Articles | Volume 25, issue 7
https://doi.org/10.5194/hess-25-3875-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-3875-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of ENSO and tropical Atlantic climate variability on flood characteristics in the Amazon basin
Department of Geography and Environmental Science, University of
Reading, Reading, UK
Andrea Ficchí
Department of Geography and Environmental Science, University of
Reading, Reading, UK
Hannah L. Cloke
Department of Geography and Environmental Science, University of
Reading, Reading, UK
Department of Meteorology, University of Reading, Reading, UK
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Centre of Natural Hazards and Disaster Science, CNDS, Uppsala, Sweden
Juan Bazo
Red Cross Red Crescent Climate Centre, the Hague, 2521 CV, the
Netherlands
Universidad Tecnológica del Perú (UTP), Lima, Peru
Erin Coughlan de Perez
Universidad Tecnológica del Perú (UTP), Lima, Peru
International Research Institute for Climate and Society, Columbia
University, Palisades, NY 10964, USA
Elisabeth M. Stephens
Department of Geography and Environmental Science, University of
Reading, Reading, UK
Related authors
No articles found.
Joy Ommer, Milan Kalas, Jessica Neumann, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 25, 2929–2938, https://doi.org/10.5194/nhess-25-2929-2025, https://doi.org/10.5194/nhess-25-2929-2025, 2025
Short summary
Short summary
What do we regret about our disaster preparedness? This paper explores the regrets of 438 citizens who were affected by flooding in Germany in 2021. It shows that regret can primarily be associated with inaction (instead of actions), which contrasts with psychological studies from fields other than disaster science. The findings of this study suggest that the no-regret approach could be a suitable framework for moving towards longer-term disaster preparedness to reduce future regrets.
Gwyneth Matthews, Hannah L. Cloke, Sarah L. Dance, and Christel Prudhomme
EGUsphere, https://doi.org/10.5194/hess-2024-3989, https://doi.org/10.5194/hess-2024-3989, 2025
Short summary
Short summary
Forecasts provide information crucial for managing floods and for water resource planning, but they often have errors. “Post-processing” reduces these errors but is usually only applied at river gauges, leaving areas without gauges uncorrected. We developed a new method that uses spatial information contained within the forecast to spread information about the errors from gauged locations to ungauged areas. Our results show that the method successfully makes river forecasts more accurate.
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024, https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Short summary
What’s the worst that could happen? Recent floods are often claimed to be beyond our imagination. Imagination is the picturing of a situation in our mind and the emotions that we connect with this situation. But why is this important for disasters? This survey found that when we cannot imagine a devastating flood, we are not preparing in advance. Severe-weather forecasts and warnings need to advance in order to trigger our imagination of what might happen and enable us to start preparing.
Solomon H. Gebrechorkos, Julian Leyland, Simon J. Dadson, Sagy Cohen, Louise Slater, Michel Wortmann, Philip J. Ashworth, Georgina L. Bennett, Richard Boothroyd, Hannah Cloke, Pauline Delorme, Helen Griffith, Richard Hardy, Laurence Hawker, Stuart McLelland, Jeffrey Neal, Andrew Nicholas, Andrew J. Tatem, Ellie Vahidi, Yinxue Liu, Justin Sheffield, Daniel R. Parsons, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 28, 3099–3118, https://doi.org/10.5194/hess-28-3099-2024, https://doi.org/10.5194/hess-28-3099-2024, 2024
Short summary
Short summary
This study evaluated six high-resolution global precipitation datasets for hydrological modelling. MSWEP and ERA5 showed better performance, but spatial variability was high. The findings highlight the importance of careful dataset selection for river discharge modelling due to the lack of a universally superior dataset. Further improvements in global precipitation data products are needed.
Clare Lewis, Tim Smyth, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 24, 121–131, https://doi.org/10.5194/nhess-24-121-2024, https://doi.org/10.5194/nhess-24-121-2024, 2024
Short summary
Short summary
Meteotsunami are the result of atmospheric disturbances and can impact coastlines causing injury, loss of life, and damage to assets. This paper introduces a novel intensity index to allow for the quantification of these events at the shoreline. This has the potential to assist in the field of natural hazard assessment. It was trialled in the UK but designed for global applicability and to become a widely accepted standard in coastal planning, meteotsunami forecasting, and early warning systems.
