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Abstract. Creating spatially coherent rainfall patterns with
high temporal resolution from data with lower temporal res-
olution is necessary in many geoscientific applications. From
a statistical perspective, this presents a high- dimensional,
highly underdetermined problem. Recent advances in ma-
chine learning provide methods for learning such probability
distributions. We test the usage of generative adversarial net-
works (GANs) for estimating the full probability distribution
of spatial rainfall patterns with high temporal resolution, con-
ditioned on a field of lower temporal resolution. The GAN is
trained on rainfall radar data with hourly resolution. Given a
new field of daily precipitation sums, it can sample scenarios
of spatiotemporal patterns with sub-daily resolution. While
the generated patterns do not perfectly reproduce the statis-
tics of observations, they are visually hardly distinguishable
from real patterns. Limitations that we found are that provid-
ing additional input (such as geographical information) to the
GAN surprisingly leads to worse results, showing that it is
not trivial to increase the amount of used input information.
Additionally, while in principle the GAN should learn the
probability distribution in itself, we still needed expert judg-
ment to determine at which point the training should stop,
because longer training leads to worse results.

1 Introduction

Precipitation time series at sub-daily temporal resolution are
required for numerous applications in environmental model-
ing. Especially in hydrology, with small to medium catch-
ments whose rainfall–runoff response strongly depends on

the temporal rainfall distribution, sub-daily precipitation data
are necessary to simulate flood peaks accurately. However,
in many settings, precipitation sums only over timescales
longer than the needed ones exist. Past sub-daily precipita-
tion records are often only available at short record lengths
(e.g., Breinl and Di Baldassarre, 2019; Lewis et al., 2019;
Di Baldassarre et al., 2006), and many future climate pro-
jections (GCM–RCM outputs) provide 6-hourly or daily pre-
cipitation sums (Müller-Thomy and Sikorska-Senoner, 2019;
Verfaillie et al., 2017). To deal with this wide absence of
sub-daily precipitation data, several procedures to disag-
gregate precipitation were proposed in recent years. These
include multiplicative cascade models (e.g., Förster et al.,
2016; Raut et al., 2018; Müller and Haberlandt, 2018), the
method of fragments (e.g., Westra et al., 2012; Sharma and
Srikanthan, 2006) and complex stochastic methods based
on, e.g., the randomized Bartlett–Lewis model (e.g., Kout-
soyiannis and Onof, 2001). Burian et al. (2001, 2000) and
Kumar et al. (2012) used artificial neural networks (ANNs)
to perform rainfall disaggregation. Pui et al. (2012) provide
a comparison of different univariate precipitation disaggre-
gation approaches, and an overview of the historical devel-
opment of precipitation disaggregation frameworks can be
found in Koutsoyiannis et al. (2003). Many of these methods
are carried out on a station-by-station basis (Müller-Thomy
and Sikorska-Senoner, 2019), while others also deal with
the more challenging problem of temporal disaggregation of
whole spatial fields (e.g., Raut et al., 2018).

In this study, we consider the latter, and we deal with the
problem as a purely statistical one. For a given 2D (nlat×nlon)
field c, representing the daily sum of precipitation, we want
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to generate a corresponding 3D field of sub-daily precipi-
tation (tres× nlat× nlon) yabs. Since this is a highly under-
determined problem, it is our goal to model the probability
distribution

P
(
yabs|c

)
. (1)

The sum of yabs over the tres dimension must equal c; there-
fore we can introduce the 3D vector of fractions of the daily
sum yfrac, defined via

yfrac,tij = yabs,tij/cij (2)

with t , i and j being the indices of the tres, lat and long di-
mension, and reformulate the problem as

P
(
yfrac|c

)
(3)

with the constraint that∑
t

yfrac,tij = 1. (4)

