Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-4681-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-4681-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
How does water yield respond to mountain pine beetle infestation in a semiarid forest?
Jianning Ren
Department of Civil & Environmental Engineering, Washington State University, 99163, Pullman, USA
Department of Natural Resources and Environmental Sciences,
University of Nevada, 89501, Reno, USA
Jennifer C. Adam
CORRESPONDING AUTHOR
Department of Civil & Environmental Engineering, Washington State University, 99163, Pullman, USA
Jeffrey A. Hicke
Department of Geography, University of Idaho, 83844, Moscow, USA
Erin J. Hanan
Department of Natural Resources and Environmental Sciences,
University of Nevada, 89501, Reno, USA
Christina L. Tague
Bren School of Environmental Science & Management, University of
California, 93106, Santa Barbara, USA
Mingliang Liu
Department of Civil & Environmental Engineering, Washington State University, 99163, Pullman, USA
Crystal A. Kolden
Management of Complex Systems, University of California, 95344,
Merced, USA
John T. Abatzoglou
Management of Complex Systems, University of California, 95344,
Merced, USA
Related authors
No articles found.
Douglas I. Kelley, Chantelle Burton, Francesca Di Giuseppe, Matthew W. Jones, Maria L. F. Barbosa, Esther Brambleby, Joe R. McNorton, Zhongwei Liu, Anna S. I. Bradley, Katie Blackford, Eleanor Burke, Andrew Ciavarella, Enza Di Tomaso, Jonathan Eden, Igor José M. Ferreira, Lukas Fiedler, Andrew J. Hartley, Theodore R. Keeping, Seppe Lampe, Anna Lombardi, Guilherme Mataveli, Yuquan Qu, Patrícia S. Silva, Fiona R. Spuler, Carmen B. Steinmann, Miguel Ángel Torres-Vázquez, Renata Veiga, Dave van Wees, Jakob B. Wessel, Emily Wright, Bibiana Bilbao, Mathieu Bourbonnais, Gao Cong, Carlos M. Di Bella, Kebonye Dintwe, Victoria M. Donovan, Sarah Harris, Elena A. Kukavskaya, Brigitte N’Dri, Cristina Santín, Galia Selaya, Johan Sjöström, John Abatzoglou, Niels Andela, Rachel Carmenta, Emilio Chuvieco, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Meier, Mark Parrington, Mojtaba Sadegh, Jesus San-Miguel-Ayanz, Fernando Sedano, Marco Turco, Guido R. van der Werf, Sander Veraverbeke, Liana O. Anderson, Hamish Clarke, Paulo M. Fernandes, and Crystal A. Kolden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-483, https://doi.org/10.5194/essd-2025-483, 2025
Preprint under review for ESSD
Short summary
Short summary
The second State of Wildfires report examines extreme wildfire events from 2024 to early 2025. It analyses key regional events in Southern California, Northeast Amazonia, Pantanal-Chiquitano, and the Congo Basin, assessing their drivers, predictability, and attributing them to climate change and land use. Seasonal outlooks and decadal projections are provided. Climate change greatly increased the likelihood of these fires, and without strong mitigation, such events will become more frequent.
A. Park Williams, Winslow D. Hansen, Caroline S. Juang, John T. Abatzoglou, Volker C. Radeloff, Bowen Wang, Jazlynn Hall, Jatan Buch, and Gavin D. Madakumbura
EGUsphere, https://doi.org/10.5194/egusphere-2025-2934, https://doi.org/10.5194/egusphere-2025-2934, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The new WULFFSS is a monthly gridded forest-fire model to simulate forest fires across the western United States in response to vegetation, topographic, anthropogenic, and climate factors. This effort is motivated by the ten-fold increase in western U.S. annual forest area burned over the past 40 years. The WULFFSS is highly skillful, accounting for over 80 % of the observed variability in annual forest-fire area and capturing observed spatial, intra-annual variations, and trends.
