Articles | Volume 25, issue 4
https://doi.org/10.5194/hess-25-2327-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-2327-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Event and seasonal hydrologic connectivity patterns in an agricultural headwater catchment
Centre for Water Resource Systems, Vienna University of Technology,
Vienna, Austria
Institute of Hydraulic Engineering and Water Resources Management,
Vienna University of Technology, Vienna, Austria
Borbála Széles
Centre for Water Resource Systems, Vienna University of Technology,
Vienna, Austria
Institute of Hydraulic Engineering and Water Resources Management,
Vienna University of Technology, Vienna, Austria
Peter Strauss
Federal Agency of Water Management, Institute for Land and Water
Management Research, Petzenkirchen, Austria
Alfred Paul Blaschke
Centre for Water Resource Systems, Vienna University of Technology,
Vienna, Austria
Interuniversity Cooperation Centre Water & Health, Vienna, Austria
Günter Blöschl
Centre for Water Resource Systems, Vienna University of Technology,
Vienna, Austria
Institute of Hydraulic Engineering and Water Resources Management,
Vienna University of Technology, Vienna, Austria
Related authors
No articles found.
Hatice Türk, Christine Stumpp, Markus Hrachowitz, Karsten Schulz, Peter Strauss, Günter Blöschl, and Michael Stockinger
Hydrol. Earth Syst. Sci., 29, 3935–3956, https://doi.org/10.5194/hess-29-3935-2025, https://doi.org/10.5194/hess-29-3935-2025, 2025
Short summary
Short summary
Using advances in transit time estimation and tracer data, we tested if fast-flow transit times are controlled solely by soil moisture or if they are also controlled by precipitation intensity. We used soil-moisture-dependent and precipitation-intensity-conditional transfer functions. We showed that a significant portion of event water bypasses the soil matrix through fast flow paths (overland flow, tile drains, preferential-flow paths) in dry soil conditions for both low- and high-intensity precipitation.
Hatice Türk, Christine Stumpp, Markus Hrachowitz, Peter Strauss, Günter Blöschl, and Michael Stockinger
EGUsphere, https://doi.org/10.5194/egusphere-2025-2597, https://doi.org/10.5194/egusphere-2025-2597, 2025
Short summary
Short summary
This study shows that stream flow isotope data (δ2H) were inadequate for distinguishing preferential groundwater flow. Large passive groundwater storage dampened δ2H variations, obscuring signals of fast groundwater flow and complicating the estimation of older water fractions in the streams. Further, weekly-resolution δ2H sampling yielded deceptively high model performance, highlighting the need for complementary and groundwater-level data to improve catchment-scale transit-time estimates.
Christopher Thoma, Borbala Szeles, Miriam Bertola, Elmar Schmaltz, Carmen Krammer, Peter Strauss, and Günter Blöschl
EGUsphere, https://doi.org/10.5194/egusphere-2025-2541, https://doi.org/10.5194/egusphere-2025-2541, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We studied how farming practices affect soil and sediment movement in a small Austrian catchment. By monitoring water and sediment during 55 rain events, we found that erosion control worked well in flat fields near the stream, but not in steep or distant fields. Our results show that reducing soil loss requires strategies that consider slope, distance to streams, and how water flows through the landscape.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
Bruno Merz, Günter Blöschl, Robert Jüpner, Heidi Kreibich, Kai Schröter, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 24, 4015–4030, https://doi.org/10.5194/nhess-24-4015-2024, https://doi.org/10.5194/nhess-24-4015-2024, 2024
Short summary
Short summary
Flood risk assessments help us decide how to reduce the risk of flooding. Since these assessments are based on probabilities, it is hard to check their accuracy by comparing them to past data. We suggest a new way to validate these assessments, making sure they are practical for real-life decisions. This approach looks at both the technical details and the real-world situations where decisions are made. We demonstrate its practicality by applying it to flood emergency planning.