Thus we want to model the probability distribution of frac-
tions of the daily precipitation sum, given the daily precipita-
tion sum. The data dimensionality of this problem increases
drastically with increasing size of nlat and nlong, as the con-
dition c has a dimensionality of nlat× nlong, and the tar-
get yfrac has even higher dimensionality nlat× nlong× tres.
Here we use nlat = nlong = 16 and tres = 24 (correspond-
ing to hourly resolution) and thus dimensionalities of 256
and 6144, respectively. This makes statistically inferring the
probability distribution P in principle very challenging, even
given large amounts of training data. One approach to cir-
cumvent this would be building statistical models with infor-
mation about the underlying problems and then fitting the pa-
rameter of these models to the available observations. How-
ever, recent advances in machine learning have made it pos-
sible to directly infer high-dimensional probability distribu-
tions. The most widely used are generative adversarial net-
works (GANs) (Goodfellow et al., 2014). GANs are a special
class of artificial neural networks that were originally devel-
oped for estimating the probability distribution of images,
with the goal of sampling (or “generating”) images from
these distributions (widely known as “deep fakes”). Espe-
cially in their conditional formulation (Mirza and Osindero,
2014) they are potentially very useful for physics-related
problems, such as the one considered in this study. GANs
are a very active research field in the machine-learning com-
munity, and their architectures and training methods are con-
stantly improved (e.g., Arjovsky et al., 2017; Gulrajani et al.,
2017; Karras et al., 2018). Given the probabilistic nature of
many physical problems and the high dimensionality of prob-
lems in particular in Earth-science-related fields, they pro-
vide an interesting pathway for new applications. For exam-
ple, Leinonen et al. (2019) have used a GAN to infer the 2D
vertical structure of clouds, given 1D observations of lower-
resolution satellite observations. GANs have also been used

Figure 1. Domain of the used SMHI radar data covering most parts
of Sweden.

in the modeling of complex chaotic systems (e.g., Wu et al.,
2020; King et al., 2018) and have been proposed for stochas-
tic parameterization in geophysical models (Gagne II et al.,
2019) and weather forecasting (Bihlo, 2021).

In this study we use measurements of precipitation from
weather radars. We train the network on the daily sum of
the measurements and the corresponding 1-hourly patterns
of precipitation. To our best knowledge, GANs have not yet
been used in the context of precipitation disaggregation. With
this study we want assess whether GANs can be a useful
tool in temporal precipitation disaggregation. Additionally,
we want to provide our developed tool (RainDisaggGAN)
as a ready-to-use tool to researchers and practitioners who
are interested in creating sub-daily data from spatially dis-
tributed daily time series. All the software used for this study
and the trained GAN are openly available in the accompany-
ing repository.

In this study, we use the word “distribution” solely for
probability distributions. In the hydrological literature, “dis-
tribution” is often also used for spatial and temporal patterns
of rainfall. To avoid confusion, here we refer to these strictly
as “patterns”.

2 Methods

2.1 Data

We use openly available precipitation radar data from the
Swedish Meteorological and Hydrological Institute (SMHI).
The data are available from 2009 to present. Here we use
measurements from 2009 to 2018. The data cover Sweden
and parts of the surrounding area (Fig. 1) and have a tempo-
ral resolution of 5 min.
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The radar reflectivitiesZ (units dBZ) are converted to rain-
fall R in mm h−1 via

R =

(
10Z/10

200

)1/1.5

. (5)

We then compute the daily sums and use them as the condi-
tion and the 24 corresponding 1-hourly fractions as the tar-
get. The spatial resolution is∼ 2×2 km. We use all available
16× 16 (∼ 32× 32 km) pixel samples (shifted by 16 px, so
not including overlapping boxes) from the data that have no
missing data in any of the pixels at any time of the day and
that satisfy the following condition: at least 20 px must ex-
ceed 5 mm d−1. This is done to exclude days with very lit-
tle precipitation from the training. The exact thresholds were
chosen without specific physical reasons. We repeated our
analysis with 3 and 7 mm d−1, and the results were simi-
lar (not shown). For the training period 2009–2016 this re-
sults in 177 909 samples and for the test period 2017–2018
in 59 122 samples. We do not differentiate between differ-
ent precipitation types (e.g., snow, hail) and for readability
use “rainfall” and “precipitation” as synonyms. We have to
note that excluding all days below the mentioned threshold
changes the base sample. Therefore all results on precipi-
tation statistics have to be interpreted in the way that they
represent only the statistics for “wet days”. This is the case
both for the observations shown and for the samples gener-
ated by our GAN method. The latter is evaluated only on days
with rainfall sums above the threshold; therefore they are di-
rectly comparable to the observed statistics of all days above
threshold. When using our method in practice, one would
have to decide whether one also uses the GAN for predicting
the patterns for days below the threshold (even though such
days have not been included in the training) or not.

