Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3207-2021
https://doi.org/10.5194/hess-25-3207-2021
Technical note
 | 
11 Jun 2021
Technical note |  | 11 Jun 2021

Technical Note: Temporal disaggregation of spatial rainfall fields with generative adversarial networks

Sebastian Scher and Stefanie Peßenteiner

Related authors

Observed changes in the temperature and height of the globally resolved lapserate tropopause
Florian Ladstädter, Matthias Stocker, Sebastian Scher, and Andrea K. Steiner
EGUsphere, https://doi.org/10.5194/egusphere-2025-2100,https://doi.org/10.5194/egusphere-2025-2100, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
The role of atmospheric large-scale patterns for recent warming periods in Greenland
Florina Roana Schalamon, Sebastian Scher, Andreas Trügler, Lea Hartl, Wolfgang Schöner, and Jakob Abermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4060,https://doi.org/10.5194/egusphere-2024-4060, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
A new view of heat wave dynamics and predictability over the eastern Mediterranean
Assaf Hochman, Sebastian Scher, Julian Quinting, Joaquim G. Pinto, and Gabriele Messori
Earth Syst. Dynam., 12, 133–149, https://doi.org/10.5194/esd-12-133-2021,https://doi.org/10.5194/esd-12-133-2021, 2021
Short summary
Generalization properties of feed-forward neural networks trained on Lorenz systems
Sebastian Scher and Gabriele Messori
Nonlin. Processes Geophys., 26, 381–399, https://doi.org/10.5194/npg-26-381-2019,https://doi.org/10.5194/npg-26-381-2019, 2019
Short summary
Weather and climate forecasting with neural networks: using general circulation models (GCMs) with different complexity as a study ground
Sebastian Scher and Gabriele Messori
Geosci. Model Dev., 12, 2797–2809, https://doi.org/10.5194/gmd-12-2797-2019,https://doi.org/10.5194/gmd-12-2797-2019, 2019
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Stochastic approaches
Scientific logic and spatio-temporal dependence in analyzing extreme-precipitation frequency: negligible or neglected?
Francesco Serinaldi
Hydrol. Earth Syst. Sci., 28, 3191–3218, https://doi.org/10.5194/hess-28-3191-2024,https://doi.org/10.5194/hess-28-3191-2024, 2024
Short summary
Infilling of Missing Rainfall Radar Data with a Memory-Assisted Deep Learning Approach
Johannes Meuer, Laurens M. Bouwer, Frank Kaspar, Roman Lehmann, Wolfgang Karl, Thomas Ludwig, and Christopher Kadow
EGUsphere, https://doi.org/10.5194/egusphere-2024-1392,https://doi.org/10.5194/egusphere-2024-1392, 2024
Short summary
Estimation of radar-based Area-Depth-Duration-Frequency curves with special focus on spatial sampling problems
Golbarg Goshtasbpour and Uwe Haberlandt
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-177,https://doi.org/10.5194/hess-2024-177, 2024
Revised manuscript accepted for HESS
Short summary
Assessing downscaling techniques for frequency analysis, total precipitation and rainy day estimation in CMIP6 simulations over hydrological years
David A. Jimenez, Andrea Menapace, Ariele Zanfei, Eber José de Andrade Pinto, and Bruno Brentan
Hydrol. Earth Syst. Sci., 28, 1981–1997, https://doi.org/10.5194/hess-28-1981-2024,https://doi.org/10.5194/hess-28-1981-2024, 2024
Short summary
Simulating sub-hourly rainfall data for current and future periods using two statistical disaggregation models: case studies from Germany and South Korea
Ivan Vorobevskii, Jeongha Park, Dongkyun Kim, Klemens Barfus, and Rico Kronenberg
Hydrol. Earth Syst. Sci., 28, 391–416, https://doi.org/10.5194/hess-28-391-2024,https://doi.org/10.5194/hess-28-391-2024, 2024
Short summary

Cited articles

Adadi, A. and Berrada, M.: Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI), IEEE Access, 6, 52138–52160, https://doi.org/10.1109/ACCESS.2018.2870052, 2018. a
Arjovsky, M., Chintala, S., and Bottou, L.: Wasserstein GAN, arXiv: preprint, arXiv:1701.07875 [cs, stat], 2017. a, b
Bihlo, A.: A generative adversarial network approach to (ensemble) weather prediction, Neural Netw., 139, 1–16, https://doi.org/10.1016/j.neunet.2021.02.003, 2021. a
Breinl, K. and Di Baldassarre, G.: Space-time disaggregation of precipitation and temperature across different climates and spatial scales, J. Hydrol.: Reg. Stud., 21, 126–146, https://doi.org/10.1016/j.ejrh.2018.12.002, 2019. a
Burian, S. J., Durrans, S. R., Tomic̆, S., Pimmel, R. L., and Chung Wai, N.: Rainfall Disaggregation Using Artificial Neural Networks, J. Hydrol. Eng-ASCE, 5, 299–307, https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(299), 2000. a
Download
Short summary
In hydrology, it is often necessary to infer from a daily sum of precipitation a possible distribution over the day – for example how much it rained in each hour. In principle, for a given daily sum, there are endless possibilities. However, some are more likely than others. We show that a method from artificial intelligence called generative adversarial networks (GANs) can learn what a typical distribution over the day looks like.
Share