Bhupinderjeet Singh, Mingliang Liu, John Abatzoglou, Jennifer Adam, and Kirti Rajagopalan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2284, https://doi.org/10.5194/egusphere-2024-2284, 2024
Preprint archived
Short summary
Short summary
Hydrology models rely on simplistic static approaches to precipitation phase partitioning. We evaluate model skill changes for a suite of snow metrics by transitioning to a more accurate dynamic partitioning. We found that the transition resulted in a better match between modeled and observed metrics, with a 50 % reduction in model bias, emphasizing the need for the hydrological modeling community to adopt dynamic partitioning.
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos
Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, https://doi.org/10.5194/essd-16-3601-2024, 2024
Short summary
Short summary
This inaugural State of Wildfires report catalogues extreme fires of the 2023–2024 fire season. For key events, we analyse their predictability and drivers and attribute them to climate change and land use. We provide a seasonal outlook and decadal projections. Key anomalies occurred in Canada, Greece, and western Amazonia, with other high-impact events catalogued worldwide. Climate change significantly increased the likelihood of extreme fires, and mitigation is required to lessen future risk.
Yavar Pourmohamad, John T. Abatzoglou, Erin J. Belval, Erica Fleishman, Karen Short, Matthew C. Reeves, Nicholas Nauslar, Philip E. Higuera, Eric Henderson, Sawyer Ball, Amir AghaKouchak, Jeffrey P. Prestemon, Julia Olszewski, and Mojtaba Sadegh
Earth Syst. Sci. Data, 16, 3045–3060, https://doi.org/10.5194/essd-16-3045-2024, https://doi.org/10.5194/essd-16-3045-2024, 2024
Short summary
Short summary
The FPA FOD-Attributes dataset provides > 300 biological, physical, social, and administrative attributes associated with > 2.3×106 wildfire incidents across the US from 1992 to 2020. The dataset can be used to (1) answer numerous questions about the covariates associated with human- and lightning-caused wildfires and (2) support descriptive, diagnostic, predictive, and prescriptive wildfire analytics, including the development of machine learning models.
Abby C. Lute, John Abatzoglou, and Timothy Link
Geosci. Model Dev., 15, 5045–5071, https://doi.org/10.5194/gmd-15-5045-2022, https://doi.org/10.5194/gmd-15-5045-2022, 2022
Short summary
Short summary
We developed a snow model that can be used to quantify snowpack over large areas with a high degree of spatial detail. We ran the model over the western United States, creating a snow and climate dataset for three time periods. Compared to observations of snowpack, the model captured the key aspects of snow across time and space. The model and dataset will be useful in understanding historical and future changes in snowpack, with relevance to water resources, agriculture, and ecosystems.
Cited articles
Abatzoglou, J. T.: Development of gridded surface meteorological data for
ecological applications and modelling, Int. J. Climatol., 33, 121–131,
https://doi.org/10.1002/joc.3413, 2013.
Abatzoglou, J. T. and Kolden, C. A.: Relationships between climate and
macroscale area burned in the western United States, Int. J. Wildland Fire,
22, 1003, https://doi.org/10.1071/WF13019, 2013.
Ackerly, D. D.: Adaptation, niche conservatism, and convergence: comparative
studies of leaf evolution in the California chaparral, Am. Nat., 163,
654–671, https://doi.org/10.1086/383062, 2004.
Adams, H. D., Luce, C. H., Breshears, D. D., Allen, C. D., Weiler, M., Hale,
V. C., Smith, A. M. S., and Huxman, T. E.: Ecohydrological consequences of
drought- and infestation-triggered tree die-off: insights and hypotheses,
Ecohydrology, 5, 145–159, https://doi.org/10.1002/eco.233, 2012.
Anderegg, W. R. L., Kane, J. M., and Anderegg, L. D. L.: Consequences of
widespread tree mortality triggered by drought and temperature stress, Nat.
Clim. Change, 3, 30–36, https://doi.org/10.1038/nclimate1635, 2013.