2.2 GAN

We use the GAN type called Wasserstein GAN (WGAN)
(Arjovsky et al., 2017). A WGAN consists – such as all
GANs – of two neural network: the generator, which gen-
erates “fake” samples, and a discriminator (called “critic” in
WGANs) that judges whether a sample is real or not. In our
conditional GAN, the generator takes as input a 16×16 field
of daily sums as the condition and a vector of random num-
bers and generates a 24× 16× 16 field of precipitation frac-
tions. The critic takes as input the 16× 16 condition and
a 24× 16× 16 sample of fractions and judges whether it
is a fake example or not. The generator and the critic are
trained alternately. The critic is trained with a combination
of real and fake examples and “taught” to differentiate be-
tween them. The generator is then trained to “fool” the critic.
The trained generator can then be used to generate fraction
scenarios ŷfrac from daily sum fields. These can then be con-
verted to precipitation scenarios ŷabs via

ŷabs,tij = ŷfrac,tij · cij . (6)

A sketch of the principle of a conditional GAN is shown
in Fig. 2a, and our specific approach for generating rainfall
scenarios is sketched in Fig. 2b.

We use a WGAN with gradient penalty (Gulrajani et al.,
2017) and pixel normalization (Karras et al., 2018). For de-
tails of the training process and GANs in general, we refer
to the original papers. Our architecture is based on deep con-
volutional GANs (DCGAN, Radford et al., 2016). The in-
put of the generator is a vector of length 100 for the ran-
dom numbers and a vector of the flattened 16× 16 condi-
tion. This is followed by a fully connected layer of size
256× 2× 2× 3; three 3D upsampling and 3D convolution
layers with increasing dimension and decreasing filter size,
each followed by a pixel normalization; and finally a 3D con-
volution output layer. It would also be possible to use con-
volutional layers on the input condition before flattening it,
even though we have not tested this. Especially for larger
domains this might improve the GAN. All layers except the
output layer have rectified linear unit (ReLu) activation func-
tions. The output layer uses a softmax layer that does a lo-
gistic regression over the nres dimension. With this, the gen-
erator automatically satisfies Eq. (4). The critic has a cor-
responding mirrored architecture, with four strided 3D con-
volution layers, following the philosophy of using striding
instead of downsampling from Gulrajani et al. (2017). Both
networks are optimized with the Adam optimizer (Kingma
and Ba, 2017) over 50 epochs. After 20 epochs the quality
of the generator started to decrease (by visual inspection of
samples generated from the train set); therefore we used the
saved generator after 20 epochs. Training 20 epochs took 8 h
on a single NVIDIA Tesla V100 GPU. The architecture re-
sulted, through experimentation with different architectures
and training methods. The networks were developed with the
Keras (Chollet et al., 2015) and Tensorflow (Martín et al.,
2015) frameworks. For the details of the architectures, we
refer to Appendix A and the code published together with
this paper.

2.3 Baseline algorithms

In this section we describe two simple disaggregation meth-
ods that are used as baselines in this study.

2.3.1 Random fraction from training

As the simplest baseline, we select random fractions yfrac
from the training data, and we use these fractions together
with the daily sum from the testing set as prediction. This is,
per definition, unconditional on the daily sum.
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Figure 2. (a) Principle of a conditional GAN. (b) Sketch of the method.

2.3.2 RainFARM

As a further baseline algorithm we use an adaption of the
RainFARM method from Rebora et al. (2006). RainFARM
is an algorithm for spatiotemporal downscaling of short-term
precipitation forecasts. It estimates the slopes α and β of the
spatial and temporal power spectra of the low-resolution (low
resolution both in time and in space) field. These slopes are
also assumed constant for scales smaller than the smallest
scales in the low-resolution fields. With α and β, a random
power spectrum corresponding to these slopes is generated,
with higher spatial and temporal resolution. From this spec-
trum, a spatial precipitation field is created and scaled to have
the same values as the low-resolution field on the scales that
are covered by the low-resolution field.

Here we adapt these ideas to our problem. In contrast to
RainFARM, we do not use spatial downscaling, only tem-
poral. Further, since we actually have data with higher time
resolution available in the training set, we do not estimate
the spectral slopes from the starting field and then extrapo-
late them; rather we estimate them from the hourly resolution
data in the training set. Estimating the temporal slope from
the starting field would not be possible anyway, because our
starting field has only a single time step (the 24 h sum).

The temporal slope β is estimated the following way:
we take a random selection of 500 daily 16× 16 fields
with hourly resolution. For each day, a fast Fourier trans-
form (FFT) is performed over the time dimension, and the
absolute power spectrum for each grid point and each sam-
ple is computed. Now all grid points and samples are put
together in a single linear regression equation, in which the
logarithm of the power is regressed against the logarithm of
the corresponding wavenumber

log(P )=−β · log(ω)+ c.