Günter Blöschl, Andreas Buttinger-Kreuzhuber, Daniel Cornel, Julia Eisl, Michael Hofer, Markus Hollaus, Zsolt Horváth, Jürgen Komma, Artem Konev, Juraj Parajka, Norbert Pfeifer, Andreas Reithofer, José Salinas, Peter Valent, Roman Výleta, Jürgen Waser, Michael H. Wimmer, and Heinz Stiefelmeyer
Nat. Hazards Earth Syst. Sci., 24, 2071–2091, https://doi.org/10.5194/nhess-24-2071-2024, https://doi.org/10.5194/nhess-24-2071-2024, 2024
Short summary
Short summary
A methodology of regional flood hazard mapping is proposed, based on data in Austria, which combines automatic methods with manual interventions to maximise efficiency and to obtain estimation accuracy similar to that of local studies. Flood discharge records from 781 stations are used to estimate flood hazard patterns of a given return period at a resolution of 2 m over a total stream length of 38 000 km. The hazard maps are used for civil protection, risk awareness and insurance purposes.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
David Ramler and Peter Strauss
Hydrol. Earth Syst. Sci., 27, 1745–1754, https://doi.org/10.5194/hess-27-1745-2023, https://doi.org/10.5194/hess-27-1745-2023, 2023
Short summary
Short summary
Undisturbed soil monoliths combine advantages of outdoor and indoor experiments; however, there are often size limitations. A promising approach is the combination of smaller blocks to form a single large monolith. We compared the runoff properties of monoliths cut in half and recombined with uncut blocks. The effect of the combination procedure was negligible compared to the inherent soil heterogeneity, and we conclude that advantages outweigh possible adverse effects.
Mohammad Ghoreishi, Amin Elshorbagy, Saman Razavi, Günter Blöschl, Murugesu Sivapalan, and Ahmed Abdelkader
Hydrol. Earth Syst. Sci., 27, 1201–1219, https://doi.org/10.5194/hess-27-1201-2023, https://doi.org/10.5194/hess-27-1201-2023, 2023
Short summary
Short summary
The study proposes a quantitative model of the willingness to cooperate in the Eastern Nile River basin. Our results suggest that the 2008 food crisis may account for Sudan recovering its willingness to cooperate with Ethiopia. Long-term lack of trust among the riparian countries may have reduced basin-wide cooperation. The model can be used to explore the effects of changes in future dam operations and other management decisions on the emergence of basin cooperation.
Enrico Bonanno, Günter Blöschl, and Julian Klaus
Hydrol. Earth Syst. Sci., 26, 6003–6028, https://doi.org/10.5194/hess-26-6003-2022, https://doi.org/10.5194/hess-26-6003-2022, 2022
Short summary
Short summary
There is an unclear understanding of which processes regulate the transport of water, solutes, and pollutants in streams. This is crucial since these processes control water quality in river networks. Compared to other approaches, we obtained clearer insights into the processes controlling solute transport in the investigated reach. This work highlights the risks of using uncertain results for interpreting the processes controlling water movement in streams.
Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 5015–5033, https://doi.org/10.5194/hess-26-5015-2022, https://doi.org/10.5194/hess-26-5015-2022, 2022
Short summary
Short summary
There is serious concern that river floods are increasing. Starting from explanations discussed in public, the article addresses three hypotheses: land-use change, hydraulic structures, and climate change increase floods. This review finds that all three changes have the potential to not only increase floods, but also to reduce them. It is crucial to consider all three factors of change in flood risk management and communicate them to the general public in a nuanced way.
Shengping Wang, Borbala Szeles, Carmen Krammer, Elmar Schmaltz, Kepeng Song, Yifan Li, Zhiqiang Zhang, Günter Blöschl, and Peter Strauss
Hydrol. Earth Syst. Sci., 26, 3021–3036, https://doi.org/10.5194/hess-26-3021-2022, https://doi.org/10.5194/hess-26-3021-2022, 2022
Short summary
Short summary
This study explored the quantitative contribution of agricultural intensification and climate change to the sediment load of a small agricultural watershed. Rather than a change in climatic conditions, changes in the land structure notably altered sediment concentrations under high-flow conditions, thereby contributing most to the increase in annual sediment loads. More consideration of land structure improvement is required when combating the transfer of soil from land to water.
Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 2469–2480, https://doi.org/10.5194/hess-26-2469-2022, https://doi.org/10.5194/hess-26-2469-2022, 2022
Short summary
Short summary
Sound understanding of how floods come about allows for the development of more reliable flood management tools that assist in mitigating their negative impacts. This article reviews river flood generation processes and flow paths across space scales, starting from water movement in the soil pores and moving up to hillslopes, catchments, regions and entire continents. To assist model development, there is a need to learn from observed patterns of flood generation processes at all spatial scales.
Rui Tong, Juraj Parajka, Borbála Széles, Isabella Greimeister-Pfeil, Mariette Vreugdenhil, Jürgen Komma, Peter Valent, and Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 1779–1799, https://doi.org/10.5194/hess-26-1779-2022, https://doi.org/10.5194/hess-26-1779-2022, 2022
Short summary
Short summary
The role and impact of using additional data (other than runoff) for the prediction of daily hydrographs in ungauged basins are not well understood. In this study, we assessed the model performance in terms of runoff, soil moisture, and snow cover predictions with the existing regionalization approaches. Results show that the best transfer methods are the similarity and the kriging approaches. The performance of the transfer methods differs between lowland and alpine catchments.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
David Lun, Alberto Viglione, Miriam Bertola, Jürgen Komma, Juraj Parajka, Peter Valent, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 5535–5560, https://doi.org/10.5194/hess-25-5535-2021, https://doi.org/10.5194/hess-25-5535-2021, 2021
Short summary
Short summary
We investigate statistical properties of observed flood series on a European scale. There are pronounced regional patterns, for instance: regions with strong Atlantic influence show less year-to-year variability in the magnitude of observed floods when compared with more arid regions of Europe. The hydrological controls on the patterns are quantified and discussed. On the European scale, climate seems to be the dominant driver for the observed patterns.
Concetta Di Mauro, Renaud Hostache, Patrick Matgen, Ramona Pelich, Marco Chini, Peter Jan van Leeuwen, Nancy K. Nichols, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 4081–4097, https://doi.org/10.5194/hess-25-4081-2021, https://doi.org/10.5194/hess-25-4081-2021, 2021
Short summary
Short summary
This study evaluates how the sequential assimilation of flood extent derived from synthetic aperture radar data can help improve flood forecasting. In particular, we carried out twin experiments based on a synthetically generated dataset with controlled uncertainty. Our empirical results demonstrate the efficiency of the proposed data assimilation framework, as forecasting errors are substantially reduced as a result of the assimilation.
Rui Tong, Juraj Parajka, Andreas Salentinig, Isabella Pfeil, Jürgen Komma, Borbála Széles, Martin Kubáň, Peter Valent, Mariette Vreugdenhil, Wolfgang Wagner, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 1389–1410, https://doi.org/10.5194/hess-25-1389-2021, https://doi.org/10.5194/hess-25-1389-2021, 2021
Short summary
Short summary
We used a new and experimental version of the Advanced Scatterometer (ASCAT) soil water index data set and Moderate Resolution Imaging Spectroradiometer (MODIS) C6 snow cover products for multiple objective calibrations of the TUWmodel in 213 catchments of Austria. Combined calibration to runoff, satellite soil moisture, and snow cover improves runoff (40 % catchments), soil moisture (80 % catchments), and snow (~ 100 % catchments) simulation compared to traditional calibration to runoff only.
Miriam Bertola, Alberto Viglione, Sergiy Vorogushyn, David Lun, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 1347–1364, https://doi.org/10.5194/hess-25-1347-2021, https://doi.org/10.5194/hess-25-1347-2021, 2021
Short summary
Short summary
We estimate the contribution of extreme precipitation, antecedent soil moisture and snowmelt to changes in small and large floods across Europe.
In northwestern and eastern Europe, changes in small and large floods are driven mainly by one single driver (i.e. extreme precipitation and snowmelt, respectively). In southern Europe both antecedent soil moisture and extreme precipitation significantly contribute to flood changes, and their relative importance depends on flood magnitude.
