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Abstract. Today, the most popular approaches in agricul-
tural forecasting leverage process-based crop models, crop
monitoring data, and/or remote sensing imagery. Individ-
ually, each of these tools has its own unique advantages
but is, nonetheless, limited in prediction accuracy, preci-
sion, or both. In this study we integrate in situ and re-
mote sensing (RS) soil moisture observations with APSIM
model through sequential data assimilation to evaluate the
improvement in model predictions of downstream state vari-
ables across five experimental sites in the US Midwest. Four
RS data products and in situ observations spanning 19 site
years were used through two data assimilation approaches,
namely ensemble Kalman filter (EnKF) and generalized en-
semble filter (GEF), to constrain model states at observed
time steps and estimate joint background and observation
error matrices. Then, the assimilation’s impact on estimates
of soil moisture, yield, normalized difference vegetation in-
dex (NDVI), tile drainage, and nitrate leaching was assessed
across all site years. When assimilating in situ observations,
the accuracy of soil moisture forecasts in the assimilation
layers was improved by reducing RMSE by an average of
17 % for 10 cm and ∼ 28 % for 20 cm depth soil layer across
all site years. These changes also led to improved simulation
of soil moisture in deeper soil layers by an average of 12 %.
Although crop yield was improved by an average of 23 %, the
greatest improvement in yield accuracy was demonstrated
in site years with higher water stress, where assimilation
served to increase available soil water for crop uptake. Alter-
natively, estimates of annual tile drainage and nitrate leach-
ing were not well constrained across the study sites. Trends

in drainage constraint suggest the importance of including
additional data constraint such as evapotranspiration. The as-
similation of RS soil moisture showed a weaker constraint
of downstream model state variables when compared to the
assimilation of in situ soil moisture. The median reduction
in soil moisture RMSE for observed soil layers was lower,
on average, by a factor of 5. However, crop yield estimates
were still improved overall with a median RMSE reduction
of 17.2 %. Crop yield prediction was improved when assim-
ilating both in situ and remote sensing soil moisture obser-
vations, and there is strong evidence that yield improvement
was higher when under water-stressed conditions. Compar-
isons of system performance across different combinations
of remote sensing data products indicated the importance
of high temporal resolution and accurate observation uncer-
tainty estimates when assimilating surface soil moisture ob-
servations.

1 Introduction

To effectively address pressing global food security chal-
lenges, agricultural forecasting tools must exhibit high ac-
curacy and precision across spatial and temporal scales. As
process-based crop models offer a system-level representa-
tion of many soil and crop processes, they are increasingly
recognized as practical forecasting tools in agricultural re-
search (Silva and Giller, 2021; Fer at al., 2021). However,
their weakness comes from many unaccounted uncertain-
ties, such as those related to model parameters, initial con-
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ditions, and weather (Dokoohaki et al., 2021). Prior studies
have shown state data assimilation (SDA) to be a powerful
tool to overcome this weakness in process-based crop mod-
els (e.g., Dokoohaki et al., 2022a). SDA enables a tempo-
rally continuous, high-dimensional scaffold in which a va-
riety of observations can be smoothly integrated using one
of many robust, systematic algorithms, such as the ensem-
ble Kalman filter (EnKF; Dietze, 2017; Huang et al., 2019;
Liu et al., 2021; Dokoohaki et al., 2022a; Kivi et al., 2022).
Through SDA, uncertainty around spatially heterogenous
and dynamic properties in agricultural systems can be con-
strained, thereby increasing precision and accuracy in esti-
mates while decreasing dependence on extensive site-level
model calibration (Mishra et al., 2021).

Numerous past studies have used SDA to constrain crop
model estimates, using observations on leaf area index (e.g.,
Nearing et al., 2012; Ines et al., 2013; Ma et al., 2013; Chen
et al., 2018; Lu et al., 2021), soil moisture (Kivi et al., 2022),
biomass (e.g., Linker and Ioslovich, 2017), and evapotran-
spiration (e.g., Huang et al., 2015). For example, a syn-
thetic study by Zhu et al. (2017) found that the assimilation
of coarse-resolution surface soil moisture data into a cou-
pled soil water–groundwater numerical model constrained
soil moisture estimates in the first 50 cm of the soil profile
despite explicitly unaccounted spatial heterogeneity in soil
properties. These studies showed how SDA can partially ac-
count for the spatial variability in soil hydraulic conductivity
across broad regions without explicit model calibration. In
addition to incorporating spatial heterogeneity in soil proper-
ties, Kivi et al. (2022) demonstrated that the assimilation of
high-quality and frequent in situ soil moisture observations
can substantially improve downstream model predictions of
tile drainage, nitrate (NO3) leaching, and root zone soil mois-
ture (RZSM) for maize and soybeans in the APSIM model.
However, collecting field measurements of soil moisture for
different cropping systems, soils, and environments is expen-
sive, extremely laborious, and time-consuming.

Alternatively, the assimilation of high-resolution remote
sensing (RS) data products dramatically increases SDA ap-
plications’ range beyond in situ data availability by effec-
tively capturing the spatiotemporal variability of many agri-
cultural state variables, such as vegetation cover and soil
moisture, with consistency and high temporal frequency
(Peng et al., 2017). As a result, RS observations could be
invaluable to constraining model predictions at the regional
scale and have been increasingly applied for agricultural
forecasting in the data assimilation literature, as demon-
strated in literature reviews by Dorigo et al. (2007), Huang
et al. (2019), and Weiss et al. (2020). The application of
RS soil moisture data products has been especially popu-
lar and successful in data-assimilation-focused agricultural
forecasting studies. These data products, which character-
ize soil moisture content in the first 5 cm of the soil profile,
pull information from active and/or passive sensors of mi-
crowave reflectance. Due its high sensitivity to surface soil

moisture, many data products have been developed around
available L-band microwave sensor information collected by
NASA’s SMAP Mission (Kumar et al., 2018). The SMAP–
HydroBlocks (SMAP–HB) data products merges SMAP data
with the HydroBlocks land surface model to increase spa-
tial resolution in the final estimates and improve scalability
(Vergopolan et al., 2021b), while the SMAP–Sentinel1 data
product pairs SMAP data with Sentinel-1 radar information
to achieve similar goals (Das et al., 2019). Others, like the
ESA CCI data product (Dorigo et al., 2017), compile infor-
mation from multiple sensors, including the SMAP passive
sensor, to allow for greater temporal coverage. However, this
approach comes at the cost of coarser spatial resolution.

Nonetheless, as demonstrated in past studies, the assimila-
tion of RS soil moisture data has its limitations. First, uncer-
tainty and biases in RS data products are typically poorly de-
fined (Huang et al., 2019). RS-based data products are based
on empirical relationships, and, as they are predicted as a
function of surface reflectance, uncertainties in the raw radi-
ance will propagate unsupervised into final estimates (Weiss
et al., 2020). Additionally, RS estimates characterize soil
moisture in only the top 5 cm of the soil profile and, thus, rely
on models or empirical parameterizations to describe the root
zone soil profile. Among others, de Lannoy et al. (2007) and
Monsivais-Huertero et al. (2010) both found the assimilation
of in situ near-surface soil moisture observations to be far less
effective than that of in situ RZSM observations in constrain-
ing estimates of the greater soil water profile. Yet, since the
surface layer is typically the layer where fertilizers are added,
the accurate estimation of surface layer state variables is es-
sential for today’s agroecosystems. To overcome relatively
coarse spatial resolution in RS data products, past studies
have explored downscaling approaches (e.g., Chakrabarti et
al., 2014) or leveraged additional in situ datasets (e.g., Liu
et al., 2021) to overcome “mismatch” challenges and down-
scale RS soil moisture estimates to more accurately reflect
field scale measurements (Vergopolan et al., 2021a). How-
ever, the reliance on in situ observations of these approaches
can limit system transferability across broad regions (Peng
et al., 2017). Moreover, as described by Crow et al. (2012),
it can be difficult to properly evaluate coarse-resolution soil
moisture estimates with point-scale ground measurements
due to unknown and often significant sampling uncertainty.
Data assimilation with process-based models has been pre-
viously applied as a robust and scalable way to leverage in-
formation in coarse-resolution soil moisture estimates (e.g.,
Vergopolan et al., 2021b).