The same is done for the spatial slope α. Here, anisotropy for
the two spatial dimensions is assumed:

log(P )=−α · log
(√
k2
x + k

2
y

)
+ c.

Now following the RainFARM algorithm, we generate a
Fourier spectrum with the spectral slopes α and β. In our

case it ranges over all spatial scales in a 16×16 px part of our
data, and from 2π/24 h to 2π/1 h in angular frequency. We
start with uniform random distributed phases φ(kx,ky,ω)
and compute the random power spectrum ĝ as

ĝ
(
kx,ky,ω

)
= e−iφ(kx ,ky ,ω)

√(
k2
x + k

2
y

)−α/2
ω−β , (7)

which subsequently is scaled to unit variance:

ĝscaled = ĝ/std
(
ĝ
)
. (8)

The (not-yet-correctly-scaled) precipitation field r̃ is ob-
tained via inverse FFT and exponentiation:

r̃ = exp
(
real

(
iff t

(
ĝscaled

)))
. (9)

The actual precipitation field is now computed via scaling r̃ ,
such that the daily sum at each grid point corresponds to the
input daily sum for each sample:

r(x,y, t)= pobs(x,y)/r(x,y, t). (10)

For each daily sum, an infinite number of different realiza-
tions r can be obtained via starting from different random
phases φ(kx,ky,ω).

2.4 Additional inputs

In our main architecture, we use only fields of daily rain-
fall sums as input. This is the minimum possible architecture
and therefore also the most generic one for different applica-
tions. As an extension, we also use two alternative architec-
tures that provide additional inputs to the network. In the first
alternate architecture, we input the day of the year for each
sample as additional input. Since the day of the year “doy”
is a circular variable (1 is as close to 2 as it is to 365), it is
converted to two variables d1, d2 via

d1 = sin
(

2π
doy
365

)
,d2 = cos

(
2π

doy
365

)
, (11)

and these two variables are expanded (repeated) to have the
same size as the precipitation input field and added as addi-
tional channels to the input condition. Leap days are treated
as 1 January.
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In the second alternate architecture we use the longitude of
the sample as additional input (normalized to [0, 1]). While
Sweden has a much larger north–south than east–west ex-
tent, the typical precipitation patterns are more dependent on
longitude than latitude, because of the large contrast in orog-
raphy (mountains in the west, flat in the middle, coast in the
east).

2.5 Validation

Validation of a trained GAN is a complex and difficult topic.
The high-dimensional probability distribution we want to in-
fer is per definition not known (otherwise we would not need
the GAN); therefore we cannot directly validate it. This is
an inherent problem in generative modeling. We will there-
fore compare certain statistical properties of the generated
samples with the same statistical properties of the real data.
We also want to point out that while our method is condi-
tional, it should not be confused with a standard supervised
learning method. In the latter, one would assume that there
is one “correct” target and train the predictions on this tar-
get. In our problem we also have one observed target sub-
daily precipitation pattern, but we assume that there are in-
finitely many possible target patterns for each condition. Our
approach is thus much closer to purely generative modeling
(learning only the general distribution of rainfall patterns, not
conditioned on anything) than to supervised learning (includ-
ing probabilistic methods in supervised learning). Still, if in-
terpreted with care, it is possible to use probabilistic forecast
evaluation scores. Here we use the widely used continuous
ranked probability score (CRPS; Hersbach, 2000):

CRPS(F,y)=
∫
x

(F (x)−H(x− y))2dx, (12)

with the cumulative distribution function (CDF) F(x) of the
forecast distribution, the true value y and the Heaviside step
function H(x).

The computation is done with the “properscoring” Python
library, which estimates the CRPS via the empirical cumula-
tive distribution function built up by the different scenarios
(for each event in the test set, 10 000 scenarios are made with
the GAN). The CRPS is computed on a forecast-by-forecast
basis. For each forecast, we compute the CRPS for each grid
point and each hour of the day separately, and then we av-
erage over all grid points and hours. Finally, the CRPS is
averaged over all forecasts in the test set.

Additionally, we compare the distributions of the gener-
ated events with the distributions of the observations. This
does not give any information on how well the generated
events for a given daily sum correspond to the real daily dis-
tribution of that particular day, but it gives information on
whether the overall distribution is correct. For this we com-
pute empirical cumulative distribution functions (ECDFs)
and logarithmic spectral distances. The computation of the

spectral distances is done in the spatial domain. The hours
of the day are treated as individual samples. For each spa-
tial field, the discrete radial absolute Fourier power spec-
trum pi(ω) is computed. Then, for each combination of spa-
tial fields and corresponding spectra p1, p2, the logarithmic
spectral distance d is computed as

d (p1,p2)=

√√√√ Nω∑
i

(10 · log(p1(ωi)/p2(ωi)))2/ωi . (13)

Additionally, the spectral distance between different methods
and observations is computed as well. Here, the distances be-
tween all combinations of samples from method1 (GAN) and
samples from method2 (RainFARM) are computed.