Bart, R. R., Tague, C. L., and Moritz, M. A.: Effect of Tree-to-Shrub Type
Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow, PLOS One, 11, e0161805, https://doi.org/10.1371/journal.pone.0161805, 2016.
Bennett, K. E., Bohn, T. J., Solander, K., McDowell, N. G., Xu, C., Vivoni, E., and Middleton, R. S.: Climate-driven disturbances in the San Juan River
sub-basin of the Colorado River, Hydrol. Earth Syst. Sci., 22, 709–725,
https://doi.org/10.5194/hess-22-709-2018, 2018.
Bentz, B. J., Régnière, J., Fettig, C. J., Hansen, E. M., Hayes, J.
L., Hicke, J. A., Kelsey, R. G., Negrón, J. F., and Seybold, S. J.:
Climate Change and Bark Beetles of the Western United States and Canada:
Direct and Indirect Effects, BioScience, 60, 602–613,
https://doi.org/10.1525/bio.2010.60.8.6, 2010.
Berner, L. T. and Law, B. E.: Plant traits, productivity, biomass and soil
properties from forest sites in the Pacific Northwest, 1999–2014, Sci. Data, 3, 1–14, https://doi.org/10.1038/sdata.2016.2, 2016.
Berner, L. T., Law, B. E., Meddens, A. J. H., and Hicke, J. A.: Tree mortality from fires, bark beetles, and timber harvest during a hot and dry
decade in the western United States (2003–2012), Environ. Res. Lett., 12,
065005, https://doi.org/10.1088/1748-9326/aa6f94, 2017.
Bethlahmy, N.: More streamflow after a bark beetle epidemic, J. Hydrol., 23,
185–189, https://doi.org/10.1016/0022-1694(74)90001-8, 1974.
Biederman, J. A., Harpold, A. A., Gochis, D. J., Ewers, B. E., Reed, D. E.,
Papuga, S. A., and Brooks, P. D.: Increased evaporation following widespread
tree mortality limits streamflow response, Water Resour. Res., 50, 5395–5409, https://doi.org/10.1002/2013WR014994, 2014.
Buhidar, B.: The big wood river watershed management plan, Twin Falls Regional Office, Twin Falls, Idaho, 2002.
Buma, B. and Livneh, B.: Key landscape and biotic indicators of watersheds
sensitivity to forest disturbance identified using remote sensing and historical hydrography data, Environ. Res. Lett., 12, 074028,
https://doi.org/10.1088/1748-9326/aa7091, 2017.
Chaney, N. W., Wood, E. F., McBratney, A. B., Hempel, J. W., Nauman, T. W.,
Brungard, C. W., and Odgers, N. P.: POLARIS: A 30-meter probabilistic soil
series map of the contiguous United States, Geoderma, 274, 54–67,
https://doi.org/10.1016/j.geoderma.2016.03.025, 2016.
Chen, F., Zhang, G., Barlage, M., Zhang, Y., Hicke, J. A., Meddens, A., Zhou, G., Massman, W. J., and Frank, J.: An Observational and Modeling Study of Impacts of Bark Beetle – Caused Tree Mortality on Surface Energy and Hydrological Cycles, J. Hydrometeorol., 16, 744–761, https://doi.org/10.1175/JHM-D-14-0059.1, 2014.
Daly, C., Neilson, R. P., and Phillips, D. L.: A Statistical-Topographic
Model for Mapping Climatological Precipitation over Mountainous Terrain, J.
Appl. Meteorol., 33, 140–158,
https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2, 1994.
Dickinson, R. E., Shaikh, M., Bryant, R., and Graumlich, L.: Interactive
Canopies for a Climate Model, J. Climate, 11, 2823–2836,
https://doi.org/10.1175/1520-0442(1998)011<2823:ICFACM>2.0.CO;2, 1998.