Maral Khodadadi, Christine Alewell, Mohammad Mirzaei, Ehssan Ehssan-Malahat, Farrokh Asadzadeh, Peter Strauss, and Katrin Meusburger
SOIL Discuss., https://doi.org/10.5194/soil-2021-2, https://doi.org/10.5194/soil-2021-2, 2021
Revised manuscript not accepted
Short summary
Short summary
Forest soils store carbon and therefore play an important role in mitigating climate change impacts. Yet again, deforestation for farming and grazing purposes has grown rapidly over the last decades. Thus, its impacts on soil erosion and soil quality should be understood in order to adopt sustainable management measures. The results of this study indicated that deforestation can prompt soil loss by multiple orders of magnitude and deteriorate the soil quality in both topsoil and subsoil.
Cited articles
Aich, V., Zimmermann, A., and Elsenbeer, H.: Quantification and interpretation of suspended-sediment discharge hysteresis patterns: How much
data do we need?, Catena, 122, 120–129, https://doi.org/10.1016/j.catena.2014.06.020,
2014.
Allen, D. M., Whitfield, P. H., and Werner, A.: Groundwater level responses
in temperate mountainous terrain: Regime classification, and linkages to
climate and streamflow, Hydrol. Process., 24, 3392–3412,
https://doi.org/10.1002/hyp.7757, 2010.
Aubert, A. H., Gascuel-Odoux, C., Gruau, G., Akkal, N., Faucheux, M., Fauvel, Y., Grimaldi, C., Hamon, Y., Jaffrézic, A., Lecoz-Boutnik, M., Molénat, J., Petitjean, P., Ruiz, L., and Merot, P.: Solute transport
dynamics in small, shallow groundwater-dominated agricultural catchments:
insights from a high-frequency, multisolute 10 yr-long monitoring study,
Hydrol. Earth Syst. Sci., 17, 1379–1391, https://doi.org/10.5194/hess-17-1379-2013,
2013.
Bachmair, S. and Weiler, M.: Hillslope characteristics as controls of
subsurface flow variability, Hydrol. Earth Syst. Sci., 16, 3699–3715,
https://doi.org/10.5194/hess-16-3699-2012, 2012.
Bachmair, S., Weiler, M., and Troch, P. A.: Intercomparing hillslope
hydrological dynamics: Spatio-temporal variability and vegetation cover
effects, Water Resour. Res., 48, 1–18, https://doi.org/10.1029/2011WR011196, 2012.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing
area model of basin hydrology, Hydrol. Sci. Bull., 24, 43–69,
https://doi.org/10.1080/02626667909491834, 1979.
Blöschl, G., Blaschke, A. P., Broer, M., Bucher, C., Carr, G., Chen, X.,
Eder, A., Exner-Kittridge, M., Farnleitner, A. H., Flores-orozco, A., Haas,
P., Hogan, P., Kazemi Amiri, A., Oismüller, M., Parajka, J., Silasari,
R., Stadler, P., Strauss, P., Vreugdenhil, M., Wagner, W., and Zessner, M.:
The Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: A
hypothesis-driven observatory, Hydrol. Earth Syst. Sci., 20, 227–255, https://doi.org/10.5194/hess-20-227-2016, 2016a.
Blöschl, G., Blaschke, A. P., Broer, M., Bucher, C., Carr, G., Chen, X.,
Eder, A., Exner-Kittridge, M., Farnleitner, A., Flores-Orozco, A., Haas, P.,
Hogan, P., Kazemi Amiri, A., Oismüller, M., Parajka, J., Silasari, R.,
Stadler, P., Strauss, P., Vreugdenhil, M., Wagner, W., and Zessner, M.: The
Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: A hypothesis-driven observatory, Hydrol. Earth Syst. Sci., 20, 227–255,
https://doi.org/10.5194/hess-20-227-2016, 2016b.
Blume, T. and van Meerveld, H. J.: From hillslope to stream: methods to
investigate subsurface connectivity, Wiley Interdiscip. Rev. Water, 2,
177–198, https://doi.org/10.1002/wat2.1071, 2015.