3 Results

Figures 3 and 4 show examples of generated rainfall distri-
butions for two randomly chosen daily sum conditions from
a randomly chosen location. For each case, 10 hourly pat-
terns are generated with the same daily sum condition from
the test dataset. The figures are to be read as follows: the
first row in panel (a) shows the per-grid-point fraction of ob-
served precipitation every 3 h, and the following rows present
the scenarios generated by the GAN (the same figure but in
hourly resolution can be found in Figs. B1 and B2). Panel (b)
shows the same information, but then scaled by the daily pre-
cipitation sum at each grid point. In the example of Fig. 3
precipitation occurred relatively evenly distributed over the
whole day. As expected, due to the many possible patterns
that can be associated with a single daily sum, there is a
lot of variation in the GAN-generated patterns. In row 3,
for example, precipitation is concentrated in the first half of
the day, whereas in the next-to-last row, it is concentrated
at the end of the day. Patterns generated by RainFARM are
displayed in Fig. 5. RainFARM generates hourly precipita-
tion in regions where the original daily precipitation field
is nonzero, and rainfall is distributed quite evenly over the
whole day. This matches the observed situation in Fig. 5a
well but does not conform with the short-term rainfall ob-
served in panel (b), which is better captured by the GAN
scenarios (Fig. 4). More examples are included in the ac-
companying data and code repository. Except for boundary
problems at the outermost pixels, the patterns seem to be in-
distinguishable by eye. In applications where the boundary
problem would be an issue, one could use a larger domain
and then remove the boundary. Figure 6 shows area means of
precipitation per hour. Each panel shows the real pattern for
one condition (in black) and 100 patterns generated from the
same condition (in green). While it is important that individ-
ual samples look reasonable, it is also crucial that the gener-
ated sample follows the same distributions as the real pattern.
Albeit it is impossible to check whether the GAN recreates
the full inter-dependent probability distribution (as we use
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Figure 3. Real and generated examples of the fraction of hourly precipitation patterns for one daily precipitation sum and the hourly precip-
itation itself. Panel (a) shows the generated fractions, and (b) shows the corresponding hourly precipitation patterns. The leftmost column of
each panel displays the daily sum precipitation field used as the condition. The remaining columns show the values for every third hour. The
first row presents the observed distribution over the day. The remaining rows show examples generated by the GAN.

Hydrol. Earth Syst. Sci., 25, 3207–3225, 2021 https://doi.org/10.5194/hess-25-3207-2021
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Figure 4. As Fig. 3, but for a different daily precipitation sum. Note that for very low precipitation amounts, fractions (panel a) might still
be high.
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Figure 5. Patterns generated with the RainFARM baseline algorithm, for the same days as in Figs. 3 and 4.
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Figure 6. Examples of area-averaged precipitation scenarios over a single day. The black line shows the observed precipitation, and the green
lines show 100 generated ones. The colored lines show 10 generated ones, where each color uses exactly the same noise in all four plots.

Figure 7. (a) Daily cycle of 10 000 randomly selected real observations, and scenarios generated by conditioning on exactly the same
10 000 daily sums. (b) Cumulative distribution functions of generated and observed hourly area mean precipitation (upper panel) and hourly
point-level precipitation (lower panel), same data as in (a).

the GAN to solve this problem in lack of a better method),
we can at least check whether the typical sub-daily distribu-
tion is captured by the GAN. In the real data, the fractions are
not equally distributed over the day, meaning that some times
of the day often have higher fractions of the daily sum than
others. For this, we randomly select 10 000 samples from the
test data and generate a single generator example for each.
Then we analyze the daily cycle of the 10 000 real patterns
and the 10 000 generated ones. The result is shown in Fig. 7a
(Fig. C1a including outliers). When looking at the fractions,
the generated distribution seems in general to reasonably fol-
low the real distribution. There are, however, some devia-
tions, mainly an underestimation of the daily cycle. When

