Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-4681-2021
https://doi.org/10.5194/hess-25-4681-2021
Research article
 | 
31 Aug 2021
Research article |  | 31 Aug 2021

How does water yield respond to mountain pine beetle infestation in a semiarid forest?

Jianning Ren, Jennifer C. Adam, Jeffrey A. Hicke, Erin J. Hanan, Christina L. Tague, Mingliang Liu, Crystal A. Kolden, and John T. Abatzoglou

Related authors

Dynamic precipitation phase partitioning improves modeled simulations of snow across the Northwest US
Bhupinderjeet Singh, Mingliang Liu, John Abatzoglou, Jennifer Adam, and Kirti Rajagopalan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2284,https://doi.org/10.5194/egusphere-2024-2284, 2024
Short summary
State of Wildfires 2023–2024
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos
Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024,https://doi.org/10.5194/essd-16-3601-2024, 2024
Short summary
Physical, social, and biological attributes for improved understanding and prediction of wildfires: FPA FOD-Attributes dataset
Yavar Pourmohamad, John T. Abatzoglou, Erin J. Belval, Erica Fleishman, Karen Short, Matthew C. Reeves, Nicholas Nauslar, Philip E. Higuera, Eric Henderson, Sawyer Ball, Amir AghaKouchak, Jeffrey P. Prestemon, Julia Olszewski, and Mojtaba Sadegh
Earth Syst. Sci. Data, 16, 3045–3060, https://doi.org/10.5194/essd-16-3045-2024,https://doi.org/10.5194/essd-16-3045-2024, 2024
Short summary
SnowClim v1.0: high-resolution snow model and data for the western United States
Abby C. Lute, John Abatzoglou, and Timothy Link
Geosci. Model Dev., 15, 5045–5071, https://doi.org/10.5194/gmd-15-5045-2022,https://doi.org/10.5194/gmd-15-5045-2022, 2022
Short summary
Implications of water management representations for watershed hydrologic modeling in the Yakima River basin
Jiali Qiu, Qichun Yang, Xuesong Zhang, Maoyi Huang, Jennifer C. Adam, and Keyvan Malek
Hydrol. Earth Syst. Sci., 23, 35–49, https://doi.org/10.5194/hess-23-35-2019,https://doi.org/10.5194/hess-23-35-2019, 2019
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Modelling approaches
Regional patterns and drivers of modelled water flows along environmental, functional, and stand structure gradients in Spanish forests
Jesús Sánchez-Dávila, Miquel De Cáceres, Jordi Vayreda, and Javier Retana
Hydrol. Earth Syst. Sci., 28, 3037–3050, https://doi.org/10.5194/hess-28-3037-2024,https://doi.org/10.5194/hess-28-3037-2024, 2024
Short summary
Machine learning and global vegetation: random forests for downscaling and gap filling
Barry van Jaarsveld, Sandra M. Hauswirth, and Niko Wanders
Hydrol. Earth Syst. Sci., 28, 2357–2374, https://doi.org/10.5194/hess-28-2357-2024,https://doi.org/10.5194/hess-28-2357-2024, 2024
Short summary
Unraveling phenological and stomatal responses to flash drought and implications for water and carbon budgets
Nicholas K. Corak, Jason A. Otkin, Trent W. Ford, and Lauren E. L. Lowman
Hydrol. Earth Syst. Sci., 28, 1827–1851, https://doi.org/10.5194/hess-28-1827-2024,https://doi.org/10.5194/hess-28-1827-2024, 2024
Short summary
Bias-blind and bias-aware assimilation of leaf area index into the Noah-MP land surface model over Europe
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023,https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Technical assessment combined with extended cost-benefit analysis for groundwater ecosystem services restoration – An application for Grand Bahama
Anne Imig, Francesca Perosa, Carolina Iwane Hotta, Sophia Klausner, Kristen Welsh, and Arno Rein
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-236,https://doi.org/10.5194/hess-2023-236, 2023
Revised manuscript accepted for HESS
Short summary

Cited articles

Abatzoglou, J. T.: Development of gridded surface meteorological data for ecological applications and modelling, Int. J. Climatol., 33, 121–131, https://doi.org/10.1002/joc.3413, 2013. 
Abatzoglou, J. T. and Kolden, C. A.: Relationships between climate and macroscale area burned in the western United States, Int. J. Wildland Fire, 22, 1003, https://doi.org/10.1071/WF13019, 2013. 
Ackerly, D. D.: Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral, Am. Nat., 163, 654–671, https://doi.org/10.1086/383062, 2004. 
Adams, H. D., Luce, C. H., Breshears, D. D., Allen, C. D., Weiler, M., Hale, V. C., Smith, A. M. S., and Huxman, T. E.: Ecohydrological consequences of drought- and infestation-triggered tree die-off: insights and hypotheses, Ecohydrology, 5, 145–159, https://doi.org/10.1002/eco.233, 2012. 
Anderegg, W. R. L., Kane, J. M., and Anderegg, L. D. L.: Consequences of widespread tree mortality triggered by drought and temperature stress, Nat. Clim. Change, 3, 30–36, https://doi.org/10.1038/nclimate1635, 2013. 
Download
Short summary
Mountain pine beetle outbreaks have caused widespread tree mortality. While some research shows that water yield increases after trees are killed, many others document no change or a decrease. The climatic and environmental mechanisms driving hydrologic response to tree mortality are not well understood. We demonstrated that the direction of hydrologic response is a function of multiple factors, so previous studies do not necessarily conflict with each other; they represent different conditions.