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Figure S1. The annual streamflow and precipitation for Trail Creek. The red line is the 15th 9 
quantile of flow duration curves. Years with streamflow below the red line is water deficit years 10 
(dry years).  11 
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Figure S2. Relationship among long-term aridity, vegetation mortality level and Differences in 14 
water yield for 2-12 years after beetle outbreak (except for 2000). 15 
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 17 

1 Description of soil hydrologic model for RHESSys 18 

The basic soil hydrologic model for RHESSys is described in detail in Tague and Band (2004) 19 

and updates described in other papers. We will provide a brief synopsis below. 20 

In RHESSys, vertical and lateral soil moisture fluxes are modeled at the patch scale (i.e., the 21 

smallest grid cell), and the connectivity between patches is organized at the subbasin scale 22 

(meaning there is a closed water budget for each subbasin in the larger watershed). RHESSys 23 

uses a 4-layer model for vertical soil moisture processes, including a surface detention store, a 24 

root accessible store, an unsaturated store below rooting depths, and a saturated store. The 25 

vertical processes also include snowpack and litter moisture stores. All vegetation layers and a 26 

litter layer can also store water through interception.  27 

In RHESSys, rain throughfall from multiple canopy layers and a litter layer provide potential 28 

infiltration. If precipitation is snow, snow throughfall updates a snowpack store. A simplified 29 

energy budget model is used to compute snowmelt. Surface detention storage receives water 30 

through net throughfall from canopy layers and snowmelt at a daily time step. Then water 31 

infiltrates into the soil following the Phillip (1957) infiltration equation. Within the daily time 32 

step, the ponded water that is not infiltrated is added to detention storage, and any water that is 33 

above detention storage capacity generates overland flow.  34 

Infiltration updates one of three possible stores: a saturated store in cases where water table is at 35 

the surface, a rooting zone storage, or an unsaturated store for unvegetated patches. A portion of 36 

infiltrated water is assumed to bypass the rooting zone and unsaturated store via macropores. 37 

This bypass flow directly updates a hillslope scale deeper groundwater store. Vertical drainage 38 

occurs from the unsaturated store or rooting zone store based on hydraulic conductivity.  39 
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Capillary rise can move water from saturated zone to rooting zone or unsaturated store. The 40 

potential capillary rise is based on the equation from Eagleson (1978).  Capillary rise is used to 41 

fill unsaturated zone to field capacity. To consider the sub-daily plant responses, 50% of 42 

capillary rise is allocated to the unsaturated zone at the beginning of the day. The rest of potential 43 

capillary rise is used to supply plant transpiration demands at the end of that day. Evaporation is 44 

computed from surface detention, surface soil and interception stores and transpiration from 45 

rooting zone or, in some cases saturated stores, using a Penman-Monteith approach.  46 

The saturated store is modelled as a saturation deficit. Lateral fluxes occur via subsurface flow 47 

between patches or via a deeper hillslope scale groundwater flow model.  Subsurface flow 48 

between patches follows topography and varies with saturation deficit and transmissivity. 49 

Transmissivity is computed as follows.  50 

A vertical hydraulic conductivity profile is used to compute both vertical and lateral soil 51 

moisture fluxes. The saturated hydraulic conductivity, ����(�) is calculated as  52 

                                                         ����(�) =  �����
 ���(

��

�
)                                                 (1) 53 

�����
: hydraulic conductivity at the surface 54 

m: the decay rate of conductivity with depth  55 

z: depth 56 

Due to uncertainty in measured conductivity profiles and preferential flow, we need to calibrate 57 

m and �����
 against observed streamflow values. Soil porosity - ∅(�) also changes with depth 58 

using the following equation:  59 

                                                         ∅(�) =  ∅� ���
��

�                                                              (2) 60 
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∅�: surface porosity which is a soil specific parameter 61 

p: decay of porosity with depth  62 

At a given profile section, the saturated soil moisture storage is computed by integrating porosity 63 

over the corresponding depth.  64 

The drainage from the unsaturated zone to the saturated zone is controlled by two factors: field 65 

capacity of the unsaturated zone, and the vertical unsaturated hydraulic conductivity at the 66 

boundary separating the two layers. The relative saturation at field capacity is integrated over the 67 

porosity profile (from the surface to water table depth) to calculate the unsaturated zone soil 68 

moisture depth at field capacity. For this paper, the Clapp and Hornberger (1978) pedo-transfer 69 

model was used to determine the relative saturation at field capacity. Deeper groundwater flow is 70 

modelled as a simple linear aquifer. 71 

2 Model parameterization 72 

2.1 Model initialization 73 

We initialized soil carbon and nitrogen pools using a traditional spin up to steady state approach 74 