Böhner, J. and Selige, T.: Spatial prediction of soil attributes using
terrain analysis and climate regionalisation, edited by: Boehner, J.,
McCloy, K. R., and Strobl, J., Goettinger Geographische Abhandlungen, Goettingen, 2006.
Coles, A. E. and McDonnell, J. J.: Fill and spill drives runoff connectivity
over frozen ground, J. Hydrol., 558, 115–128,
https://doi.org/10.1016/j.jhydrol.2018.01.016, 2018.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L.,
Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated
Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Detty, J. M. and McGuire, K. J.: Topographic controls on shallow groundwater
dynamics: implications of hydrologic connectivity between hillslopes and
riparian zones in a till mantled catchment, Hydrol. Process., 24, 2222–2236, https://doi.org/10.1002/hyp.7656, 2010.
Dhakal, A. S. and Sullivan, K.: Shallow groundwater response to rainfall on
a forested headwater catchment in northern coastal California: implications
of topography, rainfall, and throughfall intensities on peak pressure head
generation, Hydrol. Process., 28, 446–463, https://doi.org/10.1002/hyp.9542, 2014.
Emanuel, R. E., Hazen, A. G., Mcglynn, B. L., and Jencso, K. G.: Vegetation
and topographic influences on the connectivity of shallow groundwater between hillslopes and streams, Ecohydrology, 7, 887–895, https://doi.org/10.1002/eco.1409, 2014.
Exner-Kittridge, M., Strauss, P., Blöschl, G., Eder, A., Saracevic, E.,
and Zessner, M.: The seasonal dynamics of the stream sources and input flow
paths of water and nitrogen of an Austrian headwater agricultural catchment,
Sci. Total Environ., 542, 935–945, https://doi.org/10.1016/j.scitotenv.2015.10.151,
2016.
Fovet, O., Ruiz, L., Hrachowitz, M., Faucheux, M., and Gascuel-Odoux, C.:
Hydrological hysteresis and its value for assessing process consistency in
catchment conceptual models, Hydrol. Earth Syst. Sci., 19, 105–123,
https://doi.org/10.5194/hess-19-105-2015, 2015.
Freeman, T. G.: Calculating catchment area with divergent flow based on a
regular grid, Comput. Geosci., 17, 413–422, https://doi.org/10.1016/0098-3004(91)90048-I, 1991.
Gabrielli, C. P. and McDonnell, J. J.: Modifying the Jackson index to quantify the relationship between geology, landscape structure, and water
transit time in steep wet headwaters, Hydrol. Process., 34, 2139–2150,
https://doi.org/10.1002/hyp.13700, 2020.
Gannon, J. P., Bailey, S. W., and McGuire, K. J.: Organizing groundwater
regimes and response thresholds by soils: A framework for understanding
runoff generation in a headwater catchment, Water Resour. Res., 50, 8403–8419, https://doi.org/10.1002/2014WR015498, 2014.
Grayson, R. B., Western, A. W., Chiew, F. H. S., and Blöschl, G.:
Preferred states in spatial soil moisture patterns: Local and nonlocal
controls, Water Resour. Res., 33, 2897–2908, https://doi.org/10.1029/97WR02174, 1997.
Haught, D. R. W. and Van Meerveld, H. J.: Spatial variation in transient water table responses: Differences between an upper and lower hillslope zone, Hydrol. Process., 25, 3866–3877, https://doi.org/10.1002/hyp.8354, 2011.
Klaus, J. and Jackson, C. R.: Interflow Is Not Binary: A Continuous Shallow
Perched Layer Does Not Imply Continuous Connectivity, Water Resour. Res., 54, 5921–5932, https://doi.org/10.1029/2018WR022920, 2018.
Lana-Renault, N., Regüés, D., Serrano, P., and Latron, J.: Spatial
and temporal variability of groundwater dynamics in a sub-Mediterranean
mountain catchment, Hydrol. Process., 28, 3288–3299, https://doi.org/10.1002/hyp.9892, 2014.
Langlois, J. L., Johnson, D. W., and Mehuys, G. R.: Suspended sediment
dynamics associated with snowmelt runoff in a small mountain stream of Lake
Tahoe (Nevada), Hydrol. Process., 19, 3569–3580, https://doi.org/10.1002/hyp.5844, 2005.