Despite the immense theoretical potential of SDA with
both in situ and RS observations, past studies have reported
inconsistent SDA performance in modeling crop yields. For
example, de Wit and van Diepen (2007) observed inconsis-
tencies in yield constraint when assimilating soil wetness in-
dex (SWI) derived from 0.25◦ ERS1/2 microwave radiance
information into the WOFOST model across agricultural re-
gions of Spain, Germany, France, and Italy. They partially at-
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tributed poor predictions in certain regions to irrigation pro-
cesses that were captured neither by the model nor by coarse-
resolution SWI observations. Lu et al. (2021) also saw year-
to-year variability in assimilation performance when assimi-
lating in situ observations of canopy cover and soil moisture
for 6 site years in Nebraska. When assimilating soil mois-
ture independently, canopy cover estimates were better con-
strained in drier years. They suspected this to result from
the canopy cover’s lower sensitivity to soil moisture in the
model when water is in surplus (i.e., due to energy-limited
conditions). We further suspect that SDA’s inconsistent per-
formance is related to the misrepresentation of model pro-
cesses linking soil moisture to crop- and soil-related vari-
ables (e.g., soil nitrogen, leaf expansion, crop water uptake).
As a result, direct upstream improvement of model state vari-
ables with SDA does not always translate into improvement
in downstream results. To understand the role of soil mois-
ture data assimilation in improving crop yields and better
pinpoint areas for future improvement, a comprehensive as-
sessment that investigates performance across time and dif-
ferent genetic (G), environmental (E), and management (M)
spaces is required. Although a growing body of studies has
attempted to quantify the impact of soil moisture assimila-
tion in crop models, such a comprehensive evaluation of in
situ and RS soil moisture SDA in crop models across GxExM
spaces is still lacking (Folberth et al., 2016).

To bridge this knowledge gap, we present a comprehensive
assessment of soil moisture data assimilation as a method for
constraining crop model predictions across the US Midwest.
Building on the assimilation framework in Kivi et al. (2022),
we independently assimilated both in situ and RS soil mois-
ture observations in the APSIM crop model at five experi-
mental sites in the US Midwest. With field data covering 19
site years of corn and soybean cropping systems across the
region, this study tests the data assimilation system across
a broader GxExM inference space and quantifies the benefit
of assimilating different RS soil moisture products in com-
parison to the in situ soil moisture observations. The main
objectives of this study were

1. to quantify how in situ soil moisture observations can
constrain crop model forecasts of downstream esti-
mates, including RZSM, crop yield, crop phenology
via normalized difference vegetation index (NDVI), tile
drainage flow, and NO3 leaching through SDA;

2. to quantify the added benefit of RS soil moisture obser-
vations in improving crop model predictions of RZSM,
crop yield, and crop phenology via NDVI through SDA.

2 Methods

Section 2.1 and 2.2 describe the five experimental sites and
the in situ observations employed in this study for model
setup, SDA, and evaluation. Section 2.3 outlines the four dif-

ferent RS soil moisture data products that were assimilated,
and Sect. 2.4 presents the data-assimilation system used in
this study. Lastly, Sect. 2.4.5 defines the different simulation
experiments performed.

2.1 Study sites

This study focused on five experimental sites across the
US Midwest with in situ observations of soil moisture, crop
yield, nitrate load, and tile drainage flow for 19 sites× years
between 2011 and 2019. Site IL was the Energy Farm, a well-
monitored experimental site in central Illinois that was the
focus of the development and initial evaluation of the em-
ployed data-assimilation system (Kivi et al., 2022). Sites IN,
MN, OH, and SD were available through the Transform-
ing Drainage (TD) project (Chighladze et al., 2021). The
TD project database is publicly available and contains high-
quality data from 39 tile-drained research sites with data
spanning over 200+ site years. The available observations
include data on tile drainage, yield, water table, water quality,
and soil characteristics, among many others. Though numer-
ous sites were available as part of the project, the experimen-
tal design and data available for each site year vary widely
in the database. For consistency, this work required that each
site year include a plot with (1) a free tile drainage system,
(2) available NO3 load and tile flow data at the plot level,
(3) available in situ soil moisture observations, (4) maize or
soybean crops, and (5) a rain-fed system. We identified only
17 site years across five sites in the database which satisfied
all these criteria.

To properly set up the APSIM model for each of the five
sites, we included all available site information on each year,
cropping system, residue type, planting and harvesting de-
tails, tillage practices, and fertilizer applications as constants
in the simulations. Following updated information available
through Moore et al. (2021), the IL site includes tillage prac-
tices in the model setup and increased nitrogen (N) fertilizer
from 64.6 to 202 kg N ha−1. Detailed information on the plot
and management information for all five sites are included
in Table A1. Study sites will be referred to by their given
study IDs in Fig. 1.

2.2 Observation data

2.2.1 In situ soil moisture

Across the study site years, subdaily soil moisture (SM)
observations were collected at various soil depths between
10 and 105 cm using soil sensors; the measured depths and
sensor type varied by site. All observations are available in
units of volumetric water fraction (VFW; mm mm−1). For
the four TD sites, SM observations were only available as
daily averages. For consistency, SM observations at IL (avail-
able at 15 min intervals) were aggregated to daily averages
when at least forty 15 min observations were available. Ob-
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Figure 1. Left: site map (ESRI). Right: scatterplot demonstrating site-year total precipitation and average daily temperature (◦C) for each
site year between April and October. Climate information was extracted and averaged across the 10 ERA5 weather ensembles for each site
year.

servations from the winter months (December–March) were
excluded due to the influence of freezing soils. Across all site
years, in situ SM assimilation was performed with available
observations for the 10 and 20 cm soil depths, which here-
inafter will be referred to as SM3 and SM4, respectively. All
other available SM observations for deeper soil layers were
used to evaluate model RZSM estimates. SM observations
were paired with an APSIM soil layer based on the recorded
sensor depth and the site soil profile. In the case that more
than one observation was available for a given APSIM soil
layer, the average SM was computed for each day and layer
with the assumption of uniform SM in the layer.

2.2.2 Harvested maize and soybean yields

Data on harvested yield for the TD sites were available
for each site year with 1–3 replicated measurements. These
replicated observations were averaged and converted from
grain at standard moisture content (i.e., 15.5 % for maize
and 13 % for soybean) to dry-grain weight for best com-
parison with the APSIM model output. Observations for IL
were already recorded as dry-grain weights and given in
units of kg ha−1. Across 12 maize site years, observed yields
ranged from 6.51 to 13 mg ha−1 with an average yield of
9.93 mg ha−1. The 7 soybean site years had observed yields
ranging from 2.78 to 4.15 mg ha−1 with an average yield of
3.50 mg ha−1.

2.2.3 Remotely sensed normalized difference
vegetation index (NDVI)

The normalized difference vegetation index (NDVI) can be
used to quantify vegetation greenness and reasonably track
the phenological development of crops (Gao and Zhang,

2021). In this study, NDVI observations from Landsat be-
tween 2011 and 2019 were used to evaluate APSIM’s perfor-
mance in predicting crop phenology for each site year. NDVI
time series were extracted at each site location from Land-
sat 7 and 8 remote sensing imagery courtesy of the US Ge-
ological Survey via Google Earth Engine and derived from
the red (RED) and near-infrared (NIR) spectral bands using
the following equation:

NDVI=
NIR−RED
NIR+RED

. (1)

2.2.4 In situ measurements of tile drainage and nitrate
load

Daily observations of tile drainage flow (mm) and NO3
load (kg NO3 N ha−1) were available for all 19 site years.
Any missing daily drainage values for the TD sites had been
imputed previously and used to approximate missing values
of daily NO3 load, as described by Helmers et al. (2022).
Methods and instrumentation used to collect and process the
TD sites and IL data are presented by Helmers et al. (2022)
and Kivi et al. (2022), respectively. In this study, daily values
for tile drainage flow and NO3 load were summed to annual
values for comparison with model output. For the purposes
of this analysis, we assumed any day with NA tile drainage
flow values in the data had no drainage and no NO3 loss.

2.3 Remote sensing soil moisture

To assess the performance of SM data assimilation with
satellite-based observations, we included four RS data prod-
ucts that span different temporal and spatial resolutions (Ta-
ble 1). These observations were extracted at the point level
for the study sites and serve to represent the first 5 cm of
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Table 1. Overview of remote sensing soil moisture data products.

Product Product Temporal Temporal Spatial Average Average Reference
ID coverage frequency resolution data observation

availability∗ variance

ESA CCI ESA 1978–2019 1–2 d 0.25◦ 219 d 0.0003 Dorigo et al. (2017)
SMAP–HydroBlocks SMAP–HB 2015–2019 1–3 d 30 m 127 d 0.0050 Vergopolan et al. (2021b)
SMAP–Sentinel1 1/3 km 2015–now 12 d 1/3 km 7 d 0.0025 Das et al. (2019)

∗ Availability is calculated after removing observations in the winter months (i.e., December–March) and is given on a per-year basis.

the soil profile or surface SM. Observations from the win-
ter months (i.e., December–March) were removed to avoid
issues with snow cover and freezing soils. The product IDs
provided in Table 1 will be used to identify each data product.

2.3.1 ESA CCI

The RS dataset with the coarsest spatial resolution in this
study was the European Space Agency Climate Change Ini-
tiative (ESA CCI) SM product. Each year, the ESA CCI al-
gorithmically merges information from 3 active (e.g., AS-
CAT A/B) and 10 passive (e.g., SSM/I, AMSR-E, SMOS,
SMAP) microwave sensors to estimate daily surface SM
globally for over 40 years. Dorigo et al. (2017) provide com-
plete documentation on how these data products are pro-
duced. Here we used the combined product (version v06.1),
which includes daily uncertainty estimates. Several past stud-
ies have assimilated this data product into process-based
models with varying levels of success (e.g., Zhou et al., 2016;
Liu et al., 2017, 2018; Naz et al., 2019).