(no changes in decadal average soil carbon and nitrogen stocks). Then we applied a target driven 75 

method (Hanan et al. 2018) to initialize vegetation carbon and nitrogen stores. This method 76 

allows vegetation to grow to target values based on remote sensing data, which enables us to 77 

initialize mixed-age, disturbance-prone landscapes, while still providing mechanistic stability 78 

and accounting for local resource limitation (e.g. local climate, nutrients, and groundwater 79 

availability) (Hanan et al. 2018). For Trail Creek, we set our targets using LAI, which we 80 

calculated using Landsat-5 TM reflectance data with a resolution of 30 meters. We chose the 81 

clearest available growing-season scene closest to the streamflow calibration start date of 10 82 



6 
 

November 2010; the selected scene (Path 40, Row 30) was acquired on 02 August 2010. We 83 

calculated the Normalized Difference Vegetation Index (NDVI) from TM images using Eq. (3). 84 

                                              ���� =  
����� ��

����� ��
                                     (3) 85 

In this equation, ���� is the reflectance in the near-infrared part of electromagnetic spectrum and 86 

�� is the reflectance in the red part (Hanan et al. 2018). The NDVI is used to estimate LAI by a 87 

generalized NDVI-LAI model developed by Baret et al. (1989) as following Eq. (4).  88 

��� =  −
�

�
 × ln (

����������

��������������
)                                   (4) 89 

Here, k represents the extinction of solar radiation through a canopy. ����� is the maximum 90 

���� of the region, and �������� is the background NDVI (i.e., pixels without vegetation) for 91 

each vegetation region. We get k value from  Smith et al. (1991) for mixed pine and from White 92 

et al. (2000) for other vegetation types (Hanan et al. 2018). The other parameters are calculated 93 

for each vegetation in each image (Table S1) 94 

Table S1. Normalized difference vegetation index – leaf area index (NDVI – LAI) model 95 
parameters for different vegetation types in Trail Creek. 96 
k is the extinction of solar radiation through a canopy, ����� is maximum NDVI observed in 97 
different vegetation types, and �������� is the background NDVI (not considering vegetation) 98 
for different vegetation types.  99 
 100 

Vegetation k ����� �������� 

Pine 0.42 0.66 0.01 

Deciduous 0.54 0.67 0.17 

Grass 0.48 0.73 0.01 

Shrub 0.55 0.71 0.06 

 101 
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 102 

2.2 Model calibration and evaluation 103 

We calibrated the coupled model against observed streamflow, which is from USGS gauge no. 104 

13137500. Six subsurface soil parameters were calibrated: saturated hydraulic conductivity 105 

(Ksat), the decay of Ksat with depth (m), pore size index (b), air-entry pressure (φae), bypass flow 106 

to deeper groundwater storage (gw1), and deep groundwater drainage rates to stream (gw2). To 107 

account for the spatial variability of precipitation within each gridMET 4-km grid cell, we also 108 

calibrated a parameter that is used for interpolating grid-scale precipitation along elevation 109 

gradients. We selected the best parameter set by comparing observed and modeled streamflow 110 

using a multi-objective function, which includes daily Nash-Sutcliffe efficiency metric (NSE; 111 

Nash and Sutcliffe 1970), Monthly NSE, percent error (PerErr) in annual flow estimates, and 112 

Pearson's Correlation Coefficient (r values larger than 0.5 are considered to be a good fit). NSE 113 

is used to compare the model fit to peak flows and it ranges from -∞ to 1, where 1 means perfect 114 

fit and below zero means that the mean of the observation is more accurate than the simulated 115 

value. PerErr is used to compare differences between modeled and observed streamflow 116 

volumes.  117 

In addition to evaluating calibrations on streamflow, we also compared basin-scale simulated ET 118 

with the Moderate Resolution Imaging Spectroradiometer (MODIS) based global data product 119 

