Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-4681-2021
https://doi.org/10.5194/hess-25-4681-2021
Research article
 | 
31 Aug 2021
Research article |  | 31 Aug 2021

How does water yield respond to mountain pine beetle infestation in a semiarid forest?

Jianning Ren, Jennifer C. Adam, Jeffrey A. Hicke, Erin J. Hanan, Christina L. Tague, Mingliang Liu, Crystal A. Kolden, and John T. Abatzoglou

Related authors

Physical, Social, and Biological Attributes for Improved Understanding and Prediction of Wildfires: FPA FOD-Attributes Dataset
Yavar Pourmohamad, John T. Abatzoglou, Erin J. Belval, Erica Fleishman, Karen Short, Matthew C. Reeves, Nicholas Nauslar, Philip E. Higuera, Eric Henderson, Sawyer Ball, Amir AghaKouchak, Jeffrey P. Prestemon, Julia Olszewski, and Mojtaba Sadegh
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-430,https://doi.org/10.5194/essd-2023-430, 2023
Preprint under review for ESSD
Short summary
SnowClim v1.0: high-resolution snow model and data for the western United States
Abby C. Lute, John Abatzoglou, and Timothy Link
Geosci. Model Dev., 15, 5045–5071, https://doi.org/10.5194/gmd-15-5045-2022,https://doi.org/10.5194/gmd-15-5045-2022, 2022
Short summary
Implications of water management representations for watershed hydrologic modeling in the Yakima River basin
Jiali Qiu, Qichun Yang, Xuesong Zhang, Maoyi Huang, Jennifer C. Adam, and Keyvan Malek
Hydrol. Earth Syst. Sci., 23, 35–49, https://doi.org/10.5194/hess-23-35-2019,https://doi.org/10.5194/hess-23-35-2019, 2019
Short summary
Fire-regime variability impacts forest carbon dynamics for centuries to millennia
Tara W. Hudiburg, Philip E. Higuera, and Jeffrey A. Hicke
Biogeosciences, 14, 3873–3882, https://doi.org/10.5194/bg-14-3873-2017,https://doi.org/10.5194/bg-14-3873-2017, 2017
Short summary
VIC–CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions
Keyvan Malek, Claudio Stöckle, Kiran Chinnayakanahalli, Roger Nelson, Mingliang Liu, Kirti Rajagopalan, Muhammad Barik, and Jennifer C. Adam
Geosci. Model Dev., 10, 3059–3084, https://doi.org/10.5194/gmd-10-3059-2017,https://doi.org/10.5194/gmd-10-3059-2017, 2017

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023,https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Technical note: Seamless extraction and analysis of river networks in R
Luca Carraro
Hydrol. Earth Syst. Sci., 27, 3733–3742, https://doi.org/10.5194/hess-27-3733-2023,https://doi.org/10.5194/hess-27-3733-2023, 2023
Short summary
Advancing stream classification and hydrologic modeling of ungaged basins for environmental flow management in coastal southern California
Stephen K. Adams, Brian P. Bledsoe, and Eric D. Stein
Hydrol. Earth Syst. Sci., 27, 3021–3039, https://doi.org/10.5194/hess-27-3021-2023,https://doi.org/10.5194/hess-27-3021-2023, 2023
Short summary
Unraveling phenological responses to extreme drought and implications for water and carbon budgets
Nicholas K. Corak, Jason A. Otkin, Trent W. Ford, and Lauren E. L. Lowman
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-146,https://doi.org/10.5194/hess-2023-146, 2023
Revised manuscript accepted for HESS
Short summary
Improving regional climate simulations based on a hybrid data assimilation and machine learning method
Xinlei He, Yanping Li, Shaomin Liu, Tongren Xu, Fei Chen, Zhenhua Li, Zhe Zhang, Rui Liu, Lisheng Song, Ziwei Xu, Zhixing Peng, and Chen Zheng
Hydrol. Earth Syst. Sci., 27, 1583–1606, https://doi.org/10.5194/hess-27-1583-2023,https://doi.org/10.5194/hess-27-1583-2023, 2023
Short summary

Cited articles

Abatzoglou, J. T.: Development of gridded surface meteorological data for ecological applications and modelling, Int. J. Climatol., 33, 121–131, https://doi.org/10.1002/joc.3413, 2013. 
Abatzoglou, J. T. and Kolden, C. A.: Relationships between climate and macroscale area burned in the western United States, Int. J. Wildland Fire, 22, 1003, https://doi.org/10.1071/WF13019, 2013. 
Ackerly, D. D.: Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral, Am. Nat., 163, 654–671, https://doi.org/10.1086/383062, 2004. 
Adams, H. D., Luce, C. H., Breshears, D. D., Allen, C. D., Weiler, M., Hale, V. C., Smith, A. M. S., and Huxman, T. E.: Ecohydrological consequences of drought- and infestation-triggered tree die-off: insights and hypotheses, Ecohydrology, 5, 145–159, https://doi.org/10.1002/eco.233, 2012. 
Anderegg, W. R. L., Kane, J. M., and Anderegg, L. D. L.: Consequences of widespread tree mortality triggered by drought and temperature stress, Nat. Clim. Change, 3, 30–36, https://doi.org/10.1038/nclimate1635, 2013. 
Download
Short summary
Mountain pine beetle outbreaks have caused widespread tree mortality. While some research shows that water yield increases after trees are killed, many others document no change or a decrease. The climatic and environmental mechanisms driving hydrologic response to tree mortality are not well understood. We demonstrated that the direction of hydrologic response is a function of multiple factors, so previous studies do not necessarily conflict with each other; they represent different conditions.