Latron, J. and Gallart, F.: Runoff generation processes in a small Mediterranean research catchment (Vallcebre, Eastern Pyrenees), J. Hydrol.,
358, 206–220, https://doi.org/10.1016/j.jhydrol.2008.06.014, 2008.
Lawler, D. M., Petts, G. E., Foster, I. D. L., and Harper, S.: Turbidity
dynamics during spring storm events in an urban headwater river system: The
Upper Tame, West Midlands, UK, Sci. Total Environ., 360, 109–126,
https://doi.org/10.1016/J.SCITOTENV.2005.08.032, 2006.
Lloyd, C. E. M., Freer, J. E., Johnes, P. J., and Collins, A. L.: Technical Note: Testing an improved index for analysing storm discharge–concentration hysteresis, Hydrol. Earth Syst. Sci., 20, 625–632, https://doi.org/10.5194/hess-20-625-2016, 2016.
Loritz, R., Kleidon, A., Jackisch, C., Westhoff, M., Ehret, U., Gupta, H.,
and Zehe, E.: A topographic index explaining hydrological similarity by
accounting for the joint controls of runoff formation, Hydrol. Earth Syst.
Sci., 23, 3807–3821, https://doi.org/10.5194/hess-23-3807-2019, 2019.
McGuire, K. J. and McDonnell, J. J.: Hydrological connectivity of hillslopes
and streams: Characteristic time scales and nonlinearities, Water Resour.
Res., 46, W10543, https://doi.org/10.1029/2010WR009341, 2010.
Murtagh, F. and Legendre, P.: Ward's Hierarchical Agglomerative Clustering
Method: Which Algorithms Implement Ward's Criterion?, J. Classif., 31,
274–295, https://doi.org/10.1007/s00357-014-9161-z, 2014.
Ocampo, C. J., Sivapalan, M., and Oldham, C.: Hydrological connectivity of
upland-riparian zones in agricultural catchments: Implications for runoff
generation and nitrate transport, J. Hydrol., 331, 643–658,
https://doi.org/10.1016/J.JHYDROL.2006.06.010, 2006.
Penna, D., Tromp-Van Meerveld, H. J., Gobbi, A., Borga, M., and Dalla Fontana, G.: The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment, Hydrol. Earth Syst. Sci., 15, 689–702, https://doi.org/10.5194/hess-15-689-2011, 2011.
Penna, D., Mantese, N., Hopp, L., Dalla Fontana, G., and Borga, M.:
Spatio-temporal variability of piezometric response on two steep alpine
hillslopes, Hydrol. Process., 29, 198–211, https://doi.org/10.1002/hyp.10140, 2015.
Picciafuoco, T., Morbidelli, R., Flammini, A., Saltalippi, C., Corradini,
C., Strauss, P., and Blöschl, G.: On the estimation of spatially
representative plot scale saturated hydraulic conductivity in an agricultural setting, J. Hydrol., 570, 106–117, https://doi.org/10.1016/J.JHYDROL.2018.12.044, 2019.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/ (last access: 27 April 2021), 2019.
Rinderer, M., van Meerveld, H. J., Stähli, M., and Seibert, J.: Is
groundwater response timing in a pre-alpine catchment controlled more by
topography or by rainfall?, Hydrol. Process., 30, 1036–1051,
https://doi.org/10.1002/hyp.10634, 2016.
Rinderer, M., McGlynn, B. L., and van Meerveld, H. J.: Groundwater similarity
across a watershed derived from time-warped and flow-corrected time series,
Water Resour. Res., 53, 3921–3940, https://doi.org/10.1002/2016WR019856, 2017.
Rodhe, A. and Seibert, J.: Groundwater dynamics in a till hillslope: Flow
directions, gradients and delay, Hydrol. Process., 25, 1899–1909,
https://doi.org/10.1002/hyp.7946, 2011.