(Zhao et al.  2006; Mu et al. 2007; Zhang et al. 2009; Mu et al.  2011), and compared simulated 120 

snowpack with Snow Telemetry data (SNOTEL, NRCS). These additional assessments are used 121 

to determine whether good streamflow fits are for the right reasons (i.e., the important processes 122 

are captured by the model). Seven years (2011 – 2017) of streamflow data, 15 years (1991-2015) 123 

of SNOTEL data (Lost-Wood Divide station), and 13 years (2003 – 2015) of MODIS ET data 124 

are used for this calibration and evaluation process (without special notification, we are using 125 
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“water year”). As to the streamflow dataset, the first five water years are used for calibration and 126 

the last two years are used for evaluation.   127 

3 Model parameterization results 128 

3.1 Model initialization result 129 

By using the target driving method, RHESSys successfully captured LAI heterogeneity across 130 

the landscape during initialization process. As shown in Figure S3 a and b, the initialized LAI 131 

matches well with remote sensing product, though some patches may slightly overshot because 132 

of the way RHESSys allocates carbon to LAI seasonally; while some other patches, mostly at the 133 

top of mountains and being covered by rock or snow, are initialized with near-zero LAI but 134 

remote sensing products shows some higher values. The median of simulated LAI is 3.6% higher 135 

than median of remotes sensing product. Overall, the simulated LAI for model initialization is in 136 

a reasonable range.   137 
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 138 

Figure S3. Vegetation initialization results. We calculated LAI from a remote sensing image and 139 
use it as the target to initialize vegetation carbon and nitrogen for trail creek. (a) is LAI 140 
initialized from RHESSys model using the target-driven method (Hanan et al. 2018). (b) is the 141 
target LAI calculated from remote sensing data (LANDSAT 5). (c) is a comparison of the density 142 
distributions of LAI for the remote sensing and model initialized, dashed line is the mean of two 143 
LAI distributions. (d) is the scatter plot of remote sensing LAI and initialized LAI 144 

 145 

3.2 Model calibration and evaluation results  146 

In general, the model performs satisfactorily in simulating streamflow, with slightly better 147 

performance during the calibration period than during the evaluation period (Fig. S4  and Table 148 

S2). The model can capture the seasonality of streamflow, i.e., matching peak, recession, and 149 

low flow periods. However, in some water years (e.g., 2015-2016), the timing of simulated peak 150 

flows show large bias since the model generates earlier streamflow (Fig. S4  and Table S2). This 151 
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is likely because RHESSys uses air temperatures to partition precipitation into rain and snow and 152 

when it is near freezing, the partition errors might be large (Lundquist et al. 2008). This 153 

limitation can cause poor simulation of streamflow and ET in those years, but the influence and 154 

bias for modeling long-term ecohydrological fluxes are likely small (Bart et al. 2016). To further 155 

test the RHESSys performance on snow accumulation, we compare the simulated snow water 156 

equivalent (SWE) with SNOTEL data for the water years 1990-2015. The daily NSE is 0.93 and 157 

PerError is -14%, which is in acceptable range due to this being a patch-level comparison and 158 

not a basin-scale aggregation (which generally leads to higher model performance estimation). 159 

We also compare simulated ET with MODIS ET for water years 2002-2017 and they show 160 

similarities in annual mean and standard deviations, i.e. 725±62 mm/year and 702± mm/year 161 

from the simulation and MODIS, respectively. In summary, model performance on streamflow is 162 

roughly consistent for calibration and evaluation periods; the model also does a reasonably good 163 

job in estimating long-term average of SWE and ET. 164 
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 165 

Figure S4. Model calibration and evaluation in streamflow. (a) is result during calibration 166 
period (i.e., 2011 to 2015), and (b) is results during evaluation period (i.e., 2016-2017). 167 

 168 
 169 
 170 
 171 
 172 
 173 
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Table S2. Calibration and evaluation results for Trail Creek. NSE is Nash Sutcliff Efficiency and 174 
PerErr is total percent error, r is Pearson’s correlation Coefficient. NSE is used for comparison 175 
of model fit of peak flows, PerErr is used to compare the differences in streamflow volumes, and 176 
r is used as a criterion to select better fit, which we consider r larger than 0.5 is a good fit. 177 

 178 

 Daily NSE Monthly NSE Percent error (%) 

Pearson’s 
correlation 
coefficient 
(r) 

Calibration 

period (2011-

2015) 