2.3.2 SMAP–HydroBlocks

The SMAP–HydroBlocks surface SM dataset has the high-
est spatial resolution in this study. It was introduced by Ver-
gopolan et al. (2021b) by combining the HydroBlocks land
surface model, a tau–omega radiative transfer model, ma-
chine learning, in situ SM observations, and SMAP remotely
sensed satellite observations to estimate surface SM with
30 m resolution across the contiguous United States. Specifi-
cally, the HydroBlocks model was coupled with a tau–omega
radiative transfer model (HydroBlocks–RTM) and used to
simulate SM, soil temperature, and brightness temperature
at a 3 h, 30 m resolution. Brightness temperature estimates
from NASA’s Soil Moisture Active Passive (SMAP) mission
were then merged with the HydroBlocks–RTM estimates us-
ing a spatial cluster-based Bayesian merging scheme (Ver-
gopolan et al., 2020). Using the inverse HydroBlocks–RTM,
SM was estimated at SMAP overpass time at 30 m spatial
resolution. Vergopolan et al. (2021b) reported an RMSE of
0.07 mm3 mm−3 after comparing SMAP–HydroBlocks esti-
mates to in situ observations from 233 independent exper-
imental sites. This study is the first to assimilate SMAP–
HydroBlocks SM estimates into a crop model. SM morn-

ing and afternoon retrievals were aggregated to a daily res-
olution, and site-level estimates were computed as the mean
value of any data point within 0.0005◦ of the given site lo-
cation. The uncertainty estimate for each observation was
calculated based on the spatial variability of selected data
points for that time step and the reported standard error
(SE= 0.07 mm3 mm−3) as

Var
(
Ys,t

)
= Var(yt )+SE2, (2)

where, for site s at the t th available time step, Y repre-
sents the site-level SM estimate, and y presents SM estimates
within 0.0005◦ of the site location.

2.3.3 SMAP–Sentinel1

The SMAP–Sentinel1 SM product was produced by merg-
ing information collected by the SMAP L-band radiometer
and the Copernicus Project Sentinel-1 C-band radar. After
the malfunction of the SMAP radar in 2015, Sentinel-1 ac-
tive microwave data were used with passive microwave sen-
sor information from the still-operating SMAP radiometer
to estimate surface SM content globally using the active–
passive algorithm. Although the merged product increased
the revisit interval from 3 to 12 d, it enabled retrievals at
two different spatial resolutions (i.e., 1 and 3 km; Lievens
et al., 2017). Upon comparing the estimates with in situ
SM measurements, Das et al. (2019) reported RMSE for
SMAP–Sentinel1 SM estimates as roughly 0.05 m3 m−3. In
this study, this value was applied as the standard error for
SM estimates at both spatial resolutions and at all available
time steps. Retrievals were available for all TD site years but
were unavailable for IL for unknown reasons.

2.4 Data-assimilation system

This study uses the data-assimilation system developed and
evaluated in Kivi et al. (2022). The original system leveraged
the pSIMS platform, APSIM crop model, ensemble Kalman
filter (EnKF), and an algorithm presented by Miyoshi et
al. (2013) to estimate and propagate uncertainties, perform
sequential data assimilation, and generate daily agricultural
forecasts at the field scale. The workflow is illustrated in
Fig. 2. APSIM management variables that were known in-
clude planting and harvest dates, fertilizer amount, type, and
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timing, tillage type, depth, and timing, crop type, row spac-
ing, sowing density, and, if available, planting depth.

2.4.1 Model parameter priors

Initial soil water, cultivar, and residue weight were random-
ized across model ensembles for each site to incorporate un-
certainty around initial conditions. If unavailable in the man-
agement data, planting depth was also randomized and drawn
from different prior distributions for each crop. These distri-
butions represented reasonable planting depth ranges for the
two crops in the Midwest, as described in extension web-
sites produced by the University of Missouri (Luce, 2016)
and Michigan State University (Staton, 2012). Using a uni-
form prior distribution, planting depths ranged from 1.5 to
2.5 in. (3.8–6.35 cm) for maize and 1 to 2 in. (2.5–5 cm) for
soybean.

Prior distributions were also set to incorporate un-
certainty around cultivar. For maize, nine cultivar pa-
rameters were grouped into an ensemble, including
the six cultivar parameters (i.e., tt_flower_to_maturity,
tt_flower_to_start_grain, tt_maturity_to_ripe,
tt_emerg_to_endjuv, head_grain_no_max, grain_gth_rate).
The other three parameters (i.e., largestLeafParams1,
leaf_init_rate, leaf_app_rate1) were drawn from Dokoohaki
et al. (2022b), who identified maize cultivar parameters
that were influential for estimates of leaf area index (LAI)
in the APSIM maize module and optimized their value
distributions using a hierarchical Bayesian optimization
approach across the US Midwest. Table A2 gives more
detailed information on all randomized parameters and their
prior distributions. We completed a preliminary assessment
of the maize module at each of the study sites and found that,
under the given parameter value ranges, APSIM was capable
of appropriately simulating the phenological development
and grain yield for maize at each site.

The selection of soybean cultivars for each site was de-
termined using a semi-systematic approach. First, a range
of maturity groups were determined for each site based on
a study by Mourtzinis and Conley (2017), which delineated
soybean maturity groups across the United States. We de-
fined the upper and lower maturity group bounds for each
site using the bounding zone contour lines for each site lo-
cation in Fig. 4 of Mourtzinis and Conley (2017). Then, ini-
tial APSIM simulations were performed for each site using
all APSIM-defined soybean cultivars falling within the pre-
scribed maturity group range. The model results were com-
pared to the observed soybean yields at each site, and the
best-performing maturity group (MG) for each site was de-
termined. The final range for each site was approximately
MG± 0.5. In each ensemble, the cultivar for each crop at
each site was assumed to be constant across all site years.

2.4.2 Weather and soil model drivers

To incorporate uncertainty around soil and weather into our
simulations, a Monte Carlo sampling approach was used to
randomly assign ensembles of weather and soil drivers to
model ensembles. For each study site, 10 weather ensembles
from the ERA5 reanalysis data product were employed to
characterize solar radiation, maximum air temperature, min-
imum air temperature, precipitation, and wind speed at the
daily resolution and at each site location. ERA5 is a global
gridded reanalysis data product from the European Centre for
Medium-Range Weather Forecasts (ECMWF), which char-
acterizes the weather state variables at hourly time steps with
associated uncertainties (Hersbach et al., 2020). In addition,
25 soil ensembles were generated from the SoilGrids global
gridded soil database (Hengl et al., 2014) for each site lo-
cation. These ensembles cover 30 soil properties (including
available water lower limit, bulk density, drained upper limit,
organic carbon, soil class, and pH) and were created by sam-
pling from each soil parameter mean and uncertainty values
available in the SoilGrids dataset.

2.4.3 PROSAIL model

Since APSIM does not currently estimate NDVI, APSIM was
coupled with the PROSAIL model described in Dokoohaki
et al. (2022b) to estimate daily NDVI values and enable the
appropriate evaluation of the model’s simulation of crop phe-
nology at the study sites. The PROSAIL model is a radiative
transfer tool that combines PROSPECT, a leaf optical prop-
erties model, and SAIL, a canopy bidirectional reflectance
model, to estimate spectral reflectance for a given vegetative
area based on soil and plant/canopy properties (Jacquemoud
et al., 2009). In this study, APSIM’s daily forecasts of soil
and plant variables were transformed and used as inputs into
the PROSAIL model to compute the spectral reflectance for
each ensemble. Then, for each day and ensemble, the esti-
mated spectral information was used to estimate NDVI us-
ing the vegetation index function within the hsdar R library
(Lehnert et al., 2019). Further details on the coupling proto-
cols can be found in Dokoohaki et al. (2022b).

2.4.4 Ensemble Kalman filter with the Miyoshi
algorithm

The data-assimilation system (which we will call EnKF–
Miyoshi hereinafter) employs the ensemble Kalman fil-
ter (EnKF) to assimilate SM observations into the APSIM
model. The EnKF merges information from the model en-
semble forecast distribution and observations (with associ-
ated uncertainty) at each time step to optimally estimate the
state of the system (Evensen, 2003). The system also lever-
ages the Miyoshi algorithm in series with the EnKF to im-
prove estimates of the two system uncertainty matrices (i.e.,
Pf and R) and improve filter performance. Based on diagnos-
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Figure 2. Schematic demonstrating the workflow of the data assimilation system. System inputs represented by blue normal distributions
have incorporated uncertainty in this study, while green rectangles represent known values that were included as constants.

tic innovation statistics, the Miyoshi algorithm estimates a
forecast inflation scalar (1) and observation uncertainty (R)
at each analysis time step. At time step t with available data,
the system follows the following steps:

1. The mean (Xf , t) and the variance–covariance ma-
trix (Pf , t) of the model forecast ensemble are com-
puted to define the forecast distribution, which is as-
sumed to follow a normal distribution.

2. The observed distribution (Yt ) is also assumed to be nor-
mal with mean yt and variance–covariance matrix Rt ,
where Rt = R∗ from the previous analysis time step or
R1 =6. 6 is a diagonal matrix that assumes 10 % stan-
dard error for each observed state variable.