Clare Lewis, Tim Smyth, David Williams, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 23, 2531–2546, https://doi.org/10.5194/nhess-23-2531-2023, https://doi.org/10.5194/nhess-23-2531-2023, 2023
Short summary
Short summary
Meteotsunami are globally occurring water waves initiated by atmospheric disturbances. Previous research has suggested that in the UK, meteotsunami are a rare phenomenon and tend to occur in the summer months. This article presents a revised and updated catalogue of 98 meteotsunami that occurred between 1750 and 2022. Results also demonstrate a larger percentage of winter events and a geographical pattern highlighting the
hotspotregions that experience these events.
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023, https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary
Short summary
Real-time river discharge forecasts and reforecasts from the Global Flood Awareness System (GloFAS) have been made publicly available, together with an evaluation of forecast skill at the global scale. Results show that GloFAS is skillful in over 93 % of catchments in the short (1–3 d) and medium range (5–15 d) and skillful in over 80 % of catchments in the extended lead time (16–30 d). Skill is summarised in a new layer on the GloFAS Web Map Viewer to aid decision-making.
Gwyneth Matthews, Christopher Barnard, Hannah Cloke, Sarah L. Dance, Toni Jurlina, Cinzia Mazzetti, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 2939–2968, https://doi.org/10.5194/hess-26-2939-2022, https://doi.org/10.5194/hess-26-2939-2022, 2022
Short summary
Short summary
The European Flood Awareness System creates flood forecasts for up to 15 d in the future for the whole of Europe which are made available to local authorities. These forecasts can be erroneous because the weather forecasts include errors or because the hydrological model used does not represent the flow in the rivers correctly. We found that, by using recent observations and a model trained with past observations and forecasts, the real-time forecast can be corrected, thus becoming more useful.
Chloe Brimicombe, Claudia Di Napoli, Rosalind Cornforth, Florian Pappenberger, Celia Petty, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-242, https://doi.org/10.5194/nhess-2021-242, 2021
Revised manuscript not accepted
Short summary
Short summary
Heatwaves are an increasing risk to African communities. This hazard can have a negative impact on peoples lives and in some cases results in their death. This study shows new information about heatwave characteristics through a list of heatwave events that have been reported for the African continent from 1980 until 2020. Case studies are useful helps to inform the development of early warning systems and forecasting, which is an urgent priority and needs significant improvement.
Colin Keating, Donghoon Lee, Juan Bazo, and Paul Block
Nat. Hazards Earth Syst. Sci., 21, 2215–2231, https://doi.org/10.5194/nhess-21-2215-2021, https://doi.org/10.5194/nhess-21-2215-2021, 2021
Short summary
Short summary
Disaster planning has historically underallocated resources for flood preparedness, but evidence supports reduced vulnerability via early actions. We evaluate the ability of multiple season-ahead streamflow prediction models to appropriately trigger early actions for the flood-prone Marañón River and Piura River in Peru. Our findings suggest that locally tailored statistical models may offer improved performance compared to operational physically based global models in low-data environments.
Sazzad Hossain, Hannah L. Cloke, Andrea Ficchì, Andrew G. Turner, and Elisabeth M. Stephens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-97, https://doi.org/10.5194/hess-2021-97, 2021
Manuscript not accepted for further review
Short summary
Short summary
Hydrometeorological drivers are investigated to study three different flood types: long duration, rapid rise and high water level of the Brahmaputra river basin in Bangladesh. Our results reveal that long duration floods have been driven by basin-wide rainfall whereas rapid rate of rise due to more localized rainfall. We find that recent record high water levels are not coincident with extreme river flows. Understanding these drivers is key for flood forecasting and early warning.
Cited articles
Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.: GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, 2013.
Alfieri, L., Zsoter, E., Harrigan, S., Hirpa, F. A., Lavaysse, C., Prudhomme, C., and Salamon, P.: Range-dependent thresholds for global flood early warning, J. Hydrol., 4, 100034, https://doi.org/10.1016/j.hydroa.2019.100034, 2019.
