Articles | Volume 25, issue 1
https://doi.org/10.5194/hess-25-291-2021
https://doi.org/10.5194/hess-25-291-2021
Research article
 | 
19 Jan 2021
Research article |  | 19 Jan 2021

Modelling the hydrological interactions between a fissured granite aquifer and a valley mire in the Massif Central, France

Arnaud Duranel, Julian R. Thompson, Helene Burningham, Philippe Durepaire, Stéphane Garambois, Robert Wyns, and Hervé Cubizolle

Related authors

Modal sensitivity of rock glaciers to elastic changes from spectral seismic noise monitoring and modeling
Antoine Guillemot, Laurent Baillet, Stéphane Garambois, Xavier Bodin, Agnès Helmstetter, Raphaël Mayoraz, and Eric Larose
The Cryosphere, 15, 501–529, https://doi.org/10.5194/tc-15-501-2021,https://doi.org/10.5194/tc-15-501-2021, 2021
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci., 28, 3519–3547, https://doi.org/10.5194/hess-28-3519-2024,https://doi.org/10.5194/hess-28-3519-2024, 2024
Short summary
High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation
Anna Pazola, Mohammad Shamsudduha, Jon French, Alan M. MacDonald, Tamiru Abiye, Ibrahim Baba Goni, and Richard G. Taylor
Hydrol. Earth Syst. Sci., 28, 2949–2967, https://doi.org/10.5194/hess-28-2949-2024,https://doi.org/10.5194/hess-28-2949-2024, 2024
Short summary
Towards understanding the influence of seasons on low-groundwater periods based on explainable machine learning
Andreas Wunsch, Tanja Liesch, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 28, 2167–2178, https://doi.org/10.5194/hess-28-2167-2024,https://doi.org/10.5194/hess-28-2167-2024, 2024
Short summary
Shannon entropy of transport self-organization due to dissolution–precipitation reaction at varying Peclet numbers in initially homogeneous porous media
Evgeny Shavelzon and Yaniv Edery
Hydrol. Earth Syst. Sci., 28, 1803–1826, https://doi.org/10.5194/hess-28-1803-2024,https://doi.org/10.5194/hess-28-1803-2024, 2024
Short summary
A high-resolution map of diffuse groundwater recharge rates for Australia
Stephen Lee, Dylan J. Irvine, Clément Duvert, Gabriel C. Rau, and Ian Cartwright
Hydrol. Earth Syst. Sci., 28, 1771–1790, https://doi.org/10.5194/hess-28-1771-2024,https://doi.org/10.5194/hess-28-1771-2024, 2024
Short summary

Cited articles

Ahmed, S. and Sreedevi, P. D.: Simulation of flow in weathered-fractured aquifer in a semi-arid and over-exploited region, in: Groundwater dynamics in hard rock aquifers: sustainable management and optimal monitoring network design, edited by: Ahmed, S., Jayakumar, R., and Salih, A., 219–233, Springer, Dordrecht, The Netherlands, 2008. 
Ala-aho, P., Soulsby, C., Wang, H., and Tetzlaff, D.: Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterisation, J. Hydrol., 547, 664–677, https://doi.org/10.1016/j.jhydrol.2017.02.023, 2017. 
Al-Khudhairy, D. H. A., Thompson, J. R., Gavin, H., and Hamm, N. A. S.: Hydrological modelling of a drained grazing marsh under agricultural land use and the simulation of restoration management scenarios, Hydrol. Sci. J., 44, 943–971, https://doi.org/10.1080/02626669909492291, 1999. 
Allen, R. G. and Pereira, L. S.: Estimating crop coefficients from fraction of ground cover and height, Irrig. Sci., 28, 17–34, https://doi.org/10.1007/s00271-009-0182-z, 2009. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO irrigation and drainage paper, Food and Agriculture Organization, Rome, Italy, 300 pp., 1998. 
Download
Short summary
Peat-forming wetlands (mires) provide multiple ecosystem services, which depend on peat remaining waterlogged. Using hydrological modelling, we show that, contrary to a common assumption, groundwater inflow can be a quantitatively important and functionally critical element of the water balance of mires in hard-rock upland and mountain areas. This influence is such that patterns of groundwater upwelling and seepage explain the spatial distribution of mires in the landscape.