3. The Kalman gain (K) is computed as follows, where
1t =1∗ or 11= I (I is the identity matrix), and H is
the observation operator:

Kt =1tPf,tH
T
(
Rt +H1tPf,tH

T
)−1

. (3)

4. The analysis distribution, which assumes a normal dis-
tribution, is determined with mean (Xa, t) and variance–
covariance matrix (Pa, t).

Xa,t =Xf,t +Kt
(
Yt −HXf,t

)
Pa,t = (I−KtH)Pf,t (4)

5. The model ensemble is updated at each time step ac-
cording to the analysis distribution based on each en-
semble’s likelihood within the forecast distribution.
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6. 1∗ and R∗ are recomputed using the following series of
equations, where do-a and do-f represent the observation-
analysis and observation-forecast innovations for the
current time step, respectively, E denotes the expecta-
tion operator, and ρ is a user-defined weight given to
the new estimate. A lower bound of 1 is imposed on
each entry in 1est, and only the diagonal entries of Rest
are maintained.

E
(
do-ad

T
o-f

)
= Rest

1est =
dTo-fdo-f−Rest

H1tPf,tH T

R∗ = (ρ)Rest+ (1− ρ)Rt
1∗ = (ρ)1est+ (1− ρ)1t (5)

2.4.5 Generalized ensemble filter

However, the EnKF–Miyoshi workflow as established can-
not robustly handle observation operators (H ) that change
dimensions over time. However, to reduce information loss
within the system, H must be able to adapt according to
the number of observations available. To increase flexibil-
ity in system configuration, an alternative sequential data as-
similation approach was tested in this work to replace the
EnKF–Miyoshi method. The new method, hereinafter called
the generalized ensemble filter (GEF), comprises a fully nu-
merical Bayesian approach to estimating the analysis distri-
bution and an inflation scalar. The model resembles the ap-
proach presented by Raiho et al. (2020) and Dokoohaki et
al. (2022a) and has the following form at analysis time step t :

Q∼ U(0.001,5)

XA ∼N
(
Xf,t ,Pf,t + (Q− 1) · diag

(
Pf,t

))
Yt ∼N (XA,Rt ) , (6)

whereQ is the estimated forecast inflation scalar andXA is a
drawn sample from the analysis distribution. The estimation
of XA and Q was completed using a Markov chain Monte
Carlo (MCMC) approach by leveraging the nimble R library
(de Valpine et al., 2017, 2022). Though not explored in this
study, this approach also allows for the definition and esti-
mation of more complex relationships between observations
and model forecasts (e.g., nonlinear observation operators).

In this study, the GEF was applied over the EnKF–Miyoshi
workflow when (1) more than one observation was assimi-
lated for a single state variable at a given time step or (2) the
number of available observations varied throughout a simu-
lation (i.e., changing H ). Conversely, the GEF approach was
ineffective for cases where only one observation was avail-
able at a given time step, as the MCMC algorithm did not
converge due to limited data. The EnKF–Miyoshi was ap-
plied in these settings.

2.4.6 Simulation schemes

All simulations in this study were performed with 100 en-
sembles and with a 4-month initialization period starting on
1 January of the first year at each site. There were nine differ-
ent simulations performed for each site in this study, which
varied in terms of observations assimilated and assimilation
method applied (Table 2). First, two “baseline” runs were
completed across all 19 site years to establish system per-
formance benchmarks. As a lower bound on performance,
a free model simulation was performed with no data assim-
ilation. SM sensor observations were also assimilated into
the model to represent a reasonable benchmark data assim-
ilation setting. Next, two groups of runs were performed to
test the assimilation of RS SM data products: “individual”
and “additive” runs. In the “individual” runs, all four RS data
products were assimilated independently within the system.
These runs were performed to compare the value of different
RS data products directly. Then, in the “additive” runs, obser-
vations from multiple RS data products were jointly assim-
ilated into the system following an additive approach. The
first iteration included only ESA observations, and each sub-
sequent iteration added another data product until all four
data products were included (i.e., ALL). Data products were
added in succession based on availability, such that the first
data product tested had the highest average number of obser-
vations per year. By sequentially adding new data products,
the additional impact of each RS data product could be eval-
uated. To allow for the application of the GEF in runs with
more than one data product, a minimum of two observations
per day were required for the “additive runs” to ensure the
convergence of the MCMC algorithm. For all runs where
RS data were assimilated, only site years after 2014 were
investigated due to the limited temporal extent of RS data
products.

2.5 System evaluation

This study applied the year-average ensemble weighting
strategy, as presented in Kivi et al. (2022), to leverage all
available information from the simulations and evaluate the
results more accurately. In each site-year simulation, daily
weights were assigned to each ensemble as the likelihood of
producing the daily estimate given the analysis distribution,
and ensemble weights were normalized across the model en-
semble for each day. Finally, the average annual weight for
each ensemble was computed for each site year. The appli-
cation of annual weights in the analysis was the most robust
for evaluating yearly estimates (e.g., yield, cumulative NO3
load, cumulative tile drainage).

To evaluate the accuracy and precision of model fore-
casts for each site-year simulation, we utilized the root
mean squared error (RMSE), spectral norm, and weighted
variance. RMSE was calculated for each run to quantify
changes in accuracy between runs, while the spectral norm
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Table 2. Overview of system configuration for the nine runs performed in this study. SDA methods include the ensemble Kalman filter (EnKF)
coupled with the Miyoshi algorithm and the generalized ensemble filter (GEF). The former method of these two methods provided systematic
estimates of R applied within the system, but the latter method used literature values. The state variables included in Xf are given.

Run Name SDA R Temporal State Observation(s)
group method estimates extent variable(s)

Baseline
Free n/a n/a 2011–2019 n/a n/a
SDA EnKF Miyoshi 2011–2019 SM3, SM4 In situ soil sensor

ESA EnKF Miyoshi 2015–2019 SM1 ESA
Individual SMAP–HB EnKF Miyoshi 2015–2019 SM1 SMAP–HB
runs 1 km∗ EnKF Miyoshi 2015–2019 SM1 1 km

3 km∗ EnKF Miyoshi 2015–2019 SM1 3 km

Additive +SMAP–HB GEF Literature 2015–2019 SM1 ESA, SMAP–HB
runs +1 km∗ GEF Literature 2015–2019 SM1 ESA, SMAP–HB, 1 km

ALL∗ GEF Literature 2015–2019 SM1 ESA, SMAP–HB, 1, 3 km

∗ Observations for 1 and 3 km were not available for IL, and thus simulations were not performed for the site. n/a stands for not applicable.

and weighted variance were employed to quantify changes
in precision. Additionally, to help standardize accuracy mea-
sures across site years, a normalized RMSE (nRMSE) was
calculated as

nRMSE(%)= 100 ·
RMSE

Y
, (7)

where Y is the average observed value. Changes in accuracy
and precision between the free model and SDA were quanti-
fied by computing the relative change in each metric for the
two runs. For example, for calculating the change in RMSE,
we computed

1RMSE=
RMSESDA−RMSEFREE

RMSEFREE
. (8)

The coefficient of determination (R2) was used to compare
model performance for each state variable more effectively
across all observed time points. It was calculated as

R2
= 1−

T∑
t=1

(
Yt −Xt

)2
T∑
t=1

(
Yt −Xt

)2
+

T∑
t=1

(
X̄t −Y

)2 , (9)

where Yt is the observed value at the t th observed time step
and is the simulated weighted mean at the t th observed time
step. All observations (n= T ) from all site years were in-
cluded in this calculation. SeparateR2 values were computed
for the free and SDA results. Weighted mean estimates were
computed using annual ensemble weights. In addition, spec-
tral norm and weighted variance were estimated as follows:∣∣Pf ∣∣2 =√maximum eigenvalue of PHf Pf , (10)

where PHf represents the conjugate transpose of Pf .

Variance=

N∑
i=1

(
wi − (xi − xw)

2)
(N−1)
N

, (11)

where N is the number of ensembles, wi is the average
weight of the ith ensemble, xw is the weighted mean across
ensembles, and xi is the forecasted value of the ith ensemble.

To identify and quantify relationships between variables,
one of two correlation statistics was employed depending on
the sample size of the data. When comparing data with a suf-
ficiently large sample size (n > 30), the Pearson correlation
coefficient (r) was calculated to determine the direction and
strength of the linear relationship between two variables.

r =

n∑
i=1
(xi − x)(yi − y)√

n∑
i=1
(xi − x)

2
·

√
n∑
i=1
(yi − y)

2

(12)

When comparing data at the site level (n≤ 19), the Spearman
rank-order correlation coefficient (rs) was applied, which is
a nonparametric measure of the strength and direction of the
monotonic relationship between two variables. Though the
sample size in this case is still too small for proper applica-
tion, the Spearman coefficient was applied as its assumptions
are less strict than the Pearson coefficient. It is calculated as

rs = 1−
6
n∑
i=1
d2
i

n
(
n2− 1

) , (13)

where the di is the distance between the two ranks of the
ith complete pair (i.e., xi and yi). For both coefficients, a test
for association between paired samples was used to deter-
mine significance.
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3 Results

The results in Sect. 3.1 evaluate the forecast accuracy and
precision of in situ SM SDA in comparison to the free model.
Section 3.2 investigates changes in forecast accuracy and
precision when assimilating SM RS observations. The indi-
vidual runs are assessed with regard to their data characteris-
tics (i.e., retrieval interval and single vs. multi-sensor devel-
opment), and the additive runs are evaluated in succession to
determine the relative impact of added observations. Lastly,
the impact of RS-based SDA on the forecast accuracy and
precision of state variables is investigated and compared.