Alizadeh-Choobari, O.: Contrasting global teleconnection features of the
eastern Pacific and central Pacific El Niño events, Dynam. Atmos.
Oceans, 80, 139–154, https://doi.org/10.1016/j.dynatmoce.2017.10.004, 2017.
Barichivich, J., Gloor, E., Peylin, P., Brienen, R. J., Schöngart, J.,
Espinoza, J. C., and Pattnayak, K. C.: Recent intensification of Amazon
flooding extremes driven by strengthened Walker circulation, Sci. Adv., 4,
eaat8785, https://doi.org/10.1126/sciadv.aat8785, 2018.
Berghuijs, W. R., Harrigan, S., Molnar, P., Slater, L. J., and Kirchner, J.
W.: The Relative Importance of Different Flood-Generating Mechanisms Across
Europe, Water Resour. Res., 55, 4582–4593, https://doi.org/10.1029/2019WR024841, 2019.
Builes-Jaramillo, A., Marwan, N., Poveda, G., and Kurths, J.: Nonlinear
interactions between the Amazon River basin and the Tropical North Atlantic at interannual timescales, Clim. Dynam., 50, 2951–2969,
https://doi.org/10.1007/s00382-017-3785-8, 2018.
Burn, D. H.: Catchment similarity for regional flood frequency analysis using
seasonality measures, J. Hydrol., 202, 212–230, https://doi.org/10.1016/S0022-1694(97)00068-1, 1997.
Coomes, O. T., Lapointe, M., Templeton, M., and List, G.: Amazon river flow
regime and flood recessional agriculture: Flood stage reversals and risk of
annual crop loss, J. Hydrol., 539, 214–222, https://doi.org/10.1016/j.jhydrol.2016.05.027, 2016.
Coughlan de Perez, E., Stephens, E., Bischiniotis, K., van Aalst, M., van den Hurk, B., Mason, S., Hissan, H., and Pappenberger, F.: Should seasonal rainfall forecasts be used for flood preparedness?, Hydrol. Earth. Syst. Sci., 21, 4517–4524, https://doi.org/10.5194/hess-21-4517-2017, 2017.
Dettinger, M. D. and Diaz, H. F.: Global characteristics of stream flow
seasonality and variability, J. Hydrometeorol., 1, 289–310,
https://doi.org/10.1175/1525-7541(2000)001<0289:GCOSFS>2.0.CO;2, 2000.
Emerton, R., Cloke, H. L., Stephens, E. M., Zsoter, E., Woolnough, S. J., and Pappenberger, F.: Complex picture for likelihood of ENSO-driven flood hazard, Nat. Commun., 8, 14796, https://doi.org/10.1038/ncomms14796, 2017.
Enfield, D. B.: Relationships of inter-American rainfall to tropical Atlantic and Pacific SST variability, Geophys. Res. Lett., 23, 3305–3308,
https://doi.org/10.1029/96GL03231, 1996.
Enfield, D. B., Mestas-Nuñez, A. M., Mayer, D. A., and Cid-Serrano, L.:
How ubiquitous is the dipole relationship in tropical Atlantic sea surface
temperatures? J. Geophys. Res.-Oceans, 104, 7841–7848, https://doi.org/10.1029/1998JC900109, 1999.
Espinoza, J. C., Guyot, J. L., Ronchail, J., Cochonneau, G., Filizola, N.,
Fraizy, P., Labat, D., de Oliveira, E., Ordoñez, J. J., and Vauchel, P.:
Contrasting regional discharge evolutions in the Amazon basin (1974–2004),
J. Hydrol., 375, 297–311, https://doi.org/10.1016/j.jhydrol.2009.03.004, 2009.
Espinoza, J. C., Ronchail, J., Guyot, J. L., Junquas, C., Vauchel, P., Lavado, W., Drapeau, G., and Pombosa, R.: Climate variability and extreme
drought in the upper Solimões River (western Amazon Basin): Understanding the exceptional 2010 drought, Geophys. Res. Lett., 38, L13406, https://doi.org/10.1029/2011GL047862, 2011.