0.76 0.94 2.66 0.76 

Evaluation 

period 

(2016-2017) 

0.71 0.73 8.62 0.74 

 179 

4 Spatial result  180 

4.1 Live LAI and Total LAI 181 

Figure S5 shows the relationship among long-term aridity index (x-axis), vegetation mortality 182 

level (y-axis, for each sub-basin vegetation mortality is calculated as evergreen mortality 183 

multiplied by evergreen coverage of that sub-basin) and changes in LAI. Live LAI decreased 184 

after beetle outbreak and decreases were larger with increasing vegetation mortality (Fig. S5 185 

a&b). Similarly, Total LAI decreased after beetle outbreak (and with increasing mortality) but 186 

the magnitude of LAI decreases were smaller compare to Live LAI (Fig. S5 c&d). In the water-187 

limited region, Total LAI slightly increased after outbreak. The positive change in Total LAI 188 

occurred because, during the years of 1994 and 1995, some portion of dead foliage was still 189 

falling to the ground, while the living vegetation and understory canopy of some sub-basins grew 190 

faster than before due to less competition for resources, such as water, nitrogen, and solar 191 

radiation, so that Total LAI was higher than without beetle outbreak. From 1994 to 1995, some 192 
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portion of dead foliage continued to fall to the ground, while the residual vegetation and 193 

understory continued to grow at higher rates (again, due to less competition for resources, such 194 

as water, nitrogen, and radiation). If increases in growth outstripped the rate of litterfall for dead 195 

foliage, there would be smaller Total LAI differences in 1994 as compared to 1995, and vice 196 

versa. The Live LAI response after outbreak affects plant transpiration, and Total LAI affects 197 

evaporation.  198 

 199 

Figure S5. Relationship among long-term aridity, vegetation mortality, and differences in Leaf 200 
Area Index.  Differences are calculated as the normalized differences (%) of LAI between each 201 
evergreen mortality scenario and the control run for no beetle outbreak. Vegetation mortality for 202 
each sub-basin is calculated as the percentage of evergreen patches multiplied by the mortality 203 
level of evergreen caused by beetles. Long-term aridity is defined as temporally averaged (38 204 
years) potential evapotranspiration relative to precipitation. (a)  and (c) are for a dry year 205 
(1994, 5 years after beetle outbreak),(b) and (d) are for a wet year (1995, 6 years after beetle 206 
outbreak). (a) and (b) is Live LAI while (c) and (d) is Total LAI (i.e., LAI including dead foliage 207 
and live leaf on the canopy).  208 
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 209 
 210 

4.2 Spatial result: year-to-year soil storage change 211 

The effects of beetle outbreak on year-to-year soil storage change show a conversed spatial 212 

pattern during the dry year comparing with that during the wet year (Fig. S6). During a dry year, 213 

the balanced area charges water in soil storage, while the water-limited area loses water from soil 214 

storage. This spatial pattern matches well with effects of ET, which indicates that ET might be 215 

the primary driver of the change in soil moisture during dry years (Fig. 9a & Fig. S6a). During 216 

the wet year, the pattern conversed from that during the dry year: the balanced area shows 217 

decreases in soil moisture, while the water-limited area shows increases (Fig. S6b). Obviously, 218 

this pattern is different from that of ET (Fig. 9b & Fig. S6b). The balanced area, under high 219 

precipitation condition (i.e., wet year), experiences less ET causing the soil saturated much 220 

earlier than control scenario therefore, more precipitation will generate runoff. On the other 221 

hand, the water-limited area, under high precipitation conditions, experiences less ET meaning 222 

more precipitation will be stayed in the soil.  223 
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 224 

Figure S6.Relationship among long-term aridity, vegetation mortality level and Differences in 225 
year-to-year soil storage change for a dry year (1994, a) and wet year (1995, b). 226 
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5. Basin-scale snow sublimation responses after beetle outbreak 227 

 228 

Figure S7. Basin-scale snow sublimation responses after beetle outbreak for different evergreen 229 
mortality levels. (a) changes (mortality scenario minus control scenario) in terms of percentage 230 
in canopy snow sublimation. (b) changes in snowpack sublimation. (c) Changes in total snow 231 
sublimation (canopy snow + ground snowpack). (d) the proportion of canopy snow sublimation 232 
in total sublimation.   233 

  234 
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