it comes to the daily cycle of precipitation corresponding to
these fractions, the generator does a worse job. Here the daily
cycle is even more underestimated; thus the generator has
too little dependency of precipitation on the hour of day. As
additional validation, Fig. 7b shows cumulative distribution
functions of the observed and generated hourly precipitation
patterns, for the same data as the daily-cycle analysis. Shown
are the distribution both of the area means and of point ob-
servations. The plots are capped to exclude very low pre-
cipitation amounts. The full plots are shown in Fig. C1b. In
general the distribution of the generated patterns follows the
distribution of the observations well. However, they generate
too many hourly events with precipitation amounts around

https://doi.org/10.5194/hess-25-3207-2021 Hydrol. Earth Syst. Sci., 25, 3207–3225, 2021
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1 mm h−1, and on grid point level, the GAN extends to higher
maximum precipitation amounts. At very low precipitation
amounts (Fig. C1b) the distributions seem to be very differ-
ent. This might be caused by the fact that the softmax output
of the network cannot generate values of exactly zero for the
fraction, and thus the precipitation cannot be exactly zero ei-
ther, except when the day sum is zero. Here, however, one has
to consider that such extremely small precipitation amounts
are usually of no importance. Additionally, due to the way
the data are stored, the radar data cannot go down to zero,
but have a minimum slightly above 10−4 mm h−1.

Figure 8 shows the distribution of spectral distances of the
observations and of the generated patterns and the distribu-
tion of spectral distances between observed and generated
patterns, all computed on 500 randomly selected samples
from the test set. The spectral differences are very similar
for both methods and for the observations. Notable is that
the observations have a slightly wider right-hand tail than the
generated ones, especially compared to RainFARM.

Next, we check whether the GAN actually learns to use the
condition input. It could be that the GAN only learns the gen-
eral distribution of precipitation patterns, without connecting
it to the daily sum at all. This could in principle partly be
answered by the green lines in Fig. 6; however this is diffi-
cult to do by eye, and it would also be hard to differentiate
between the influence of the condition and the influence of
the randomness of the noise used as input for the genera-
tor. Therefore, we also generated 10 examples for each real
one, using the same noise for all four panels. Thus generated
sample 1 uses the same noise for all conditions, and sample 2
uses the same (different from sample 1) noise for all condi-
tions and so on. The result is shown in the 10 colored lines
in Fig. 6. The patterns generated for different conditions are
similar, but not identical. For example, the blue line has a
distinct peak between 15 and 20 h only in panel (a), and the
peak of the yellow line between 1–5 h is slightly different in
all panels. This means that dependent on the condition, dif-
ferent daily fractions are produced. As an additional test on
the influence of the condition, we randomly select two con-
ditions, sample 1000 patterns from each condition (using the
same 1000 noise vectors for each condition) and then com-
pute the distribution for each hour of the day, similarly to
Fig. 7. The result for two distinctly different conditions is
shown in Fig. 9 (Fig. D1 with outliers). As can be seen, the
distributions are not the same for both conditions. At 10 of
the 24 h of the day, the distributions are significantly differ-
ent (p < 0.05 with two-sample Kolmogorov–Smirnov test).
For conditions that are very similar, there is no significant
difference at any hour of the day (not shown). This confirms
the result from above that the GAN has at least to some ex-
tent learned to use the condition. Verifying the conditional
relationships is difficult to impossible: the high dimension of
the condition would cause any type of binning or grouping
to result in either a very low sample size for each group or

Figure 8. Distribution of hourly logarithmic spectral distances (d)
for the observed patterns (blue), patterns generated with the GAN
(yellow), patterns generated with RainFARM (green), and distances
between patterns observed and generated with GAN (red) and be-
tween patterns observed and generated with RainFARM (purple),
for 500 d (resulting in 12 000 h) from the test set.

Figure 9. Example of daily area mean distributions generated from
two different daily sum conditions. For each conditions 1000 sce-
narios were generated. In all bar plots outliers are not shown. The
same plots with outliers are shown in Appendix D1.

groups whose conditions are different only in some of the di-
mensions, and therefore a verification is not attempted here.

Finally, we compute the CRPS of the generated patterns.
The result is shown in Table 1. The GAN has a slightly lower
CRPS than RainFARM and random, indicating that it has a
higher probabilistic skill. While the difference is small, it is
highly significant. This was tested with the one-sample t test
against the null hypothesis that the mean of the differences is
zero (p = 0, down to machine precision) and with bootstrap-
ping (p < 0.01). A one-sample test was chosen because all
three methods were tested on exactly the same test samples,
and the scores are therefore not independent.
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Table 1. CRPS scores of GAN and baseline methods for 10 000 test
samples.