3.1 Assimilation of in situ soil moisture

3.1.1 Impact on soil moisture

Across all assimilation time steps, the free model tended to
overpredict SM within the two assimilation layers (Fig. 3).
Therefore, the adjustment in the SDA analysis step typi-
cally reduced the total amount of water in the soil profile.
In SM forecasts for the two assimilation layers (i.e., SM3
and SM4), SDA performed as well or better than the free
model in accuracy across all site years. The median change
in RMSE due to SDA was −17 % and −28 % for SM3
and SM4, respectively (Fig. 4). Average forecast precision
for SM3 and SM4 was also increased with SDA in 84 % of
cases and by 23 % on average.

The three site years where precision was not increased in
SDA include OH in 2013 and 2014 and MN in 2013. Inter-
estingly, these site years were among those with the most
remarkable improvement in accuracy. This relationship is
intuitive considering the nature of the Miyoshi algorithm,
which systematically inflates model forecast uncertainty at
time steps when observed and forecasted SM distributions
differ substantially. At the cost of reduced forecast precision,
such inflation allows for the filter to pull the model forecast
toward the observed distribution and improve accuracy in fu-
ture predictions.

SDA’s constraint of SM3 and SM4 also led to the indirect
constraint of SM in deeper soil profile layers. Across all site
years with available data, the median change in RMSE for
SDA estimates of SM5, SM6, and SM7 was −14 %, −8 %,
and −14 %, respectively. In terms of precision, SDA had an
overall positive impact on lower-layer SM estimates. The av-
erage change in weighted variance was −16 %, −6 %, and
−20 % for estimates of SM5, SM6, and SM7, respectively.

3.1.2 Impact on NDVI and crop yield

Overall, in comparison to the free model, SDA improved
yield estimates by explaining 17.7 % more variation in ob-
served yield values and improving yield accuracy in 63 % of
site years (Table 3). SDA accuracy was most effective in site
years facing greater water stress. In those cases where yield
estimates were improved, SDA often increased available soil

water at critical points in crop development, reducing crop
soil water deficit factors and increasing yield compared to
the free model (Fig. A1). The most evident example of SDA
yield improvement is IN in 2012, where the free model esti-
mated complete maize crop failure (i.e., no grain yield) due
to leaf senescence in mid-July, but SDA estimated a har-
vestable crop due to increased soil water in the early season
(Fig. 5). However, SDA’s impact on yield precision was in-
consistent; roughly 53 % of site years saw reduced precision
in yield estimates.

Overall, the free model accurately captured the pheno-
logical development of the cropping systems simulated in
this study, as demonstrated by the good agreement between
observed and simulated NDVI (Fig. A2). SDA’s impact on
NDVI accuracy was similar to its impact on yield accuracy,
such that it typically either increased accuracy due to less-
ened water stress or did not substantially affect the model
performance. A comparison of R2 values demonstrates that
SDA helped to explain 4.8 % more variation in observed
NDVI values compared to the free model. Intuitively, the site
years with the greatest jumps in NDVI accuracy also usu-
ally showed great improvement in yield accuracy, highlight-
ing a well-defined physiological relationship between vege-
tation and grain yield in APSIM’s maize and plant modules.
SDA’s impact on NDVI precision was inconsistent, such that
63 % of site years reduced precision in estimates.

3.1.3 Impact on tile drainage and nitrate load

Across the 19 site years, the free model and SDA showed
overall poor performance in estimating annual drainage with
nRMSE values ranging from 18 %–215 % with a median
value of 54.3 % for SDA and from 20 %–250 % in the free
model with a median value of 52.4 %. In the site years with
the lowest accuracy, APSIM often overpredicted drainage in
both the free model and SDA. However, these cases of con-
siderable overestimation in drainage were also among those
site years that were most improved by SDA; 8 of the 11 site
years where SDA improved estimates of annual drainage
were cases where the free model overestimated tile flow. In
these scenarios, SDA functioned to remove available water
from the soil profile and correctly lower the amount of water
lost from the system. In the remaining site years where SDA
did not improve drainage accuracy, SDA increased RMSE
values by 32 % on average. SDA’s impact on precision for an-
nual drainage estimates was highly variable. A total of 63 %
of site years saw improvement in precision, but 4 site years
saw an immense reduction in precision (i.e., between 107 %–
146 % reduction).

APSIM also struggled to accurately estimate the annual
NO3 load for the tested site years in this study (Fig. A3).
For the free model, nRMSE values ranged from 23 %–681 %
with a median value of 83.7 %, and for SDA nRMSE val-
ues ranged from 17 %–833 % with a median value of 86.9 %.
Considering the SDA constraint, estimates of annual NO3
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Figure 3. One-to-one plots for soil moisture estimates (mm mm−1) in the two assimilation layers for the free model and in situ SDA
across all analysis time steps and site years. The least-squares regression line is shown for both schemes next to the black dashed 1 : 1 line,
demonstrating a perfect fit.

Figure 4. Boxplots demonstrating the distribution of relative change in (a) accuracy (RMSE) and (b) precision (weighted variance) due to
in situ SDA for each state variable across all site years. The relative change is computed with respect to the free model run, with negative
values indicating SDA improvement.
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Figure 5. Time series of yield estimates for the free model and in situ SDA with mean daily estimates demonstrated with line graphs and the
95 % credible intervals demonstrated by the shaded regions. Black points represent the observed harvest date and yield for each site year.

load were the most poorly constrained in terms of accuracy
and precision. SDA’s impact on precision was split, increas-
ing precision in 53 % of site years. Accuracy was improved
for just 32 % of site years. Among those 6 site years where
SDA increased NO3 load accuracy, SDA typically reduced
estimates compared to the free model. Improved sites were
often maize years characterized by high-input winter precipi-
tation (January–April). No clear environmental or agronomic
trend was identified among those 11 site years in which SDA
reduced accuracy.

3.2 Assimilation of remote sensing soil moisture
products

3.2.1 Individual assimilation runs

As expected, the individual influence of each RS data prod-
uct was heavily dependent on its multi- or single-sensor de-
sign and temporal availability. ESA, the most widely avail-

able data product, had the greatest impact on both assimi-
lation and downstream state variables. In contrast, assimi-
lation with 1 and 3 km imposed only slight changes in es-
timates when compared to the free model. However, ESA
did not always lead to improvements in model performance.
As demonstrated in Fig. 6, ESA results were more variable
across site years in terms of the accuracy of state variable
estimates, in some cases leading to great improvement and,
in other cases, leading to reduced performance. ESA reduced
accuracy in predicting SM3 and SM4 in most site years (i.e.,
80 %–90 %) but was the most effective in improving accu-
racy in estimates of annual yield, SM6, and SM7. ESA also
outperformed the other three RS data products in constrain-
ing forecast precision for all state variables, improving preci-
sion in 70 %–100 % of site years. Importantly, it showed the
greatest reduction in the spectral norm of the SM covariance
matrix when compared to the free model, indicating the best
constraint of SM precision across the entire profile.
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Table 3. Summary statistics to quantify the impact of in situ SDA (IS) and RS-SDA (RS) on forecast accuracy of APSIM state variables.
The “NIS” column indicates the number of site years with available data for each state variable and each run, and the “nIS” column indicates
the total number of observations across site years for each run. A subscript F denotes a value computed for the free model estimates, a
subscript IS denotes a value for the in situ SDA estimates, and a subscript RS denotes a value for RS-SDA runs. The median change (D) in
RMSE was computed for both runs. Two values for R2F are given for the different data subsets demonstrated in the “N” and “n” columns.