Rosenbaum, U., Bogena, H. R., Herbst, M., Huisman, J. A., Peterson, T. J.,
Weuthen, A., Western, A. W., and Vereecken, H.: Seasonal and event dynamics
of spatial soil moisture patterns at the small catchment scale, Water Resour. Res., 48, W10544, https://doi.org/10.1029/2011WR011518, 2012.
Saffarpour, S., Western, A. W., Adams, R., and McDonnell, J. J.: Multiple
runoff processes and multiple thresholds control agricultural runoff
generation, Hydrol. Earth Syst. Sci., 20, 4525–4545,
https://doi.org/10.5194/hess-20-4525-2016, 2016.
Scheliga, B., Tetzlaff, D., Nuetzmann, G., and Soulsby, C.: Groundwater
dynamics at the hillslope–riparian interface in a year with extreme winter
rainfall, J. Hydrol., 564, 509–528, https://doi.org/10.1016/j.jhydrol.2018.06.082,
2018.
Silasari, R., Parajka, J., Ressl, C., Strauss, P., and Blöschl, G.:
Potential of time-lapse photography for identifying saturation area dynamics on agricultural hillslopes, Hydrol. Process., 31, 3610–3627,
https://doi.org/10.1002/hyp.11272, 2017.
Széles, B., Broer, M., Parajka, J., Hogan, P., Eder, A., Strauss, P., and
Blöschl, G.: Separation of Scales in Transpiration Effects on Low Flows:
A Spatial Analysis in the Hydrological Open Air Laboratory, Water Resour.
Res., 54, 6168–6188, https://doi.org/10.1029/2017WR022037, 2018.
Therneau, T. and Atkinson, B.: rpart: Recursive Partitioning and Regression
Trees, R package version 4.1-15, available at:
https://cran.r-project.org/package=rpart (last access: 27 April 2021), 2019.
Tromp-van Meerveld, H. J. and McDonnell, J. J.: Threshold relations in
subsurface stormflow: 2. The fill and spill hypothesis, Water Resour. Res.,
42, W02411, https://doi.org/10.1029/2004WR003800, 2006.
van Meerveld, H. J., Seibert, J., and Peters, N. E.: Hillslope-riparian-stream connectivity and flow directions at the Panola Mountain Research Watershed, Hydrol. Process., 29, 3556–3574,
https://doi.org/10.1002/hyp.10508, 2015.
Vidon, P. G. F. and Hill, A. R.: Landscape controls on the hydrology of
stream riparian zones, J. Hydrol., 292, 210–228,
https://doi.org/10.1016/J.JHYDROL.2004.01.005, 2004.
Weiss, A.: Topographic position and landforms analysis, in: Poster Conference, ESRI User Conf., San Diego, CA, 64, 227–245, available at:
http://www.jennessent.com/downloads/TPI-poster-TNC_18x22.pdf (last access: 27 April 2021), 2001.
Western, A. W., Blöschl, G., and Grayson, R. B.: Toward capturing
hydrologically significant connectivity in spatial patterns, Water Resour.
Res., 37, 83–97, https://doi.org/10.1029/2000WR900241, 2001.
Zhang, B., Tang, J. L., Gao, C., and Zepp, H.: Subsurface lateral flow from
hillslope and its contribution to nitrate loading in streams through an
agricultural catchment during subtropical rainstorm events, Hydrol. Earth
Syst. Sci., 15, 3153–3170, https://doi.org/10.5194/hess-15-3153-2011, 2011.
Zuecco, G., Penna, D., Borga, M., and van Meerveld, H. J.: A versatile index
to characterize hysteresis between hydrological variables at the runoff
event timescale, Hydrol. Process., 30, 1449–1466, https://doi.org/10.1002/hyp.10681,
2016.
Short summary
We compared the dynamics of streamflow, groundwater and soil moisture to investigate how different parts of an agricultural catchment in Lower Austria are connected. Groundwater is best connected around the stream and worse uphill, where groundwater is deeper. Soil moisture connectivity increases with increasing catchment wetness but is not influenced by spatial position in the catchment. Groundwater is more connected to the stream on the seasonal scale compared to the event scale.
We compared the dynamics of streamflow, groundwater and soil moisture to investigate how...