Edburg, S. L., Hicke, J. A., Lawrence, D. M., and Thornton, P. E.: Simulating coupled carbon and nitrogen dynamics following mountain pine beetle outbreaks in the western United States, J. Geophys. Res.-Biogeo., 116, G04033, https://doi.org/10.1029/2011JG001786, 2011.
Edburg, S. L., Hicke, J. A., Brooks, P. D., Pendall, E. G., Ewers, B. E.,
Norton, U., Gochis, D., Gutmann, E. D., and Meddens, A. J.: Cascading impacts of bark beetle-caused tree mortality on coupled biogeophysical and biogeochemical processes, Front. Ecol. Environ., 10, 416–424,
https://doi.org/10.1890/110173, 2012.
Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L., Brooks, P. D., Dietrich, W. E., Flores, A., Grant, G., Kirchner, J. W., Mackay, D. S., McDonnell, J. J., Milly, P. C. D., Sullivan, P. L., Tague, C., Ajami, H., Chaney, N., Hartmann, A., Hazenberg, P., McNamara, J., Pelletier, J., Perket, J., Rouholahnejad-Freund, E., Wagener, T., Zeng, X., Beighley, E., Buzan, J., Huang, M., Livneh, B., Mohanty, B. P., Nijssen, B., Safeeq, M., Shen, C., van Verseveld, W., Volk, J., and Yamazaki, D.: Hillslope Hydrology in Global Change Research and Earth System Modeling, Water Resour. Res., 55, 1737–1772, https://doi.org/10.1029/2018WR023903, 2019.
Farquhar, G. D. and von Caemmerer, S.: Modelling of Photosynthetic Response
to Environmental Conditions, in: Physiological Plant Ecology II: Water
Relations and Carbon Assimilation, edited by: Lange, O. L., Nobel, P. S.,
Osmond, C. B., and Ziegler, H., Springer, Berlin, Heidelberg, 549–587,
https://doi.org/10.1007/978-3-642-68150-9_17, 1982.
Frank, J. M., Massman, W. J., Ewers, B. E., and Williams, D. G.: Bayesian Analyses of 17 Winters of Water Vapor Fluxes Show Bark Beetles Reduce
Sublimation, Water Resour. Res., 55, 1598–1623, https://doi.org/10.1029/2018WR023054, 2019.
Frenzel, S. A.: Water Resources of the upper Big Wood River basin, Idaho, US Geological Survey, Boise, Idaho, 1989.
Fyfe, J. C., Derksen, C., Mudryk, L., Flato, G. M., Santer, B. D., Swart, N.
C., Molotch, N. P., Zhang, X., Wan, H., Arora, V. K., Scinocca, J., and Jiao, Y.: Large near-term projected snowpack loss over the western United States, Nat. Commun., 8, 14996, https://doi.org/10.1038/ncomms14996, 2017.
Garcia, E. S. and Tague, C. L.: Subsurface storage capacity influences climate–evapotranspiration interactions in three western United States catchments, Hydrol. Earth Syst. Sci., 19, 4845–4858,
https://doi.org/10.5194/hess-19-4845-2015, 2015.
Goeking, S. A. and Tarboton, D. G.: Forests and Water Yield: A Synthesis of
Disturbance Effects on Streamflow and Snowpack in Western Coniferous
Forests, J. Forest., 118, 172–192, https://doi.org/10.1093/jofore/fvz069, 2020.
Guardiola-Claramonte, M., Troch, P. A., Breshears, D. D., Huxman, T. E.,
Switanek, M. B., Durcik, M., and Cobb, N. S.: Decreased streamflow in semi-arid basins following drought-induced tree die-off: A counter-intuitive
and indirect climate impact on hydrology, J. Hydrol., 406, 225–233,
https://doi.org/10.1016/j.jhydrol.2011.06.017, 2011.
Hanan, E. J., Schimel, J. P., Dowdy, K., and D'Antonio, C. M.: Effects of
substrate supply, pH, and char on net nitrogen mineralization and nitrification along a wildfire-structured age gradient in chaparral, Soil
Biol. Biochem., 95, 87–99, https://doi.org/10.1016/j.soilbio.2015.12.017, 2016.