Method GAN RainFARM Random

CRPS [mm h−1
] 0.254 0.285 0.26

3.1 Architectures with additional inputs

When training our first alternative architecture with day of
year as additional input, the training did not succeed and only
resulted in very unrealistic generated patterns (not shown).
This might be caused by the fact that with day of the year
as input, the network could be susceptible to overfitting, es-
pecially since we are excluding non-rain days from the train-
ing data. The second alternative architecture – with longitude
as additional input – was slightly more successful. The re-
sults for the longitude architecture are shown in the Appendix
(Fig. E1). Shown is the daily cycle of 10 000 randomly se-
lected observations and scenarios generated from these. The
results are presented for all samples in the eastern and in the
western half of the domain separately. The daily cycle of the
generated samples is not very realistic, in either of the do-
mains. In general, even though less dramatic than the day-of-
year input, the additional longitude input seems to have dis-
turbed the training of the network and in fact made it worse
than the base architecture without any additional inputs.

4 Discussion and conclusion

In this study we used a generative adversarial net-
work (GAN) to generate possible scenarios of hourly pre-
cipitation fields, conditioned on a field of daily precipita-
tion sums. The network was trained on 8 years (2009–2016)
of hourly observations of Swedish precipitation radar data
and the corresponding fields of daily precipitation sum. The
trained network can generate reasonable-looking hourly sce-
narios and thus seems to be able to approximate the prob-
ability distribution of the spatiotemporal rainfall patterns.
By eye, the generated patterns are nearly indistinguishable
from the real patterns. Additionally, the spectral distances
of the generated patterns are similar to the observed ones.
We showed that the network does not simply learn a gen-
eral distribution of precipitation patterns, but it is also able
to use the conditional daily sum field to some extent. It thus
learns a dependency of the probability distribution of rain-
fall patterns on the daily sum. This result is supported by the
GAN CRPS being slightly better but in the same order of
magnitude as CRPS of randomly selected and RainFARM-
generated patterns. We were, however, not able to find a
reasonable way to verify this inferred dependency on the
daily sum, and its quality hence remains unverified for now.
Close inspection of the statistics of many generated samples
showed partial agreement but also some deviation from the

real statistics, pointing to potential limitations of the method,
at least in its current implementation. Adding additional in-
formation (longitude and day of the year) to our GAN ar-
chitecture was not successful. Not only was the GAN un-
able to learn the influence of the additional parameters on
the probability distribution of the patterns, it also did worse
on the general probability distribution. This shows that it is
not possible to simply add additional information to an ar-
chitecture that works without additional inputs. The “black-
box” nature of GANs makes it hard to even speculate about
a possible reason for this. A further question left open is
the suitability of the presented approach for larger domain
sizes. The 16× 16 (∼ 32× 32 km) pixel approach was cho-
sen with a small catchment in the Alps in mind, which we
plan to study in more detail. Recent tests with a 64× 64 px
domain revealed a decreasing performance. However, such
tests are computationally very expensive, and we suspect
that our training might have been too short (too few train-
ing epochs). Notwithstanding this, this topic needs further
inspection. With our GAN architecture, it is not possible to
ensure spatial and temporal continuity when applying the
GAN to regions or timeframes that are neighbors in time or
space. This could be remedied with the approach presented in
Leinonen et al. (2020). Furthermore, as a cautionary remark,
we point out that the approach presented in this paper only
makes sense if the training data come from the same climatic
conditions as the input data, and the trained GAN should not
(or only after careful evaluation) be transferred to other re-
gions. This is because spatial rainfall distributions differ be-
tween different (climatic) regions. Finally, expert judgment
is still necessary in deciding when to stop the training of the
GAN, since after some time the quality of the generated pat-
terns deteriorated. This can potentially be a severe limitation
in practice. Detailed study and development will therefore be
necessary to further improve the method and also to make it
less dependent on expert judgment.

We conclude that with our current knowledge, it is in prin-
ciple possible to use GANs in the context of spatial precipi-
tation disaggregation, however only with care and in addition
to expert judgment. We hope that this study serves as a start-
ing ground for the hydrological community to work further
on assessing the potential of GANs for precipitation disag-
gregation.