State variable Depth NIS nIS 1RMSEIS 1RMSERS R2
F R2

IS R2
RS

(cm) (NRS) (nRS)

SM3 9.1–16.6 19 12 252 −17.4 % −0.9 % 0.49 0.57 0.48
mm mm−1 (10) (5592) (0.48)

SM4 16.6–28.9 19 12 735 −27.9 % −2.8 % 0.52 0.73 0.43
mm mm−1 (10) (6141) (0.43)

SM5 28.9–49.3 17 11 325 −14.3 % −2.6 % 0.45 0.38 0.45
mm mm−1 (8) (5101) (0.45)

SM6 49.3–82.9 19 12 846 −8.0 % −1.0 % 0.42 0.34 0.42
mm mm−1 (10) (6169) (0.43)

SM7 82.9–138 9 5715 −14.3 % −5.4 % 0.43 0.34 0.43
mm mm−1 (6) (3265) (0.44)

NDVI – 19 244 −7.64 % −1.8 % 0.62 0.66 0.71
unitless (10) (134) (0.69)

Yield – 19 19 −23.1 % −17.2 % 0.55 0.73 0.59
mg ha−1 (10) (10) (0.53)

Annual drainage – 19 19 −8.3 % - 0.47 0.46 –
mm

Annual NO3 load – 19 19 +12.5 % – 0.42 0.45 –
kg NO3-N ha−1

Alternatively, the assimilation of SMAP–HB, another tem-
porally frequent RS data product, demonstrated more con-
servative performance than ESA across state variables. For
almost all state variables, it also performed similarly or bet-
ter than the free model. However, any improvements (or re-
ductions) in forecast accuracy were more moderate than ob-
served with ESA. For example, accuracy in yield estimates
was improved more consistently with SMAP–HB (90 %)
compared to ESA (70 %), but the maximum improvement in
a tested site year was a 53 % accuracy increase compared
to a 95 % increase with ESA. This trend in the results high-
lights an important trade-off when assimilating more certain
observations (i.e., ESA CCI) at a coarse spatial resolution
over less certain observations at high spatial resolution (i.e.,
SMAP–HB) when both data products have unknown biases.
In terms of forecast precision, SMAP–HB was overall quite
effective in constraining state variable predictions, especially
when compared to 1 and 3 km. However, SMAP–HB un-
derperformed compared to ESA in this regard; 1 and 3 km
both underperformed in accuracy constraint when compared
to ESA and SMAP–HB, showing little to no change in RMSE
compared to the free model.

Considering the four individual runs, more frequent assim-
ilation time steps also led to a more robust performance of
the EnKF–Miyoshi workflow. Filter divergence (i.e., when
the observed mean falls outside of the 95 % credibility inter-
val of the analysis distribution) occurred at 52 % and 59 % of
analysis time steps for 1 and 3k˙m, respectively, but occurred
at only 44 % and 30 % of analysis time steps for SMAP–HB
and ESA, respectively. For estimates of observation uncer-
tainty, the Miyoshi algorithm predicted greater uncertainty
for most RS observations than what is reported in the liter-
ature. The average standard error in ESA observations was
reported to be 0.02± 0.004 mm3 mm−3 but estimated in this
study as 0.05± 0.01 mm3 mm−3. Standard errors in 1 and
3 km estimates were reported as 0.05 m3 m−3 but estimated
by the system to be 0.07±0.02 and 0.06±0.01 mm3 mm−3,
respectively. Miyoshi estimated similar uncertainty values
for SMAP–HB observations as reported in the literature (i.e.,
0.07± 0.02 mm3 mm−3).

3.2.2 Additive runs

The baseline run for the additive RS-SDA runs was ESA,
which demonstrated inconsistent constraint of forecast ac-
curacy and strong constraint of forecast precision. The sec-
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Figure 6. Boxplots demonstrating the distribution of relative change (%) in state variable accuracy (RMSE) and precision (weighted variance)
for the (a) individual and (b) additive runs across all site years. Change is computed relative to the free model results. Negative values indicate
improvement (e.g., (RMSES−RMSEF)/RMSEF).

ond most available data product, SMAP–HB, was the next
RS data product added to the system. New SMAP–HB ob-
servations, on average, imposed a−0.012 mm mm−1 change
in −0.0003 mm mm−1 and a −0.0003 change in Pa for
SM1 estimates. For downstream forecast accuracy, the ad-
dition of SMAP–HB led to improved and/or more consis-
tent constraints for all state variables except SM7 (Fig. 6).
At times, the added information from SMAP–HB dampened
the benefit of SDA, reducing accuracy improvement. For
forecast precision,+SMAP–HB precision was overall better
than the free model but with reduced performance compared
to ESA.

The subsequent additions of the sparser 1 and 3 km
RS data products were less impactful than the addition of
SMAP–HB. New 1 km observations imposed an average
−0.0004 mm mm−1 change in µa and, later, new 3 km ob-
servations imposed an average −0.0003 mm mm−1 change
in µa. These changes were less than 4 % of the change
imposed by the initial addition of SMAP–HB. Neither ad-
ditional data product produced a notable average change
in Pa. Following these minimal changes in SM1, there was
also little change in forecast accuracy and precision for
downstream state variables in +1 km and ALL when com-
pared to +SMAP–HB (Fig. 6). Adding 1 km observations to

+SMAP–HB did hold some benefit for accuracy and preci-
sion in SM3 and SM4, while the effect of the 3 km obser-
vations was almost negligible or, even at times, harmful to
system performance.

3.2.3 Impact on APSIM model estimates

When considering the impact of surface SM data assimilation
on downstream model variables, we focus on results where
all available RS observations were assimilated for each site.
Hereinafter, we refer to the compilation of these runs across
the five sites as RS-SDA.

Overall, RS-SDA had minor impacts on the soil water pro-
file relative to the free model. Figure 7 demonstrates dif-
ferences between the free model and RS-SDA in SM1 es-
timates. For several site years, RS-SDA estimated signifi-
cantly higher SM1 values in the early growing season (i.e.,
May–June). In the late season and fall, RS-SDA often esti-
mated lower SM1 values. The impact of these SM1 changes
on lower layer SM values seemed to decrease with depth,
such that differences between the free model and RS-SDA
mean estimates were more subtle in deeper layers. This re-
duced impact on lower layers is also, in part, a reflection of
the increasing total soil water volume represented by soil lay-
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Figure 7. Time series of SM1 estimates from the free model and RS-SDA with the mean daily estimates demonstrated with line graphs. The
shaded regions indicate 95 % credibility intervals.

ers down through the profile (see Table 3 for layer depths).
Nonetheless, any differences in SM estimates did not lead
to notable changes in accuracy for any SM layer (Table 3).
Notable changes were visible in the soil water deficit fac-
tors for several growing seasons, such that RS-SDA led to
reduced water stress for the growing crop. We speculate that
this results from increased available soil water in the root
zone during initial periods of crop water uptake (i.e., June).
Forecast precision for soil-water-related estimates also did
not change substantially with assimilation. For SM1 esti-
mates, assimilation substantially reduced variability across
site years (Fig. 7). In many cases, this constraint in the sur-
face soil layer did not propagate into significant changes for
precision in lower layer estimates (Fig. 7). However, on av-
erage, precision was improved rather than reduced with as-
similation, with the most significant downstream constraint
in the soil layers closest to the surface.

RS-SDA demonstrated partial constraint of aboveground
estimates. Considering theR2 values reported in Table 3, RS-
SDA explained roughly 4 % more variation in yield obser-
vations than the free model. All site years except OH 2015
demonstrated increased yield accuracy, and 60 % of sites
demonstrated increased yield precision with RS-SDA. Based
on these results, there is evidence that surface SM data as-
similation can constrain, to some extent, estimates of annual

yield. Compared to its effect on yield estimates, RS-SDA
was less impactful in its constraint of NDVI. However, since
the free model could reasonably predict NDVI (R2

= 0.69),
there was less potential for improvement with SM assimila-
tion. A total of 60 % of site years had increased accuracy,
and 70 % had increased precision for NDVI estimates fol-
lowing SDA.

4 Discussion

4.1 Sensitivity of APSIM model estimates to in situ soil
moisture

In this study, the extent to which in situ SM data assimila-
tion affected APSIM model predictions depended on each
state variable’s sensitivity to the assimilated state variable
(i.e., soil moisture). Deeper layer SM estimates – the most
sensitive state variables to SM3 and SM4 – were the most
strongly constrained. Figure A1 demonstrates the significant
linear relationship between daily changes in forecasted SM3
and SM4 due to SDA and daily changes in SM estimates for
all deeper soil layers. As expected with a cascading water
balance model, the strength of the linear relationship weak-
ens as the vertical distance between soil layers increases. In
the model, SM in each layer can influence SM estimates
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of deeper soil layers, but only indirectly through its influ-
ence on the SM in the layer immediately below it. Therefore,
the influence of the assimilation layers is reduced by each
subsequent SM process down through the soil profile and is
weakest in the final soil layer (SM7). Nevertheless, the con-
straint of SM7 was still quite strong in SDA. By assimilating
SM for two upper soil layers, the accuracy of SM estimates
improved immensely by simply leveraging the pre-existing
model structure (compare to Liu et al., 2017).

Crop yield showed the next strongest constraint in SDA.
However, as noted in previous studies, its sensitivity to SM
SDA was conditional (Lu et al., 2021; Kivi et al., 2022).
While changes in SM affected lower layer SM at all analysis
time steps, crop yield was only affected when the changes
impacted crop water stress. Daily crop water uptake is deter-
mined in APSIM as the minimum of crop water demand and
soil water supply. Therefore, SDA could only influence crop
yield when the soil water adjustment pushed the water supply
above or below the demand threshold. For this reason, greater
SDA improvement was found in crop yield estimates during
water-stressed site years. Other pathways through which SM
can impact crop yield in APSIM, like soil N cycling, did not
play a strong role in this study.