Hanan, E. J., Tague, C. (Naomi), and Schimel, J. P.: Nitrogen cycling and
export in California chaparral: the role of climate in shaping ecosystem
responses to fire, Ecol. Monogr., 87, 76–90, https://doi.org/10.1002/ecm.1234, 2017.
Hanan, E. J., Tague, C., Choate, J., Liu, M., Kolden, C., and Adam, J.:
Accounting for disturbance history in models: using remote sensing to constrain carbon and nitrogen pool spin-up, Ecol. Appl. Publ. Ecol. Soc.
Am., 28, 1197–1214, https://doi.org/10.1002/eap.1718, 2018.
Hanan, E. J., Ren, J., Tague, C. L., Kolden, C. A., Abatzoglou, J. T., Bart,
R. R., Kennedy, M. C., Liu, M., and Adam, J. C.: How climate change and fire
exclusion drive wildfire regimes at actionable scales, Environ. Res. Lett.,
16, 024051, https://doi.org/10.1088/1748-9326/abd78e, 2021.
Harpold, A. A., Biederman, J. A., Condon, K., Merino, M., Korgaonkar, Y.,
Nan, T., Sloat, L. L., Ross, M., and Brooks, P. D.: Changes in snow accumulation and ablation following the Las Conchas Forest Fire, New Mexico,
USA: Changes In Snow Following Fire, Ecohydrology, 7, 440–452,
https://doi.org/10.1002/eco.1363, 2014.
Hicke, J. A., Johnson, M. C., Hayes, J. L., and Preisler, H. K.: Effects of
bark beetle-caused tree mortality on wildfire, Forest Ecol. Manage., 271,
81–90, https://doi.org/10.1016/j.foreco.2012.02.005, 2012.
Homer, C. G., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G. Z.,
Coulston, J., Herold, N., Wickham, J., and Megown, K.: Completion of the
2011 National Land Cover Database for the conterminous United States – Representing a decade of land cover change information, Photogram. Eng.
Remote Sens., 81, 345354, https://doi.org/10.14358/PERS.81.5.345, 2015.
Hubbart, J. A.: Timber Harvest Impacts on Water Yield in the Continental/Maritime Hydroclimatic Region of the United States, Forest Sci., 53, 169–180, https://doi.org/10.1093/forestscience/53.2.169, 2007.
Koeniger, P., Hubbart, J., Link, T., and Marshall, J.: Isotopic Variation of
Snowcover and Streamflow in Response to Changes in Canopy Structure in a
Snow-Dominated Mountain Catchment, Hydrol. Process., 22, 557–566,
https://doi.org/10.1002/hyp.6967, 2008.
Law, B. E., Sun, O. J., Campbell, J., Van Tuyl, S., and Thornton, P. E.:
Changes in carbon storage and fluxes in a chronosequence of ponderosa pine,
Global Change Biol., 9, 510–524, https://doi.org/10.1046/j.1365-2486.2003.00624.x, 2003.
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S.
C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan,
G. B., and Slater, A. G.: Parameterization improvements and functional and
structural advances in Version 4 of the Community Land Model, J. Adv. Model.
Earth Syst., 3, M03001, https://doi.org/10.1029/2011MS00045, 2011.
Lin, L., Band, L. E., Vose, J. M., Hwang, T., Miniat, C. F., and Bolstad, P.
V.: Ecosystem processes at the watershed scale: Influence of flowpath patterns of canopy ecophysiology on emergent catchment water and carbon cycling, Ecohydrology, 0, e2093, https://doi.org/10.1002/eco.2093, 2019.
Livneh, B. and Badger, A. M.: Drought less predictable under declining future snowpack, Nat. Clim. Change, 10, 452–458, https://doi.org/10.1038/s41558-020-0754-8, 2020.