This study was mainly intended as a proof of concept,
in order to assess whether it is principally possible to use
GANs for temporarily disaggregating spatial rainfall pat-
terns. Whether the method also proves useful in rainfall–
runoff modeling will be assessed in a follow-up study. This
runoff modeling could include future climate scenarios. In
such a setting it has to be noted that our method – as most
other methods – makes a stationarity assumption, meaning
that it assumes that the probability distribution of rainfall pat-
terns is always the same (except for the dependency on the
daily rainfall sum). In a future (warmer) climate, however,
the typical patterns might be different.
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When the problems with additional inputs that we encoun-
tered are eventually solved, it would be interesting to also test
inputting other meteorological variables such as temperature,
wind speed or air pressure. These might contain informa-
tion on the current weather pattern, which itself can have an
impact on the possible sub-daily precipitation patterns. This
might also be a way to – at least partly – deal with the prob-
lem of non-stationarity in the future climate scenarios men-
tioned above. Additionally, our method could be combined
with other machine-learning methods. For example, an unsu-
pervised classification scheme could be used prior to train-
ing the GAN. With this, the events could be categorized into
a number of different classes, and then an individual GAN
could be trained for each class. Alternatively, the class label
could be added as input to the GAN. The latter would take
the burden of implicitly classifying the events from the GAN.

It would also be of interest to modify the loss function
used for the training of the networks and include constraints
on the statistics of the data (for example the reproduction
of the daily cycle), following the ideas of Wu et al. (2020).
This might eliminate the problems of deviation from the real
statistics mentioned earlier. Another option would be to step
back from the purely data-driven approach and try to include
physical constraints directly in the GAN.

Variational autoencoders (Kingma and Welling, 2014),
which are another type of neural network that can be used
to infer high-dimensional (potentially conditional) probabil-
ity distributions, might also be an attractive alternative to the
GAN presented here.

Finally, from a scientific point of view it would be a very
appealing attempt using techniques from the emerging field
of explainable AI (Samek et al., 2017; Adadi and Berrada,
2018) for the challenging task of using the trained GAN
for inferring knowledge about the underlying physical pro-
cesses.
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Appendix A

The generator consists of the following layers: dense layer
with size 3072, upsampling3D, convolution3D (256 chan-
nels, kernel size 2× 2× 2), pixelnormalization, upsam-
pling3D, convolution3D (128 channels, kernel size 2×2×2),
pixelnormalization, upsampling3D, convolution3D (64 chan-
nels, kernel size 2× 2× 2), pixelnormalization, convolu-
tion3D (1 channel, kernel size 3×3×3) and softmax (along
the first dimension).

The critic consists of the following layers: convolution3D
(64 channels), convolution3D (128 channels), convolution3D
(256 channels) and dense (1 node).

The critic uses dropout regularization (dropout probabil-
ity 0.25) after each convolution layer. All convolution layers
(except the last one in the generator) use a leaky ReLu acti-
vation function with α = 0.2.

Both the critic and the generator are trained with the Adam
optimizer with parameters lr = 0.0001, β1 = 0 and β2 = 0.9
(the values recommend by Gulrajani et al., 2017).
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Appendix B

Figure B1. As Fig. 3, but with all hours shown.
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Figure B2. As Fig. 4, but with all hours shown.
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Appendix C

Figure C1. (a) Daily cycle of 10 000 randomly selected real observations and scenarios generated by conditioning on exactly the same
10 000 daily sums. Same as Fig. 7a but with outliers shown. (b) Cumulative distribution functions of generated and observed hourly area
mean precipitation (upper panel) and hourly point-level precipitation (lower panel); same data as in (a). Same as Fig. 7b, but with the full
range on the x axis.

Appendix D

Figure D1. Example of daily area mean distributions generated from two different daily sum conditions. For each condition, 1000 scenarios
were generated. In all bar plots, outliers are not shown. The same plots as Fig. 9 but with outliers.
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Appendix E

Figure E1. Results from the network with longitude as additional input. Daily cycle of 10 000 randomly selected real observations and
scenarios generated by conditioning on exactly the same 10 000 daily sums, split up into western and eastern halves of the domain.
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Code and data availability. The SMHI radar data can be freely
obtained from http://opendata-download-radar.smhi.se/ (last ac-
cess: 9 June 2021) (SMHI, 2021). The software developed
for this study, as well as the trained generator, is avail-
able in Sebastian Scher’s GitHub repository at https://github.
com/sipposip/pr-disagg-radar-gan (last access: 9 June 2021)
(Scher, 2021). Additionally, on final publication, the repos-
itory will be archived at Zenodo under the reserved DOI
https://doi.org/10.5281/zenodo.3733065 (Scher and Peßenteiner,
2021).
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