Espinoza, J. C., Ronchail, J., Frappart, F., Lavado, W., Santini, W., and
Guyot, J. L.: The major floods in the Amazonas River and tributaries (western Amazon basin) during the 1970–2012 period: A focus on the 2012 flood, J. Hydrometeorol., 14, 1000–1008, https://doi.org/10.1175/JHM-D-12-0100.1, 2013.
Espinoza, J. C., Marengo, J. A., Ronchail, J., Carpio, J. M., Flores, L. N.,
and Guyot, J. L.: The extreme 2014 flood in south-western Amazon basin: the
role of tropical-subtropical South Atlantic SST gradient, Environ. Res. Lett., 9, 124007, https://doi.org/10.1088/1748-9326/9/12/124007, 2014.
Espinoza, J. C., Ronchail, J., Marengo, J. A., and Segura, H.: Contrasting
North–South changes in Amazon wet-day and dry-day frequency and related
atmospheric features (1981–2017), Clim. Dynam., 52, 5413–5430,
https://doi.org/10.1007/s00382-018-4462-2, 2019.
Ficchì, A. and Stephens, L.: Climate variability alters flood timing
across Africa, Geophys. Res. Lett., 46, 8809–8819, https://doi.org/10.1029/2019GL081988, 2019.
Foley, J. A., Botta, A., Coe, M. T., and Costa, M. H.: El Niño–Southern
oscillation and the climate, ecosystems and rivers of Amazonia, Global
Biogeochem. Cy., 16, 1132–1144, https://doi.org/10.1029/2002GB001872, 2002.
Fu, R., Zhu, B., and Dickinson, R. E.: How do atmosphere and land surface
influence seasonal changes of convection in the tropical Amazon?, J. Climate, 12, 1306–1321, https://doi.org/10.1175/1520-0442(1999)012<1306:HDAALS>2.0.CO;2, 1999.
Fu, R., Dickinson, R. E., Chen, M., and Wang, H.: How do tropical sea surface temperatures influence the seasonal distribution of precipitation in the equatorial Amazon?, J. Climate, 14, 4003–4026,
https://doi.org/10.1175/1520-0442(2001)014<4003:HDTSST>2.0.CO;2, 2001.
García-Serrano, J., Cassou, C., Douville, H., Giannini, A., and Doblas-Reyes, F. J.: Revisiting the ENSO teleconnection to the tropical North Atlantic, J. Climate, 30, 6945–6957, https://doi.org/10.1175/JCLI-D-16-0641.1, 2017.
Gutierrez-Cori, O., Espinoza, J. C., Li, L. Z., Wongchuig, S., Arias, P. A.,
Ronchail, J., and Segura, H.: On the Hydroclimate-Vegetation Relationship in
the Southwestern Amazon During the 2000–2019 Period, Front. Water, 3, 648499, https://doi.org/10.3389/frwa.2021.648499, 2021.
Harrigan, S., Zsoter, E., Alfieri, L., Prudhomme, C., Salamon, P., Wetterhall, F., Barnard, C., Cloke, H., and Pappenberger, F.: GloFAS-ERA5 operational global river discharge reanalysis 1979–present, Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, 2020.
Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C.,
Abdalla, S., Alonso-Balmaseda, M., Balsamo, G., Bechtold, P., Berrisford,
P., Bidlot, J.-R., de Boisséson, E., Bonavita, M., Browne, P., Buizza,
R., Dahlgren, P., Dee, D., Dragani, R., Diamantakis, M., Flemming, J., Forbes, R., Geer, A. J., Haiden, T., Hólm, E., Haimberger, L., Hogan,
R., Horányi, A., Janiskova, M., Laloyaux, P., Lopez, P., Muñoz-Sabater, J., Peubey, C., Radu, R., Richardson, D., Thépaut,
J.-N., Vitart, F., Yang, X., Zsótér, E., and Zuo, H.: Operational
global reanalysis: progress, future directions and synergies with NWP, ERA
Report Series 27, ECMWF, Reading, UK, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, 10 M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M.,
Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut,
J.-N.: The ERA5 Global Reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hirpa, F. A., Salamon, P., Beck, H. E., Lorini, V., Alfieri, L., Zsoter, E.,
and Dadson, S. J.: Calibration of the Global Flood Awareness System (GloFAS)
using daily streamflow data, J. Hydrol., 566, 595–606,
https://doi.org/10.1016/j.jhydrol.2018.09.052, 2018.