Livneh, B., Deems, J. S., Buma, B., Barsugli, J. J., Schneider, D., Molotch,
N. P., Wolter, K., and Wessman, C. A.: Catchment response to bark beetle
outbreak and dust-on-snow in the Colorado Rocky Mountains, J. Hydrol., 523,
196–210, https://doi.org/10.1016/j.jhydrol.2015.01.039, 2015.
Lundquist, J. D., Dickerson-Lange, S. E., Lutz, J. A., and Cristea, N. C.:
Lower forest density enhances snow retention in regions with warmer winters:
A global framework developed from plot-scale observations and modeling, Water Resour. Res., 49, 6356–6370, https://doi.org/10.1002/wrcr.20504, 2013.
McVicar, T. R., Roderick, M. L., Donohue, R. J., Li, L. T., Van Niel, T. G.,
Thomas, A., Grieser, J., Jhajharia, D., Himri, Y., Mahowald, N. M., Mescherskaya, A. V., Kruger, A. C., Rehman, S., and Dinpashoh, Y.: Global
review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation, J. Hydrol., 416–417, 182–205,
https://doi.org/10.1016/j.jhydrol.2011.10.024, 2012.
Meddens, A. J. H., Hicke, J. A., and Ferguson, C. A.: Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States, Ecol. Appl., 22, 1876–1891, https://doi.org/10.1890/11-1785.1, 2012.
Mikkelson, K. M., Maxwell, R. M., Ferguson, I., Stednick, J. D., McCray, J.
E., and Sharp, J. O.: Mountain pine beetle infestation impacts: modeling water and energy budgets at the hill-slope scale, Ecohydrology, 6, 64–72,
https://doi.org/10.1002/eco.278, 2013.
Mitchell, K. E., Lohmann, D., Houser, P. R., Wood, E. F., Schaake, J. C.,
Robock, A., Cosgrove, B. A., Sheffield, J., Duan, Q., Luo, L., Higgins, R. W., Pinker, R. T., Tarpley, J. D., Lettenmaier, D. P., Marshall, C. H., Entin, J. K., Pan, M., Shi, W., Koren, V., Meng, J., Ramsay, B. H., and
Bailey, A. A.: The multi-institution North American Land Data Assimilation
System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system, J. Geophys. Res.-Atmos., 109, D07S90, https://doi.org/10.1029/2003JD003823, 2004.
Molotch, N. P., Blanken, P. D., Williams, M. W., Turnipseed, A. A., Monson,
R. K., and Margulis, S. A.: Estimating sublimation of intercepted and sub-canopy snow using eddy covariance systems, Hydrol. Process., 21,
1567–1575, https://doi.org/10.1002/hyp.6719, 2007.
Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 19,
205–234, 1965.
Montesi, J., Elder, K., Schmidt, R. A., and Davis, R. E.: Sublimation of
Intercepted Snow within a Subalpine Forest Canopy at Two Elevations, J.
Hydrometeorol., 5, 763–773, https://doi.org/10.1175/1525-7541(2004)005<0763:SOISWA>2.0.CO;2, 2004.
Moore, R. D. and Wondzell, S. M.: Physical Hydrology And The Effects Of Forest Harvesting In The Pacific Northwest: A Review, J. Am. Water. Resour. Assoc., 41, 763–784, 2005.
Morillas, L., Pangle, R. E., Maurer, G. E., Pockman, W. T., McDowell, N.,
Huang, C.-W., Krofcheck, D. J., Fox, A. M., Sinsabaugh, R. L., Rahn, T. A.,
and Litvak, M. E.: Tree Mortality Decreases Water Availability and Ecosystem
Resilience to Drought in Piñon-Juniper Woodlands in the Southwestern U.S., J. Geophys. Res.-Biogeo., 122, 3343–3361,
https://doi.org/10.1002/2017JG004095, 2017.