The impact of SM SDA on APSIM drainage estimates
can also be beneficial, given certain conditions. As shown in
the results, drainage was affected by SM3 and SM4 through
two pathways: (1) changes in total soil water with assimila-
tion adjustment and (2) changes in crop water uptake due to
changes in crop water stress. The role of each of these path-
ways varied over the year, such that the presence of a growing
crop and root system weakened the sensitivity of drainage es-
timates to changes in the assimilation layers. To quantify this
change in sensitivity, we divided daily model forecasts into
two categories: with crop water uptake (June–September)
and without crop water uptake. Then, the relationship be-
tween changes in SM3 and SM4 and changes in drainage
was analyzed separately for each group. There was no sig-
nificant linear relationship when looking at SM3 changes in
either case. However, the linear relationship between changes
in SM4 and changes in daily drainage was stronger when
no crop was present (r = 0.23, p = 0.00) than when a crop
was present (r = 0.14, p = 0.00). This is similar to Hu et
al. (2008), who identified notable changes in drainage dy-
namics during rapid crop growth compared to out-of-season
dynamics in SPWS model simulations.

Among the state variables considered in SDA, NO3 leach-
ing showed the weakest and most complex relationship
with SM3 and SM4 in APSIM. Therefore, logically, the pre-
sented system performed most poorly in its constraint of an-
nual NO3 leaching estimates. In APSIM, daily NO3 leach-
ing estimates are computed as the product of two different
daily values: estimated NO3 concentration in the lowest soil
layer and estimated tile drainage. Therefore, in addition to
its impact on drainage, SDA can affect NO3 load estimates
through (1) changes in N cycle processes via SM rate factors

(see Fig. 2 in Kivi et al., 2022) and (2) changes in the verti-
cal movement of soil water (and N solutes) through the soil
profile. In a validation study of APSIM N processes, Sharp
et al. (2011) also observed inconsistent model behavior in
annual leaching estimates for their experimental site in New
Zealand when simulating three years of a potato–rye rotation.
Their final calibration of the model only improved one of the
annual estimates but did not constrain estimates in the other
two years. In fact, many past studies have highlighted nitrate
leaching estimates as a broader forecasting challenge (Stew-
art et al., 2006; Sharp et al., 2011; van der Laan et al., 2014;
Brilli et al., 2017). As highlighted already in the literature,
missing processes related to snowmelt (Ojeda et al., 2018),
tillage-related infiltration (Malone et al., 2007; Brilli et al.,
2017; Ojeda et al., 2018), or preferential flow could help to
improve APSIM performance. Though there is still poten-
tial for the presented system to improve nitrate leaching es-
timates, further investigation and constraint of the APSIM N
and soil water cycles will be necessary to ensure consistent
performance.

4.2 Impact of remote sensing soil moisture data
assimilation

The assimilation of RS surface SM observations imposed a
far weaker constraint on APSIM state variables compared to
the assimilation of the soil sensor observations. For example,
the median reduction in SM RMSE ranged from 7 %–27 %
across different layers of the soil profile with soil sensor ob-
servations, but, with RS observations in RS-SDA, it ranged
from roughly 1 %–5 % (Table 3). The weakened constraint
with RS-SDA was likely more than an issue of observation
inaccuracies. Instead, there is greater evidence to show that
changes in SM1 simply had less influence on downstream
state variables than changes in SM3 and SM4. This is due,
in part, to the increased vertical distance between the surface
SM layer (SM1) and other observed soil layers (i.e., SM3–
7). The APSIM SoilWat module operates as a cascading wa-
ter balance model to estimate the movement of water and so-
lutes between and across soil layers (Dokoohaki et al., 2018).
Thus, the assimilation adjustment of the SM1 estimate would
not be as strongly tied to lower layer estimates when using a
top-down approach. Yet, surface SM data assimilation no-
tably changed SM2 estimates, the SM estimates for the layer
just below it. This result reflects the findings of Lu and et
al. (2019), who assimilated RS surface SM observations into
a surface energy balance model. They found that SDA im-
proved SM estimates in the second layer to a greater extent
than in lower layers when comparing estimates to observa-
tions. Since observations were not available for SM2 at the
study sites, this hypothesis could not be tested within this
work.

The two assimilation protocols (i.e., assimilation of SM1
vs. assimilation of SM3 and SM4) were also markedly differ-
ent in the quantity of soil water associated with their assim-
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ilation adjustments. Where soil layers 3 and 4 corresponded
to almost 14 % of the soil profile (20 cm depth), the near-
surface soil layer only corresponded to about 3.6 % of the
soil profile (5 cm depth). Thus, when considering the top-
down effect of SM assimilation on lower layers, each adjust-
ment with RS assimilation had just 25 % of the impact of
the previous system given the same adjustment in volumetric
soil water content. This 5-fold reduction in potential impact
closely mirrors the change in RMSE reduction for SM lay-
ers highlighted above (i.e., 7 %–27 % to 1 %–5 %). One way
to overcome this limitation of surface SM is to leverage the
strong covariance between SM1 and SM in nearby layers
(i.e., SM2) to directly nudge their values within the analy-
sis time step using, for example, an augmented state vector
(e.g., Kivi et al., 2022) or exponential filter approaches (e.g.,
Albergel et al., 2008).

RS surface SM data assimilation still demonstrated strong
potential for improving APSIM forecasts within this study.
First, the assimilation of surface SM improved estimates of
crop yield overall when compared to the free model, with a
median RMSE reduction of 17.2 %. Past RS SM data assimi-
lation studies had similar success in improving crop yield es-
timates, and several attributed the improvement to increased
surface SM and reduced crop water stress with SM assimi-
lation (e.g., Ines et al., 2013; Chakrabarti et al., 2014). We
speculate that the model performance indicates that water
stress likely played an important role. Although direct ob-
servations are not available for crop water uptake to test this
hypothesis, we suspect RS-SDA accurately increased avail-
able soil water at critical growth stages and, thus, increased
crop water uptake.

4.3 Comparison of remote sensing soil moisture data
products

The four different RS SM data products varied quite broadly
in spatial resolution, varying from 30 m to 0.25◦. However,
their individual assimilation performance seemed to be most
closely tied to the temporal availability of observations. ESA
with a multi-sensor nature had on average 219 observations
per growing season and showed the best overall constraint of
forecast precision and good constraint of forecast accuracy
in downstream state variables. Alternatively, the 1 and 3 km
data products, which each had an average of seven obser-
vations per growing season, had almost no impact on fore-
cast accuracy and only a slight impact on forecast preci-
sion. Although this study was not designed to independently
test the impact of temporal and spatial resolution on per-
formance, it echoes the findings of Lu et al. (2019), who
found a high temporal resolution to be far more important to
assimilation performance than high spatial resolution. They
suspected that increased time between assimilation adjust-
ments allowed errors in model structure, inputs, and/or pa-
rameters to go unchecked for more extended periods of time,
thereby allowing the magnitude of simulation errors to be-

come large and unreasonable. More frequent assimilation
helps mitigate the impact of such model errors and improve
overall crop model predictions by correcting errors more of-
ten (de Lannoy et al., 2007; Pauwels et al., 2007; Lu et al.,
2021). Alternatively, in the case of low temporal resolution, a
recalibration-based assimilation approach or the inclusion of
a bias correction method might be more appropriate (de Lan-
noy et al., 2007; Curnel et al., 2011).

When comparing RS data products in this study, it is
important to recognize that all data products considered in
this work are based, in part, on SMAP radiometer data.
SMAP–HB merged SMAP brightness temperature data with
the HydroBlocks–RTM model, ESA includes SMAP as one
of its 10 passive microwave sensors, and 1 and 3 km rely
on SMAP for passive microwave information within their
derivation. In the first iteration, ESA contributed most of
the information provided by the SMAP radiometer to the
model and, therefore, imposed large changes in SM1 esti-
mates. Then, with each additional data product, the overall
impact on the analysis distribution weakened, as much of the
new information had already been provided to the system.
It is also important to note that given that all data products
directly or indirectly are based SMAP, the successive assim-
ilation of these data products can introduce error covariances
between the model runs and the observations. This may po-
tentially result in an over- or underestimation of the uncer-
tainty, thereby affecting the performance of the filter. There-
fore, further investigation into the impact of including these
error covariances between the data products is deemed nec-
essary in order to enhance the accuracy of the EnKF filter.

The Miyoshi algorithm often estimated higher observation
uncertainty (R) than the values reported in the literature. This
is unsurprising as RS SM data products, like most RS data
products, often have poorly characterized uncertainties (Peng
et al., 2021). For each data product, uncertainty is typically
reported as a standard error value after comparing the data
product to a limited set of observations. This estimate does
not capture all possible sources of uncertainty and cannot be
easily generalized to different places or time points (Huang
et al., 2019). Yet, in the additive runs, these uncertainty val-
ues were applied uniformly across time and space. Future ap-
plications of the GEF scheme could benefit from additional
terms in the model that could capture R or the use of the
Miyoshi algorithm. These approaches may better estimate
observation uncertainties within the system’s context.