Horner, I., Renard, B., Le Coz, J., Branger, F., McMillan, H. K., and
Pierrefeu, G.: Impact of stage measurement errors on streamflow uncertainty, Water Resour. Res., 54, 1952–1976, https://doi.org/10.1002/2017WR022039, 2018.
Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore,
J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H. M.: Extended
reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades,
validations, and intercomparisons, J. Climate, 30, 8179–8205,
https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.
Jimenez, J. C., Marengo, J. A., Alves, L. M., Sulca, J. C., Takahashi, K.,
Ferrett, S., and Collins, M.: The role of ENSO flavours and TNA on recent
droughts over Amazon forests and the Northeast Brazil region, Int. J.
Climatol., 41, 3761–3780, https://doi.org/10.1002/joc.6453, 2019.
Lavers, D. A., Ramos, M. H., Magnusson, L., Pechlivanidis, I., Klein, B.,
Prudhomme, C., Arnal, L., Crochemore, L., Van den Hurk, B., Weerts, A. H.,
Harrigan, S., Cloke, H. L., Richardson, D. S., and Pappenberger, F.: A
vision for hydrological prediction, Atmosphere, 11, 237,
https://doi.org/10.3390/atmos11030237, 2020.
Liebmann, B. and Marengo, J.: Interannual variability of the rainy season and rainfall in the Brazilian Amazon Basin, J. Climate, 14, 4308–4318, 2001.
Mardia, K. V.: Statistics of directional data, edited by: Birnbaum, E., Academic Press, New York, NY, 1972.
Marengo, J. A.: Interannual variability of surface climate in the Amazon basin, Int. J. Climatol., 12, 853–863, https://doi.org/10.1002/joc.3370120808, 1992.
Marengo, J. A. and Espinoza, J. C.: Extreme seasonal droughts and floods in
Amazonia: causes, trends and impacts, Int. J. Climatol., 36, 1033–1050,
https://doi.org/10.1002/joc.4420, 2016.
Marengo, J. A., Liebmann, B., Kousky, V. E., Filizola, N. P., and Wainer, I.
C.: Onset and end of the rainy season in the Brazilian Amazon Basin, J. Climate, 14, 833–852, 2001.
Marengo, J. A., Tomasella, J., Soares, W. R., Alves, L. M., and Nobre, C. A.: Extreme climatic events in the Amazon basin, Theor. Appl. Climatol., 107, 73–85, https://doi.org/10.1007/s00704-011-0465-1, 2012.
Marengo, J. A., Alves, L. M., Soares, W. R., Rodriguez, D. A., Camargo, H.,
Riveros, M. P., and Pabló, A. D.: Two contrasting severe seasonal extremes in tropical South America in 2012: flood in Amazonia and drought in
northeast Brazil, J. Climate, 26, 9137–9154, https://doi.org/10.1175/JCLI-D-12-00642.1, 2013.
Marengo, J. A., Souza Jr, C. M., Thonicke, K., Burton, C., Halladay, K., Betts, R. A., Alves, L. M., and Soares, W. R.: Changes in climate and land
use over the Amazon region: current and future variability and trends, Front. Earth Sci., 6, 228, https://doi.org/10.3389/feart.2018.00228, 2018.
Panisset, J. S., Libonati, R., Gouveia, C. M. P., Machado-Silva, F., França, D. A., França, J. R. A., and Peres, L. F.: Contrasting patterns of the extreme drought episodes of 2005, 2010 and 2015 in the Amazon Basin, Int. J. Climatol., 38, 1096–1104, https://doi.org/10.1002/joc.5224, 2018.
Richey, J. E., Nobre, C., and Deser, C.: Amazon River discharge and climate
variability: 1903 to 1985, Science, 246, 101–103, https://doi.org/10.1126/science.246.4926.101, 1989.
Ronchail, J. and Gallaire, R.: ENSO and rainfall along the Zongo valley
(Bolivia) from the Altiplano to the Amazon basin, Int. J. Climatol., 26, 1223–1236, https://doi.org/10.1002/joc.1296, 2006.