Nagler, P. L., Nguyen, U., Bateman, H. L., Jarchow, C. J., Glenn, E. P., Waugh, W. J., and van Riper, C.: Northern tamarisk beetle (Diorhabda carinulata) and tamarisk (Tamarix spp.) interactions in the Colorado River basin: Northern tamarisk beetle and tamarisk interactions, Restor. Ecol., 26, 348–359, https://doi.org/10.1111/rec.12575, 2018.
Paine, T. D., Raffa, K. F., and Harrington, T. C.: Interactions Among Scolytid Bark Beetles, Their Associated Fungi, and Live Host Conifers, Annu.
Rev. Entomol., 42, 179–206, https://doi.org/10.1146/annurev.ento.42.1.179, 1997.
Parton, W. J.: The CENTURY model, in: Evaluation of Soil Organic Matter
Models, Springer, Berlin, Heidelberg, 283–291, 1996.
Penn, C. A., Bearup, L. A., Maxwell, R. M., and Clow, D. W.: Numerical experiments to explain multiscale hydrological responses to mountain pine beetle tree mortality in a headwater watershed, Water Resour. Res., 52,
3143–3161, https://doi.org/10.1002/2015WR018300, 2016.
Perry, T. D. and Jones, J. A.: Summer streamflow deficits from regenerating
Douglas-fir forest in the Pacific Northwest, USA: Summer streamflow deficits
from regenerating Douglas-fir forest, Ecohydrology, 10, e1790, https://doi.org/10.1002/eco.1790, 2017.
Pomeroy, J., Fang, X., and Ellis, C.: Sensitivity of snowmelt hydrology in
Marmot Creek, Alberta, to forest cover disturbance: Sensitivity Of Snowmelt Hydrology To Forest Disturbance, Hydrol. Process., 26, 1891–1904,
https://doi.org/10.1002/hyp.9248, 2012.
Potts, D. F.: Hydrologic Impacts of a Large-Scale Mountain Pine Beetle
(dendroctonus Ponderosae Hopkins) Epidemic1, J. Am. Water Resour. Assoc., 20, 373–377, https://doi.org/10.1111/j.1752-1688.1984.tb04719.x, 1984.
Ren, J., Adam, J. C., Hicke, J. A., Hanan, E. J., Tague, C. L., Liu, M., Kolden, C. A., and Abatzoglou, J. T.: Dataset for how does water yield respond to mountain pine beetle infestation in a semiarid forest, OSF [data set], https://doi.org/10.17605/OSF.IO/NE4QU, 2021a.
Ren, J., Adam, J. C., Hicke, J. A., Hanan, E. J., Tague, C. L., Liu, M., Kolden, C. A., and Abatzoglou, J. T.: Coupled beetle effect model and RHESSys model, Zenodo [code], https://doi.org/10.5281/zenodo.5156688, 2021b.
Robles, M. D., Marshall, R. M., O'Donnell, F., Smith, E. B., Haney, J. A., and Gori, D. F.: Effects of Climate Variability and Accelerated Forest Thinning on Watershed-Scale Runoff in Southwestern USA Ponderosa Pine
Forests, PLOS One, 9, e111092, https://doi.org/10.1371/journal.pone.0111092, 2014.
Ryan, M. G.: Effects of Climate Change on Plant Respiration, Ecol. Appl., 1,
157–167, https://doi.org/10.2307/1941808, 1991.
Searcy, J. K.: Flow-duration curves, US Government Printing Office, Washington, DC, https://doi.org/10.3133/wsp1542A, 1959.
Sexstone, G. A., Clow, D. W., Fassnacht, S. R., Liston, G. E., Hiemstra, C.
A., Knowles, J. F., and Penn, C. A.: Snow Sublimation in Mountain Environments and Its Sensitivity to Forest Disturbance and Climate Warming,
Water Resour. Res., 54, 1191–1211, https://doi.org/10.1002/2017WR021172, 2018.
Skinner, K. D.: Post-fire debris-flow hazard assessment of the area burned by the 2013 Beaver Creek Fire near Hailey, central Idaho, US Geological Survey, Reston, VA, 2013.
