney, N. W., Wood, E. F., Konar, M., Caylor, K., Beck, H. E., Gatti, N., Evans, T., and Sheffield, J.: Field-scale soil moisture bridges the spatial-scale gap between drought monitoring and agricultural yields, Hydrol. Earth Syst. Sci., 25, 1827–1847, https://doi.org/10.5194/hess-25-1827-2021, 2021a.
Vergopolan, N., Chaney, N. W., Pan, M., Sheffield, J., Beck, H. E., Ferguson, C. R., Torres-Rojas, L., Sadri, S., and Wood, E. F.: SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the conterminous US, Scient. Data, 8, 264, https://doi.org/10.1038/s41597-021-01050-2, 2021b.
Weiss, M., Jacob, F., and Duveiller, G. : Remote sensing for agricultural
applications: A meta-review, Remote Sens. Environ., 236, 111402,
https://doi.org/10.1016/j.rse.2019.111402, 2020.
Zhou, H., Wu, J., Li, X., Geng, G., and Liu, L.: Improving soil moisture
estimation by assimilating remotely sensed data into crop growth model for
agricultural drought monitoring, in: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 10–15 July 2016, Beijing, China, 4229–4232 https://doi.org/10.1109/IGARSS.2016.7730102, 2016.
Zhu, P., Shi, L., Zhu, Y., Zhang, Q., Huang, K., and Williams, M.: Data
assimilation of soil water flow via ensemble Kalman filter: Infusing soil
moisture data at different scales, J. Hydrol., 555, 912–925, https://doi.org/10.1016/j.jhydrol.2017.10.078, 2017.
Short summary
This study attempts to provide a framework for direct integration of soil moisture observations collected from soil sensors and satellite imagery into process-based crop models for improving the representation of agricultural systems. The performance of this framework was evaluated across 19 sites times years for crop yield, normalized difference vegetation index (NDVI), soil moisture, tile flow drainage, and nitrate leaching.
This study attempts to provide a framework for direct integration of soil moisture observations...