5 Conclusions

In the study, we assessed the extent to which soil moisture
data assimilation can improve APSIM model forecasts. We
used a generalizable and novel data-assimilation system to
assimilate RS and in situ soil moisture measurements across
the US Midwest 19 site years and evaluated how a direct soil
moisture constraint affected downstream model estimates of
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root zone soil moisture, crop yield, tile flow, and nitrate
leaching. Our results highlighted the capacity of soil mois-
ture data assimilation to improve model estimates of crop
yield in water-limited conditions, increasing crop water up-
take at critical points in the growing season. Soil moisture
data assimilation also improved estimates of soil moisture
throughout the profile in most cases but did not well con-
strain nitrate leaching or tile drainage. This indicates a need
for better constraint of both the soil water and soil nitrogen
cycles in the APSIM model.

This work also lays the groundwork for future regional
applications of soil moisture data assimilation. Importantly,
our findings reaffirmed soil moisture data assimilation’s abil-
ity to “localize” gridded weather estimates of precipitation
to reflect observed values more accurately. Since cropping
systems are highly sensitive to precipitation inputs, this is a
strong advantage of soil moisture data assimilation for fore-
casting applications where coarse-resolution weather drivers
are employed. Though RS soil moisture data assimilation
could be an effective way to overcome limited availability
of in situ data, our work shows that assimilation of in situ
surface soil moisture is not as powerful as the assimilation
of in situ root zone soil moisture values in terms of model
constraint. If the former is applied, additional constraints
or an augmented state-vector approach would be necessary
to achieve higher system performance. When selecting a
RS soil moisture data product for data assimilation applica-
tions, high temporal resolution due to multi-sensor satellite
availability and accurately estimated observation uncertainty
are two critical components for optimal system performance.
To that same point, combining several data products at differ-
ent spatial resolutions can help to reduce assimilation inter-
vals within the system. Further investigation is needed to in-
dependently test the impact of observation sample size (i.e.,
number of data products), temporal resolution, spatial resolu-
tion, and uncertainty on system performance. Moreover, the
data products considered in this study do not represent the
full range of RS soil moisture data products that are avail-
able publicly. This work should be expanded to evaluate data
products derived from other satellites/derivations both indi-
vidually and in combination with other sources to exhaust all
available options.
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Appendix A

Table A1. Site management information as defined across all APSIM simulations in this study.

Study ID Site information Year Crop Planting Harvest Tillage Fertilizerc

(original ID) date date

IL (Energy Farm)
plot ID: maize control 2018 maize 8 May 9 Oct 8 May: chisel 50 mma 8 May: urea_N (101)
soy cultivar: 3.5–4.5 24 Oct: chisel 150 mm NH4NO3 (288.57)

tile depth: 1.383 m 2019 soy 17 May 9 Oct n/a n/a

IN (IN_Randolph)

2011 soy 7 Jun 24 Oct n/a n/a

2012 maize 23 Apr 10 Oct 12 Apr: disk 50 mma 13 Feb: NH4_N (22.42)
broadcast_P (46.25)

28 Nov: disk 200 mm 23 Apr: urea_N (17.88)
NH4NO3 (51.09)
banded_P (13.96)
25 May: urea_N (100.35)

plot ID: SW NH4NO3 (286.7)

soy cultivar: 3.0–4.0 2013 soy 20 May 14 Oct 9 Apr: disk 50 mma 21 Mar: NH4_N (18.48)
tile depth: 0.975 mb 21 Oct: chisel 150 mm broadcast_P (38.12)

2014 maize 27 Apr 21 Oct 13 Nov: chisel 150 mm 24 Apr: NH4_N (17.93)
broadcast_P (36.99)
23 Apr: urea_N (17.88)
NH4NO3 (51.09)
banded_P (13.96)
25 May: urea_N (108.82)
NH4NO3 (310.9)

2015 soy 6 Jun 12 Oct n/a n/a

IN (cont). 2016 maize 26 Apr 7 Oct n/a 26 Apr: urea_N (16.71)
NH4NO3 (47.73)
banded_P (13.05)
2 Jun: urea_N (104.91)
NH4NO3 (299.7)

MN (MN_Redwood1) 2012 maize 10 May 6 Oct 6 May: disk 76.2 mma 6 May: urea_N (177.1)
1 Nov: rip 228.6 mm NH4_N (13.4)

broadcast_P (34.2)
10 May: NH4_N (7.84)
banded_P (76.2)

2013 maize 24 May 31 Oct 23 May: disk 76.2 mma 22 May: urea_N (182.75)
3 Nov: rip 228.6 mm NH4_N (13.4)

broadcast_P (34.2)
plot ID: BE 24 May: NH4_N (7.84)
soy cultivar: 1.5–2.5 banded_P (11.63)

tile depth: 1.22 m 2014 maize 17 May 29 Oct 16 May: disk 76.2 mma 16 May: urea_N (150.47)
1 Nov: rip 228.6 mm NH4_N (12.05)

broadcast_P (30.8)
17 May: NH4_N (7.84)
banded_P (11.63)

2015 maize 30 Apr 13 Oct 29 Apr: disk 50.8 mma 28 Apr: urea_N (148.37)
27 Oct: rip 228.6 mm

NH4_N (14.15)
broadcast_P (18.6)
1 May: NH4NO3 (47.8)
urea_N (16.49)
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Table A1. Continued.

Study ID Site information Year Crop Planting Harvest Tillage Fertilizerc

(original ID) date date

MN (cont.) 2016 soy 13 May 18 Oct 11 May: disk 50.8 mma n/a
1 Nov: rip 228.6 mm

2017 maize 6 May 3 Nov 6 May: disk 50.8 mma 6 May: NH4_N (7.84)
broadcast_P (11.63)

OH (OH_Auglaize2) 2013 maize 9 May 22 Oct n/a 9 May: broadcast_P (20.53)
NH4_N (11.76)

plot ID: WS urea_N (201.43)

soy cultivar: 3.0–4.0 2014 soy 15 May 20 Oct 5 Nov: disk 200 mm n/a

tile depth: 0.975 mb 2015 maize 30 Apr 16 Oct n/a 30 Apr: NH4_N (18.38)
broadcast_P (38.12)
urea_N (178.76)

SD (SD_Clay) plot ID: Plot7 2016 maize 18 May 21 Oct 15 May: disk 101.6 mma 14 Apr: urea_N (180.32)

soy cultivar: 2.0–3.0 2017 soy 2 Jun 13 Oct n/a n/a
tile depth: 1.22 m

a Documentation on site-level management indicated the use of a field cultivator during spring tillage for several site years. However, since the APSIM tillage module does not include
parameterization for a field cultivator, the disk implement was applied at the documented depth instead due to similarities between the two implements in relation to incorporation. b OH and
IN both fall within the same tile of the gridded soil driver. Therefore, since the drainage tiles were placed at similar depths at the two sites (i.e., 0.91 and 1.04 m), the soil profile depth was
adapted to the average depth of the two for simplicity. c This column includes information on fertilizer application date, type, and amount as defined for each site year. The notation for
fertilizer type reflects fertilizer names in APSIM. If the fertilizer name contains N or P, amount is in kg N ha−1 or Kg P ha−1, respectively. Otherwise, amount is in kg per fertilizer per ha.
n/a stands for not applicable.n/a stands for not applicable.

Table A2. Prior distributions for model ensembles.

APSIM variable Description Units Distribution

iCRAG Initial residue weight on the field kg Uniform (0, 2500)

water_fraction_full Initial soil water fraction by volume Proportion Uniform (0.05, 0.6)

tt_flower_to_maturity Thermal time between flowering and ◦C d−1 Uniform (780, 860)
maturity (maize cultivar)

tt_flower_to_start_grain Thermal time between flowering and ◦C d−1 Uniform (150, 200)
start of grain fill (maize cultivar)

tt_maturity_to_ripe Thermal time between maturity and ◦C d−1 Uniform (150, 250)
ripe stage (maize cultivar)

tt_emerg_to_endjuv Thermal time between emergence and ◦C d−1 Uniform (240, 260)
end of juvenile stage (maize cultivar)

head_grain_no_max Maximum potential number of kernels Number of kernels per ear Uniform (750, 900)
per ear (maize cultivar)

grain_gth_rate Maximum potential growth rate of Grain (g) per day Uniform (7.1, 8.57)
grain (maize cultivar)
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Figure A1. Scatterplots comparing change (i.e., SDA – free model) in mean SM5, SM6, SM7, daily drainage, and daily NO3 leaching
estimates with change in mean SM3 and SM4 estimates at each analysis time step. For each variable combination, the least squares regression
line is demonstrated by a dashed line and the Pearson correlation coefficient is displayed. Asterisks denote significant coefficient values
(∗∗ indicates p value< 0.01, and ∗∗∗ indicates p value∼ 0).
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Figure A2. Time series of NDVI estimates from the two schemes for each site year with the mean daily estimates demonstrated with line
graphs and the 95 % credibility interval demonstrated by the shaded regions. Black points represent the observed values.
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Figure A3. Time series of cumulative NO3 load estimates from the two schemes for each site year with the mean daily estimates demonstrated
with line graphs and the 95 % credibility interval demonstrated by the shaded regions. Black dashed lines represent the observed cumulative
value for each site year.
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