Slinski, K. M., Hogue, T. S., Porter, A. T., and McCray, J. E.: Recent bark
beetle outbreaks have little impact on streamflow in the Western United States, Environ. Res. Lett., 11, 074010, https://doi.org/10.1088/1748-9326/11/7/074010, 2016.
Smith, R. O.: Geohydrologic evaluation of streamflow records in the Big Wood
River basin, Idaho, US Government Printing Office, Washington, DC, 1960.
Snyder, K. A., Scott, R. L., and McGwire, K.: Multiple year effects of a
biological control agent (Diorhabda carinulata) on Tamarix (saltcedar) ecosystem exchanges of carbon dioxide and water, Agr. Forest Meteorol., 164,
161–169, https://doi.org/10.1016/j.agrformet.2012.03.004, 2012.
Son, K. and Tague, C.: Hydrologic responses to climate warming for a snow-dominated watershed and a transient snow watershed in the California
Sierra, Ecohydrology, 12, e2053, https://doi.org/10.1002/eco.2053, 2019.
Sun, N., Wigmosta, M., Zhou, T., Lundquist, J., Dickerson-Lange, S., and Cristea, N.: Evaluating the functionality and streamflow impacts of explicitly modelling forest–snow interactions and canopy gaps in a distributed hydrologic model, Hydrol. Process., 32, 2128–2140,
https://doi.org/10.1002/hyp.13150, 2018.
Tague, C. L. and Band, L. E.: RHESSys: Regional Hydro-Ecologic Simulation
System – An Object-Oriented Approach to Spatially Distributed Modeling of
Carbon, Water, and Nutrient Cycling, Earth Interact., 8, 1–42,
https://doi.org/10.1175/1087-3562(2004)8<1:RRHSSO>2.0.CO;2, 2004.
Tague, C. L., Moritz, M., and Hanan, E.: The changing water cycle: The eco-hydrologic impacts of forest density reduction in Mediterranean (seasonally dry) regions, Wiley Interdisciplin. Rev. Water, 6, e1350, https://doi.org/10.1002/wat2.1350, 2019.
Tsamir, M., Gottlieb, S., Preisler, Y., Rotenberg, E., Tatarinov, F., Yakir,
D., Tague, C., and Klein, T.: Stand density effects on carbon and water fluxes in a semi-arid forest, from leaf to stand-scale, Forest Ecol. Manage.,
453, 117573, https://doi.org/10.1016/j.foreco.2019.117573, 2019.
White, J. D. and Running, S. W.: Testing scale dependent assumptions in
regional ecosystem simulations, J. Veg. Sci., 5, 687–702, https://doi.org/10.2307/3235883, 1994.
White, M. A., Thornton, P. E., Running, S. W., and Nemani, R. R.: Parameterization and Sensitivity Analysis of the BIOME–BGC Terrestrial
Ecosystem Model: Net Primary Production Controls, Earth Interact., 4, 1–85,
https://doi.org/10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2, 2000.
Wine, M. L., Cadol, D., and Makhnin, O.: In ecoregions across western USA
streamflow increases during post-wildfire recovery, Environ. Res. Lett., 13,
014010, https://doi.org/10.1088/1748-9326/aa9c5a, 2018.
Winkler, R., Boon, S., Zimonick, B., and Spittlehouse, D.: Snow accumulation
and ablation response to changes in forest structure and snow surface albedo
after attack by mountain pine beetle, Hydrol. Process., 28, 197–209,
https://doi.org/10.1002/hyp.9574, 2014.
Short summary
Mountain pine beetle outbreaks have caused widespread tree mortality. While some research shows that water yield increases after trees are killed, many others document no change or a decrease. The climatic and environmental mechanisms driving hydrologic response to tree mortality are not well understood. We demonstrated that the direction of hydrologic response is a function of multiple factors, so previous studies do not necessarily conflict with each other; they represent different conditions.
Mountain pine beetle outbreaks have caused widespread tree mortality. While some research shows...