Ronchail, J., Cochonneau, G., Molinier, M., Guyot, J. L., De Miranda Chaves,
A. G., Guimarães, V., and De Oliveira, E.: Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic Oceans, Int. J. Climatol., 22, 1663–1686, https://doi.org/10.1002/joc.815, 2002.
Ronchail, J., Bourrel, L., Cochonneau, G., Vauchel, P., Phillips, L., Castro, A., Guyot, J. L., and De Oliveira, E.: Inundations in the Mamore basin (south-western Amazon – Bolivia) and sea-surface temperature in the Pacific and Atlantic Oceans, J. Hydrol., 302, 223–238,
https://doi.org/10.1016/j.jhydrol.2004.07.005, 2005a.
Ronchail, J., Labat, D., Callede, J., Cochonneau, G., Guyot, J. L., Filizola, N., and De Oliveira, E.: Discharge variability within the Amazon basin, Climate variability and Change Hydrological Impacts, IAHS Publ., 296, 21–29, 2005b.
Ronchail, J., Guyot, J. L., Villar, J. C. E., Fraizy, P., Cochonneau, G., and Ordenez, J.: Impact of the Amazon tributaries on major flood in Óbidos, in: Procceedings of the Fifth FRIEND World Conference held at Havana, Cuba, November 2006), IAHS Publ., 308, 220–225, 2006.
Ronchail, J., Espinoza, J. C., Drapeau, G., Sabot, M., Cochonneau, G., and
Schor, T.: The flood recession period in Western Amazonia and its variability during the 1985–2015 period, J. Hydrol.: Reg. Stud., 15, 16–30,
https://doi.org/10.1016/j.ejrh.2017.11.008, 2017.
Satyamurty, P., da Costa, C. P. W., Manzi, A. O., and Candido, L. A.: A
quick look at the 2012 record flood in the Amazon Basin, Geophys. Res. Lett., 40, 1396–1401, https://doi.org/10.1002/grl.50245, 2013.
Schöngart, J. and Junk, W. J.: Forecasting the flood-pulse in Central
Amazonia by ENSO-indices, J. Hydrol., 335, 124–132, https://doi.org/10.1016/j.jhydrol.2006.11.005, 2007.
Shimizu, M. H., Ambrizzi, T., and Liebmann, B.: Extreme precipitation events
and their relationship with ENSO and MJO phases over northern South America,
Int. J. Climatol., 37, 2977–2989, https://doi.org/10.1002/joc.4893, 2017.
Silvério, D. V., Brando, P. M., Macedo, M. N., Beck, P. S., Bustamante, M., and Coe, M. T.: Agricultural expansion dominates climate changes in
southeastern Amazonia: the overlooked non-GHG forcing, Environ. Res. Lett., 10, 104015, https://doi.org/10.1088/1748-9326/10/10/104015, 2015.
Stephens, E., Day, J. J., Pappenberger, F., and Cloke, H.: Precipitation and
floodiness, Geophys. Res. Lett., 42, 10316–10323, https://doi.org/10.1002/2015GL066779, 2015.
Sulca, J., Takahashi, K., Espinoza, J. C., Vuille, M., and Lavado‐Casimiro, W.: Impacts of different ENSO flavors and tropical Pacific convection variability (ITCZ, SPCZ) on austral summer rainfall in South America, with a focus on Peru, Int. J. Climatol., 38, 420–435, https://doi.org/10.1002/joc.5185, 2018.
Takahashi, K., Montecinos, A., Goubanova, K., and Dewitte, B.: ENSO regimes: Reinterpreting the canonical and Modoki El Niño, Geophys. Res. Lett., 38, 1–5, https://doi.org/10.1029/2011GL047364, 2011.
Tomasella, J., Borma, L. S., Marengo, J. A., Rodriguez, D. A., Cuartas, L.
A., A Nobre, C., and Prado, M. C.: The droughts of 1996–1997 and 2004–2005
in Amazonia: hydrological response in the river main-stem, Hydrol. Process., 25, 1228–1242, https://doi.org/10.1002/hyp.7889, 2011.
Towner, J., Cloke, H. L., Zsoter, E., Flamig, Z., Hoch, J. M., Bazo, J., Coughlan de Perez, E., and Stephens, E. M.: Assessing the performance of global hydrological models for capturing peak river flows in the Amazon basin, Hydrol. Earth Syst. Sci., 23, 3057–3080, https://doi.org/10.5194/hess-23-3057-2019, 2019.
Towner, J., Cloke, H. L., Lavado, W., Santini, W., Bazo, J., Coughlan de Perez, E., and Stephens, E. M.: Attribution of Amazon floods to modes of climate variability: A review, Meteorol. Appl., 27, e1949,
https://doi.org/10.1002/met.1949, 2020.
van Der Knijff, J. M., Younis, J., and De Roo, A. P. J.: LISFLOOD: a GIS-based distributed model for river basin scale water balance and flood
simulation, Int. J. Geogr. Inf. Sci., 24, 189–212, https://doi.org/10.1080/13658810802549154, 2010.
Wolter, K. and Timlin, M.: Monitoring ENSO in COADS with a seasonally adjusted principal component index, in: Proc. of the 17th Climate Diagnostics Workshop, NOAA/N MC/CAC, NSSL, Oklahoma Clim. Survey, CIMMS and the School of Meteor., Univ. of Oklahoma, Norman, OK, 52–57, 1993.
Wolter, K. and Timlin, M. S.: Measuring the strength of ENSO events: How
does 1997/98 rank?, Weather, 53, 315–324, https://doi.org/10.1002/j.1477-8696.1998.tb06408.x, 1998.
Wolter, K. and Timlin, M. S.: El Niño/Southern Oscillation behaviour
since 1871 as diagnosed in an extended multivariate ENSO index (MEI. ext),
Int. J. Climatol., 31, 1074–1087, https://doi.org/10.1002/joc.2336, 2011.
Wyżga, B., Kundzewicz, Z. W., Ruiz-Villanueva, V., and Zawiejska, J.: Flood generation mechanisms and changes in principal drivers, in: Flood Risk
in the Upper Vistula Basin, Springer, Cham, Switzerland, 2016.
Yoon, J. H.: Multi-model analysis of the Atlantic influence on Southern Amazon rainfall, Atmos. Sci. Lett., 17, 122–127, https://doi.org/10.1002/asl.600, 2016.
Yoon, J. H. and Zeng, N.: An Atlantic influence on Amazon rainfall, Clim.
Dynam., 34, 249–264, https://doi.org/10.1007/s00382-009-0551-6, 2010.
Zajac, Z., Revilla-Romero, B., Salamon, P., Burek, P., Hirpa, F. A., and Beck, H.: The impact of lake and reservoir parameterization on global streamflow simulation, J. Hydrol., 548, 552–568, https://doi.org/10.1016/j.jhydrol.2017.03.022, 2017.
Zeng, N., Yoon, J. H., Marengo, J. A., Subramaniam, A., Nobre, C. A., Mariotti, A., and Neelin, J. D.: Causes and impacts of the 2005 Amazon drought, Environ. Res. Lett., 3, 014002, https://doi.org/10.1088/1748-9326/3/1/014002, 2008.
Zhang, W., Villarini, G., and Vecchi, G. A.: Impacts of the Pacific meridional mode on June–August precipitation in the Amazon river basin, Q. J. Roy. Meteorol. Soc., 143, 1936–1945, https://doi.org/10.1002/qj.3053, 2017.
Zsoter, E., Cloke, H., Stephens, E., de Rosnay, P., Muñoz-Sabater, J.,
Prudhomme, C., and Pappenberger, F.: How well do operational Numerical Weather Prediction configurations represent hydrology?, J. Hydrometeorol.,
20, 1533–1552, https://doi.org/10.1175/JHM-D-18-0086.1, 2019.
Short summary
We examine whether several climate indices alter the magnitude, timing and duration of floods in the Amazon. We find significant changes in both flood magnitude and duration, particularly in the north-eastern Amazon for negative SST years in the central Pacific Ocean. This response is not repeated when the negative anomaly is positioned further east. These results have important implications for both social and physical sectors working towards the improvement of flood early warning systems.
We examine whether several climate indices alter the magnitude, timing and duration of floods in...